jacklangerman
commited on
Commit
•
7eb69da
1
Parent(s):
0b5273d
Upload folder using huggingface_hub
Browse files- README.md +19 -0
- example_notebook.ipynb +1010 -0
- script.py +58 -0
README.md
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Empty solution example for the S23DR competition
|
2 |
+
|
3 |
+
This repo provides a minimalistic example of a valid, but empty submission to S23DR competition.
|
4 |
+
We recommend to take a look at the [another example](https://huggingface.co/usm3d/handcrafted_baseline_submission),
|
5 |
+
which implement some primitive algorithm and provides useful I/O and visualization functions.
|
6 |
+
|
7 |
+
This one, though, containt the minimal code, which succeeds at reading the dataset and producing a solution, which consists of two vertices at the origin and edge of zero length connecting them.
|
8 |
+
|
9 |
+
|
10 |
+
The repo consistst of the following parts:
|
11 |
+
|
12 |
+
- `script.py` - the main file, which is run by the competition space. It should produce `submission.parquet` as the result of the run.
|
13 |
+
- `hoho.py` - the file for parsing the dataset at the inference time. Do NOT change it.
|
14 |
+
|
15 |
+
|
16 |
+
---
|
17 |
+
license: apache-2.0
|
18 |
+
---
|
19 |
+
|
example_notebook.ipynb
ADDED
@@ -0,0 +1,1010 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "Mq5iNIZ9xWxt",
|
6 |
+
"metadata": {
|
7 |
+
"id": "Mq5iNIZ9xWxt"
|
8 |
+
},
|
9 |
+
"source": [
|
10 |
+
"# Empty Submission Example for S23DR Challenge\n",
|
11 |
+
"\n",
|
12 |
+
"### Helpful Links\n",
|
13 |
+
"[Challenge Page](https://huggingface.co/spaces/usm3d/S23DR) \n",
|
14 |
+
"[Workshop Page](usm3d.github.io) \n",
|
15 |
+
"\n",
|
16 |
+
"[HoHo Train Set](https://huggingface.co/datasets/usm3d/hoho-train-set) \n",
|
17 |
+
"[Handcrafted Baseline Solution](https://huggingface.co/usm3d/handcrafted_baseline_submission) \n",
|
18 |
+
" "
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"cell_type": "markdown",
|
23 |
+
"id": "dua8UJOoxiDi",
|
24 |
+
"metadata": {
|
25 |
+
"id": "dua8UJOoxiDi"
|
26 |
+
},
|
27 |
+
"source": [
|
28 |
+
"## Setup\n",
|
29 |
+
"\n",
|
30 |
+
"We'll start by checking if we are running to Google Colab (and if we are setting `IN_COLAB = True` and installing the [hoho tools](https://huggingface.co/usm3d/tools))."
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "code",
|
35 |
+
"execution_count": 1,
|
36 |
+
"id": "ItDDqoXop8bb",
|
37 |
+
"metadata": {
|
38 |
+
"colab": {
|
39 |
+
"base_uri": "https://localhost:8080/"
|
40 |
+
},
|
41 |
+
"id": "ItDDqoXop8bb",
|
42 |
+
"outputId": "0c9d26a7-bf79-4452-c772-d5579a9cb2a9"
|
43 |
+
},
|
44 |
+
"outputs": [],
|
45 |
+
"source": [
|
46 |
+
"try:\n",
|
47 |
+
" import google.colab\n",
|
48 |
+
" IN_COLAB = True\n",
|
49 |
+
"except:\n",
|
50 |
+
" IN_COLAB = False\n",
|
51 |
+
"\n",
|
52 |
+
"if IN_COLAB:\n",
|
53 |
+
" !pip install git+http://hf.co/usm3d/tools.git"
|
54 |
+
]
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"cell_type": "markdown",
|
58 |
+
"id": "2tHX74Z-x1cU",
|
59 |
+
"metadata": {
|
60 |
+
"id": "2tHX74Z-x1cU"
|
61 |
+
},
|
62 |
+
"source": [
|
63 |
+
"We need to be logged into HF for this to work because the training dataset is gated. If you haven't already please go to the [dastaset page](https://huggingface.co/datasets/usm3d/hoho-train-set) to agree to our terms and request access to the dataset."
