hifigan-lj-v1 / modeling_hifigan.py
jaketae's picture
Update modeling_hifigan.py
3b0b39f
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Conv1d, ConvTranspose1d
from torch.nn.utils import remove_weight_norm, weight_norm
from transformers import PreTrainedModel
from .configuration_hifigan import HiFiGANConfig
LRELU_SLOPE = 0.1
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
def get_padding(kernel_size, dilation=1):
return (kernel_size * dilation - dilation) // 2
class ResBlock(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
super(ResBlock, self).__init__()
self.convs1 = nn.ModuleList(
[
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2]),
)
),
]
)
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList(
[
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
]
)
self.convs2.apply(init_weights)
def forward(self, x):
for c1, c2 in zip(self.convs1, self.convs2):
xt = F.leaky_relu(x, LRELU_SLOPE)
xt = c1(xt)
xt = F.leaky_relu(xt, LRELU_SLOPE)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for layer in self.convs1:
remove_weight_norm(layer)
for layer in self.convs2:
remove_weight_norm(layer)
class HiFiGAN(PreTrainedModel):
config_class = HiFiGANConfig
def __init__(self, config):
super().__init__(config)
self.num_kernels = len(config.resblock_kernel_sizes)
self.num_upsamples = len(config.upsample_rates)
self.conv_pre = weight_norm(
Conv1d(
config.model_in_dim,
config.upsample_initial_channel,
7,
1,
padding=3,
)
)
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(
zip(config.upsample_rates, config.upsample_kernel_sizes)
):
self.ups.append(
weight_norm(
ConvTranspose1d(
config.upsample_initial_channel // (2**i),
config.upsample_initial_channel // (2 ** (i + 1)),
k,
u,
padding=(k - u) // 2,
)
)
)
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = config.upsample_initial_channel // (2 ** (i + 1))
for k, d in zip(
config.resblock_kernel_sizes, config.resblock_dilation_sizes
):
self.resblocks.append(ResBlock(ch, k, d))
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
self.ups.apply(init_weights)
self.conv_post.apply(init_weights)
def forward(self, x):
x = self.conv_pre(x)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, LRELU_SLOPE)
x = self.ups[i](x)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def remove_weight_norm(self):
print("Removing weight norm...")
for layer in self.ups:
remove_weight_norm(layer)
for layer in self.resblocks:
layer.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)