End of training
Browse files- README.md +79 -0
- logs/events.out.tfevents.1685639414.kimv.12176.2 +2 -2
- preprocessor_config.json +14 -0
- pytorch_model.bin +1 -1
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +38 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- funsd
|
6 |
+
model-index:
|
7 |
+
- name: layoutlm-funsd
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# layoutlm-funsd
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.6866
|
19 |
+
- Answer: {'precision': 0.7205720572057206, 'recall': 0.8096415327564895, 'f1': 0.7625145518044238, 'number': 809}
|
20 |
+
- Header: {'precision': 0.3181818181818182, 'recall': 0.35294117647058826, 'f1': 0.3346613545816733, 'number': 119}
|
21 |
+
- Question: {'precision': 0.7839506172839507, 'recall': 0.8347417840375587, 'f1': 0.8085493406093679, 'number': 1065}
|
22 |
+
- Overall Precision: 0.7292
|
23 |
+
- Overall Recall: 0.7958
|
24 |
+
- Overall F1: 0.7610
|
25 |
+
- Overall Accuracy: 0.8048
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 3e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 8
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 15
|
51 |
+
- mixed_precision_training: Native AMP
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
57 |
+
| 1.8292 | 1.0 | 10 | 1.6076 | {'precision': 0.014943960149439602, 'recall': 0.014833127317676144, 'f1': 0.01488833746898263, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2132564841498559, 'recall': 0.13896713615023473, 'f1': 0.16827743035815804, 'number': 1065} | 0.1069 | 0.0803 | 0.0917 | 0.3499 |
|
58 |
+
| 1.4992 | 2.0 | 20 | 1.2649 | {'precision': 0.15553121577217963, 'recall': 0.17552533992583436, 'f1': 0.16492450638792103, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.45795107033639143, 'recall': 0.5624413145539906, 'f1': 0.5048461862621155, 'number': 1065} | 0.3336 | 0.3718 | 0.3517 | 0.5779 |
|
59 |
+
| 1.127 | 3.0 | 30 | 0.9502 | {'precision': 0.4658981748318924, 'recall': 0.5995055624227441, 'f1': 0.5243243243243242, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.6047904191616766, 'recall': 0.6638497652582159, 'f1': 0.6329453894359892, 'number': 1065} | 0.5379 | 0.5981 | 0.5664 | 0.6835 |
|
60 |
+
| 0.8468 | 4.0 | 40 | 0.8052 | {'precision': 0.5737240075614367, 'recall': 0.7503090234857849, 'f1': 0.6502410283877879, 'number': 809} | {'precision': 0.15, 'recall': 0.05042016806722689, 'f1': 0.07547169811320754, 'number': 119} | {'precision': 0.672231985940246, 'recall': 0.7183098591549296, 'f1': 0.6945074897866546, 'number': 1065} | 0.6163 | 0.6914 | 0.6517 | 0.7343 |
|
61 |
+
| 0.706 | 5.0 | 50 | 0.7191 | {'precision': 0.6361655773420479, 'recall': 0.7218788627935723, 'f1': 0.6763173132599883, 'number': 809} | {'precision': 0.18055555555555555, 'recall': 0.1092436974789916, 'f1': 0.13612565445026178, 'number': 119} | {'precision': 0.6922435362802335, 'recall': 0.7793427230046949, 'f1': 0.7332155477031801, 'number': 1065} | 0.6519 | 0.7160 | 0.6824 | 0.7683 |
|
62 |
+