|
64 |
+
]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "code",
|
68 |
+
"execution_count": 2,
|
69 |
+
"id": "zq_ljluLqzzv",
|
70 |
+
"metadata": {
|
71 |
+
"colab": {
|
72 |
+
"base_uri": "https://localhost:8080/"
|
73 |
+
},
|
74 |
+
"id": "zq_ljluLqzzv",
|
75 |
+
"outputId": "b66806f1-b88a-47e0-8194-79515b73fa23"
|
76 |
+
},
|
77 |
+
"outputs": [],
|
78 |
+
"source": [
|
79 |
+
"if IN_COLAB:\n",
|
80 |
+
" !huggingface-cli login"
|
81 |
+
]
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"cell_type": "markdown",
|
85 |
+
"id": "Xf2PY79fywa5",
|
86 |
+
"metadata": {
|
87 |
+
"id": "Xf2PY79fywa5"
|
88 |
+
},
|
89 |
+
"source": [
|
90 |
+
"## Data Download, Analysis, and Visualization"
|
91 |
+
]
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"cell_type": "code",
|
95 |
+
"execution_count": 3,
|
96 |
+
"id": "e171b1ec-e861-4349-98fd-2eac4d080ff5",
|
97 |
+
"metadata": {
|
98 |
+
"id": "e171b1ec-e861-4349-98fd-2eac4d080ff5"
|
99 |
+
},
|
100 |
+
"outputs": [],
|
101 |
+
"source": [
|
102 |
+
"import hoho\n",
|
103 |
+
"from hoho import *\n",
|
104 |
+
"\n",
|
105 |
+
"import numpy as np\n",
|
106 |
+
"import matplotlib.pyplot as plt\n",
|
107 |
+
"from pathlib import Path\n",
|
108 |
+
"from collections import Counter\n",
|
109 |
+
"import itertools\n",
|
110 |
+
"import datasets\n",
|
111 |
+
"import trimesh\n",
|
112 |
+
"from tqdm.notebook import tqdm\n",
|
113 |
+
"import webdataset as wds\n",
|
114 |
+
"import sys"
|
115 |
+
]
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"cell_type": "markdown",
|
119 |
+
"id": "83649a4c-fde7-4051-ba71-e596d382e76a",
|
120 |
+
"metadata": {
|
121 |
+
"id": "83649a4c-fde7-4051-ba71-e596d382e76a"
|
122 |
+
},
|
123 |
+
"source": [
|
124 |
+
"### Load the hoho package and point to the data folder\n",
|
125 |
+
"\n",
|
126 |
+
"We download only one shard of the data"
|
127 |
+
]
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"cell_type": "code",
|
131 |
+
"execution_count": 4,
|
132 |
+
"id": "ffffc234",
|
133 |
+
"metadata": {
|
134 |
+
"colab": {
|
135 |
+
"base_uri": "https://localhost:8080/"
|
136 |
+
},
|
137 |
+
"id": "ffffc234",
|
138 |
+
"outputId": "e969db58-e88e-457a-eee2-14e65c8117fb"
|
139 |
+
},
|
140 |
+
"outputs": [
|
141 |
+
{
|
142 |
+
"name": "stderr",
|
143 |
+
"output_type": "stream",
|
144 |
+
"text": [
|
145 |
+
"/Users/jack/dev/USM3D/comp/tools/hoho/hoho.py:309: UserWarning: streaming isn't using with 'all': changing `split` to 'train'\n",
|
146 |
+
" warnings.warn('streaming isn\\'t using with \\'all\\': changing `split` to \\'train\\'')\n",
|
147 |
+
"/Users/jack/dev/USM3D/comp/tools/hoho/hoho.py:310: UserWarning: no tarfiles found in data/usm-training-data/data/val.\n",
|
148 |
+
" warnings.warn(msg)\n"
|
149 |
+
]
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"name": "stdout",
|
153 |
+
"output_type": "stream",
|
154 |
+
"text": [
|
155 |
+
"/Users/jack/dev/USM3D/comp/empty_submission\n",
|
156 |
+
"total 104\n",
|
157 |
+
"-rw-r--r-- 1 jack staff 1.5K Apr 26 12:51 .gitattributes\n",
|
158 |
+
"-rw-r--r-- 1 jack staff 855B Apr 26 12:51 README.md\n",
|
159 |
+
"drwxr-xr-x 10 jack staff 320B Apr 26 12:55 \u001b[34m..\u001b[m\u001b[m\n",
|
160 |
+
"drwxr-xr-x 3 jack staff 96B Apr 26 15:06 \u001b[34mdata\u001b[m\u001b[m\n",
|
161 |
+
"-rw-r--r-- 1 jack staff 5.8K Apr 26 15:42 submission.parquet\n",
|
162 |
+
"-rw-r--r-- 1 jack staff 2.3K Apr 26 15:50 script.py\n",
|
163 |
+
"drwxr-xr-x 15 jack staff 480B Apr 26 15:50 \u001b[34m.git\u001b[m\u001b[m\n",
|
164 |
+
"-rw-r--r-- 1 jack staff 32K Apr 26 18:26 example_notebook.ipynb\n",
|
165 |
+
"drwxr-xr-x 9 jack staff 288B Apr 28 10:32 \u001b[34m.\u001b[m\u001b[m\n",
|
166 |
+
"Using data/usm-training-data/data as the data directory (we are running locally)\n",
|
167 |
+
"------------ Loading dataset------------ \n",
|
168 |
+
"params.json not found (this means we probably aren't in the test env). Using example params.\n",
|
169 |
+
"{'competition_id': 'usm3d/S23DR', 'competition_type': 'script', 'metric': 'custom', 'token': 'hf_**********************************', 'team_id': 'local-test-team_id', 'submission_id': 'local-test-submission_id', 'submission_id_col': '__key__', 'submission_cols': ['__key__', 'wf_edges', 'wf_vertices', 'edge_semantics'], 'submission_rows': 180, 'output_path': '.', 'submission_repo': '<THE HF MODEL ID of THIS REPO', 'time_limit': 7200, 'dataset': 'usm3d/usm-test-data-x', 'submission_filenames': ['submission.parquet']}\n",
