Update README.md
Browse files
README.md
CHANGED
@@ -4,4 +4,90 @@ language:
|
|
4 |
- kg
|
5 |
base_model:
|
6 |
- BAAI/bge-m3
|
7 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
- kg
|
5 |
base_model:
|
6 |
- BAAI/bge-m3
|
7 |
+
---
|
8 |
+
|
9 |
+
|
10 |
+
# Model Card for Model ID
|
11 |
+
|
12 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
## Model Details
|
17 |
+
|
18 |
+
|
19 |
+
## Train
|
20 |
+
|
21 |
+
- H/W : colab A100 40GB
|
22 |
+
- Data : jaeyong2/Ko-emb-PreView (step : 18000)
|
23 |
+
|
24 |
+
```
|
25 |
+
!torchrun --nproc_per_node 1 \
|
26 |
+
-m FlagEmbedding.finetune.embedder.encoder_only.m3 \
|
27 |
+
--output_dir "/content/drive/My Drive/bge_ko.pth" \
|
28 |
+
--model_name_or_path BAAI/bge-m3 \
|
29 |
+
--train_data ./train.jsonl \
|
30 |
+
--learning_rate 1e-5 \
|
31 |
+
--bf16 \
|
32 |
+
--num_train_epochs 1 \
|
33 |
+
--per_device_train_batch_size 1 \
|
34 |
+
--dataloader_drop_last True \
|
35 |
+
--temperature 0.02 \
|
36 |
+
--query_max_len 2048 \
|
37 |
+
--passage_max_len 512 \
|
38 |
+
--train_group_size 2 \
|
39 |
+
--negatives_cross_device \
|
40 |
+
--logging_steps 10 \
|
41 |
+
--save_steps 1000 \
|
42 |
+
--query_instruction_for_retrieval ""
|
43 |
+
```
|
44 |
+
|
45 |
+
## Evaluation
|
46 |
+
|
47 |
+
Code :
|
48 |
+
```
|
49 |
+
import torch
|
50 |
+
import numpy as np
|
51 |
+
from sklearn.metrics import pairwise_distances
|
52 |
+
from tqdm import tqdm
|
53 |
+
import datasets
|
54 |
+
def get_embedding(text, model):
|
55 |
+
with torch.no_grad():
|
56 |
+
embedding = model.encode(text)['dense_vecs']
|
57 |
+
return embedding
|
58 |
+
|
59 |
+
|
60 |
+
dataset = datasets.load_dataset("jaeyong2/Ko-emb-PreView")
|
61 |
+
validation_dataset = dataset["test"].select(range((1000)))
|
62 |
+
|
63 |
+
|
64 |
+
def evaluate(validation_dataset):
|
65 |
+
correct_count = 0
|
66 |
+
|
67 |
+
for item in tqdm(validation_dataset):
|
68 |
+
query_embedding = get_embedding(item["context"], fine_tuned_model)
|
69 |
+
document_embedding = get_embedding(item["Title"], fine_tuned_model)
|
70 |
+
negative_embedding = get_embedding(item["Fake Title"], fine_tuned_model)
|
71 |
+
|
72 |
+
|
73 |
+
# 쿼리와 모든 문서 간의 유사도 계산 (코사인 거리 사용)
|
74 |
+
positive_distances = pairwise_distances(query_embedding.reshape(1, -1), document_embedding.reshape(1, -1), metric="cosine")
|
75 |
+
negative_distances = pairwise_distances(query_embedding.reshape(1, -1), negative_embedding.reshape(1, -1), metric="cosine")
|
76 |
+
|
77 |
+
if positive_distances < negative_distances:
|
78 |
+
correct_count += 1
|
79 |
+
|
80 |
+
accuracy = correct_count / len(validation_dataset)
|
81 |
+
return accuracy
|
82 |
+
|
83 |
+
results = evaluate(validation_dataset)
|
84 |
+
print(f"Validation Results: {results}")
|
85 |
+
```
|
86 |
+
|
87 |
+
Accuracy
|
88 |
+
- Alibaba-NLP/gte-multilingual-base : 0.971
|
89 |
+
- jaeyong2/gte-multilingual-base-Ko-embedding : 0.992
|
90 |
+
|
91 |
+
|
92 |
+
### License
|
93 |
+
- Alibaba-NLP/gte-multilingual-base : https://choosealicense.com/licenses/apache-2.0/
|