| 0.5832 | 6.0 | 60 | 0.6846 | {'precision': 0.6547231270358306, 'recall': 0.7453646477132262, 'f1': 0.6971098265895953, 'number': 809} | {'precision': 0.21951219512195122, 'recall': 0.15126050420168066, 'f1': 0.1791044776119403, 'number': 119} | {'precision': 0.6936866718628215, 'recall': 0.8356807511737089, 'f1': 0.75809199318569, 'number': 1065} | 0.6610 | 0.7582 | 0.7062 | 0.7898 |
|
63 |
+
| 0.5197 | 7.0 | 70 | 0.6586 | {'precision': 0.6821621621621622, 'recall': 0.7799752781211372, 'f1': 0.7277970011534025, 'number': 809} | {'precision': 0.23469387755102042, 'recall': 0.19327731092436976, 'f1': 0.2119815668202765, 'number': 119} | {'precision': 0.7302363488182559, 'recall': 0.8413145539906103, 'f1': 0.7818499127399652, 'number': 1065} | 0.6889 | 0.7777 | 0.7306 | 0.7931 |
|
64 |
+
| 0.4622 | 8.0 | 80 | 0.6479 | {'precision': 0.6830601092896175, 'recall': 0.7725587144622992, 'f1': 0.7250580046403712, 'number': 809} | {'precision': 0.2540983606557377, 'recall': 0.2605042016806723, 'f1': 0.2572614107883818, 'number': 119} | {'precision': 0.7464553794829024, 'recall': 0.8403755868544601, 'f1': 0.7906360424028268, 'number': 1065} | 0.6936 | 0.7782 | 0.7335 | 0.7983 |
|
65 |
+
| 0.4162 | 9.0 | 90 | 0.6500 | {'precision': 0.6911447084233261, 'recall': 0.7911001236093943, 'f1': 0.7377521613832853, 'number': 809} | {'precision': 0.3008130081300813, 'recall': 0.31092436974789917, 'f1': 0.3057851239669422, 'number': 119} | {'precision': 0.7659574468085106, 'recall': 0.8450704225352113, 'f1': 0.8035714285714286, 'number': 1065} | 0.7091 | 0.7913 | 0.7479 | 0.8010 |
|
66 |
+
| 0.3644 | 10.0 | 100 | 0.6503 | {'precision': 0.7041484716157205, 'recall': 0.7972805933250927, 'f1': 0.7478260869565218, 'number': 809} | {'precision': 0.3247863247863248, 'recall': 0.31932773109243695, 'f1': 0.3220338983050848, 'number': 119} | {'precision': 0.7757885763000852, 'recall': 0.8544600938967136, 'f1': 0.8132260947274352, 'number': 1065} | 0.7221 | 0.7993 | 0.7588 | 0.8078 |
|
67 |
+
| 0.3255 | 11.0 | 110 | 0.6716 | {'precision': 0.7108953613807982, 'recall': 0.8145859085290482, 'f1': 0.7592165898617511, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.3277310924369748, 'f1': 0.3305084745762712, 'number': 119} | {'precision': 0.7852112676056338, 'recall': 0.8375586854460094, 'f1': 0.8105406633348478, 'number': 1065} | 0.7294 | 0.7978 | 0.7620 | 0.8026 |
|
68 |
+
| 0.3154 | 12.0 | 120 | 0.6760 | {'precision': 0.7207505518763797, 'recall': 0.8071693448702101, 'f1': 0.7615160349854228, 'number': 809} | {'precision': 0.3140495867768595, 'recall': 0.31932773109243695, 'f1': 0.31666666666666665, 'number': 119} | {'precision': 0.7812773403324584, 'recall': 0.8384976525821596, 'f1': 0.8088768115942028, 'number': 1065} | 0.7300 | 0.7948 | 0.7610 | 0.8039 |
|
69 |
+
| 0.2872 | 13.0 | 130 | 0.6777 | {'precision': 0.7232635060639471, 'recall': 0.8108776266996292, 'f1': 0.7645687645687645, 'number': 809} | {'precision': 0.31451612903225806, 'recall': 0.3277310924369748, 'f1': 0.32098765432098764, 'number': 119} | {'precision': 0.7841601392515231, 'recall': 0.8460093896713615, 'f1': 0.8139114724480578, 'number': 1065} | 0.7321 | 0.8008 | 0.7649 | 0.8055 |