|
170 |
+
"------------ Now you can do your solution ---------------\n"
|
171 |
+
]
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"name": "stderr",
|
175 |
+
"output_type": "stream",
|
176 |
+
"text": [
|
177 |
+
"0it [00:00, ?it/s]"
|
178 |
+
]
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"name": "stderr",
|
182 |
+
"output_type": "stream",
|
183 |
+
"text": [
|
184 |
+
"2it [00:34, 17.31s/it]\n"
|
185 |
+
]
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"ename": "KeyboardInterrupt",
|
189 |
+
"evalue": "",
|
190 |
+
"output_type": "error",
|
191 |
+
"traceback": [
|
192 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
193 |
+
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
|
194 |
+
"Cell \u001b[0;32mIn[4], line 47\u001b[0m\n\u001b[1;32m 45\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m------------ Now you can do your solution ---------------\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 46\u001b[0m solution \u001b[38;5;241m=\u001b[39m []\n\u001b[0;32m---> 47\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i, sample \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(tqdm(dataset)):\n\u001b[1;32m 48\u001b[0m \u001b[38;5;66;03m# replace this with your solution\u001b[39;00m\n\u001b[1;32m 49\u001b[0m pred_vertices, pred_edges \u001b[38;5;241m=\u001b[39m empty_solution(sample)\n\u001b[1;32m 51\u001b[0m solution\u001b[38;5;241m.\u001b[39mappend({\n\u001b[1;32m 52\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m__key__\u001b[39m\u001b[38;5;124m'\u001b[39m: sample[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m__key__\u001b[39m\u001b[38;5;124m'\u001b[39m], \n\u001b[1;32m 53\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mwf_vertices\u001b[39m\u001b[38;5;124m'\u001b[39m: pred_vertices\u001b[38;5;241m.\u001b[39mtolist(),\n\u001b[1;32m 54\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mwf_edges\u001b[39m\u001b[38;5;124m'\u001b[39m: pred_edges\n\u001b[1;32m 55\u001b[0m })\n",
|
195 |
+
"File \u001b[0;32m~/miniconda3/envs/d2/lib/python3.10/site-packages/tqdm/std.py:1181\u001b[0m, in \u001b[0;36mtqdm.__iter__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1178\u001b[0m time \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_time\n\u001b[1;32m 1180\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m-> 1181\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m obj \u001b[38;5;129;01min\u001b[39;00m iterable:\n\u001b[1;32m 1182\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m obj\n\u001b[1;32m 1183\u001b[0m \u001b[38;5;66;03m# Update and possibly print the progressbar.\u001b[39;00m\n\u001b[1;32m 1184\u001b[0m \u001b[38;5;66;03m# Note: does not call self.update(1) for speed optimisation.\u001b[39;00m\n",
|
196 |
+
"File \u001b[0;32m~/miniconda3/envs/d2/lib/python3.10/site-packages/webdataset/pipeline.py:70\u001b[0m, in \u001b[0;36mDataPipeline.iterator\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 68\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Create an iterator through the entire dataset, using the given number of repetitions.\"\"\"\u001b[39;00m\n\u001b[1;32m 69\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m _ \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mrepetitions):\n\u001b[0;32m---> 70\u001b[0m \u001b[38;5;28;01myield from\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39miterator1()\n",
|
197 |
+
"File \u001b[0;32m~/miniconda3/envs/d2/lib/python3.10/site-packages/webdataset/filters.py:302\u001b[0m, in \u001b[0;36m_map\u001b[0;34m(data, f, handler)\u001b[0m\n\u001b[1;32m 300\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_map\u001b[39m(data, f, handler\u001b[38;5;241m=\u001b[39mreraise_exception):\n\u001b[1;32m 301\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Map samples.\"\"\"\u001b[39;00m\n\u001b[0;32m--> 302\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m sample \u001b[38;5;129;01min\u001b[39;00m data:\n\u001b[1;32m 303\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 304\u001b[0m result \u001b[38;5;241m=\u001b[39m f(sample)\n",