|
70 |
+
| 0.2775 | 14.0 | 140 | 0.6824 | {'precision': 0.7250821467688937, 'recall': 0.8182941903584673, 'f1': 0.7688734030197445, 'number': 809} | {'precision': 0.31007751937984496, 'recall': 0.33613445378151263, 'f1': 0.3225806451612903, 'number': 119} | {'precision': 0.7839506172839507, 'recall': 0.8347417840375587, 'f1': 0.8085493406093679, 'number': 1065} | 0.7312 | 0.7983 | 0.7633 | 0.8048 |
|
71 |
+
| 0.2744 | 15.0 | 150 | 0.6866 | {'precision': 0.7205720572057206, 'recall': 0.8096415327564895, 'f1': 0.7625145518044238, 'number': 809} | {'precision': 0.3181818181818182, 'recall': 0.35294117647058826, 'f1': 0.3346613545816733, 'number': 119} | {'precision': 0.7839506172839507, 'recall': 0.8347417840375587, 'f1': 0.8085493406093679, 'number': 1065} | 0.7292 | 0.7958 | 0.7610 | 0.8048 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.29.2
|
77 |
+
- Pytorch 2.0.1+cu118
|
78 |
+
- Datasets 2.12.0
|
79 |
+
- Tokenizers 0.13.3
|
logs/events.out.tfevents.1685639414.kimv.12176.2
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a7b5131c452f4510058088be62f3bb875ee2445704b778522c2c83a3f72f368
|
3 |
+
size 14394
|
preprocessor_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"apply_ocr": true,
|
3 |
+
"do_resize": true,
|
4 |
+
"feature_extractor_type": "LayoutLMv2FeatureExtractor",
|
5 |
+
"image_processor_type": "LayoutLMv2ImageProcessor",
|
6 |
+
"ocr_lang": null,
|
7 |
+
"processor_class": "LayoutLMv2Processor",
|
8 |
+
"resample": 2,
|
9 |
+
"size": {
|
10 |
+
"height": 224,
|
11 |
+
"width": 224
|
12 |
+
},
|
13 |
+
"tesseract_config": ""
|
14 |
+
}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450608389
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7c980afe5961ef8d3f9879b63d5dee1c0c0080fcc779f72b14fccb2164b9349
|
3 |
size 450608389
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": null,
|
3 |
+
"apply_ocr": false,
|
4 |
+
"clean_up_tokenization_spaces": true,
|
5 |
+
"cls_token": "[CLS]",
|
6 |
+
"cls_token_box": [
|
7 |
+
0,
|
8 |
+
0,
|
9 |
+
0,
|
10 |
+
0
|
11 |
+
],
|
12 |
+
"do_basic_tokenize": true,
|
13 |
+
"do_lower_case": true,
|
14 |
+
"mask_token": "[MASK]",
|
15 |
+
"model_max_length": 512,
|
16 |
+
"never_split": null,
|
17 |
+
"only_label_first_subword": true,
|
18 |
+
"pad_token": "[PAD]",
|
19 |
+
"pad_token_box": [
|
20 |
+
0,
|
21 |
+
0,
|
22 |
+
0,
|
23 |
+
0
|
24 |
+
],
|
25 |
+
"pad_token_label": -100,
|
26 |
+
"processor_class": "LayoutLMv2Processor",
|
27 |
+
"sep_token": "[SEP]",
|
28 |
+
"sep_token_box": [
|
29 |
+
1000,
|
30 |
+
1000,
|
31 |
+
1000,
|
32 |
+
1000
|
33 |
+
],
|
34 |
+
"strip_accents": null,
|
35 |
+
"tokenize_chinese_chars": true,
|
36 |
+
"tokenizer_class": "LayoutLMv2Tokenizer",
|
37 |
+
"unk_token": "[UNK]"
|
38 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|