|
198 |
+
"File \u001b[0;32m~/miniconda3/envs/d2/lib/python3.10/site-packages/webdataset/filters.py:302\u001b[0m, in \u001b[0;36m_map\u001b[0;34m(data, f, handler)\u001b[0m\n\u001b[1;32m 300\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_map\u001b[39m(data, f, handler\u001b[38;5;241m=\u001b[39mreraise_exception):\n\u001b[1;32m 301\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Map samples.\"\"\"\u001b[39;00m\n\u001b[0;32m--> 302\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m sample \u001b[38;5;129;01min\u001b[39;00m data:\n\u001b[1;32m 303\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 304\u001b[0m result \u001b[38;5;241m=\u001b[39m f(sample)\n",
|
199 |
+
"File \u001b[0;32m~/miniconda3/envs/d2/lib/python3.10/site-packages/webdataset/tariterators.py:219\u001b[0m, in \u001b[0;36mgroup_by_keys\u001b[0;34m(data, keys, lcase, suffixes, handler)\u001b[0m\n\u001b[1;32m 203\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Group tarfile contents by keys and yield samples.\u001b[39;00m\n\u001b[1;32m 204\u001b[0m \n\u001b[1;32m 205\u001b[0m \u001b[38;5;124;03mArgs:\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 216\u001b[0m \u001b[38;5;124;03m iterator over samples.\u001b[39;00m\n\u001b[1;32m 217\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 218\u001b[0m current_sample \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m--> 219\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m filesample \u001b[38;5;129;01min\u001b[39;00m data:\n\u001b[1;32m 220\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 221\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(filesample, \u001b[38;5;28mdict\u001b[39m)\n",
|
200 |
+
"File \u001b[0;32m~/miniconda3/envs/d2/lib/python3.10/site-packages/webdataset/tariterators.py:177\u001b[0m, in \u001b[0;36mtar_file_expander\u001b[0;34m(data, handler, select_files, rename_files)\u001b[0m\n\u001b[1;32m 175\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(source, \u001b[38;5;28mdict\u001b[39m)\n\u001b[1;32m 176\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstream\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m source\n\u001b[0;32m--> 177\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m sample \u001b[38;5;129;01min\u001b[39;00m tar_file_iterator(\n\u001b[1;32m 178\u001b[0m source[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstream\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[1;32m 179\u001b[0m handler\u001b[38;5;241m=\u001b[39mhandler,\n\u001b[1;32m 180\u001b[0m select_files\u001b[38;5;241m=\u001b[39mselect_files,\n\u001b[1;32m 181\u001b[0m rename_files\u001b[38;5;241m=\u001b[39mrename_files,\n\u001b[1;32m 182\u001b[0m ):\n\u001b[1;32m 183\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m (\n\u001b[1;32m 184\u001b[0m \u001b[38;5;28misinstance\u001b[39m(sample, \u001b[38;5;28mdict\u001b[39m) \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdata\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m sample \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfname\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m sample\n\u001b[1;32m 185\u001b[0m )\n\u001b[1;32m 186\u001b[0m sample[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m__url__\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m url\n",
|
201 |
+
"File \u001b[0;32m~/miniconda3/envs/d2/lib/python3.10/site-packages/webdataset/tariterators.py:142\u001b[0m, in \u001b[0;36mtar_file_iterator\u001b[0;34m(fileobj, skip_meta, handler, select_files, rename_files)\u001b[0m\n\u001b[1;32m 140\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m select_files \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m select_files(fname):\n\u001b[1;32m 141\u001b[0m \u001b[38;5;28;01mcontinue\u001b[39;00m\n\u001b[0;32m--> 142\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[43mstream\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mextractfile\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtarinfo\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 143\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mdict\u001b[39m(fname\u001b[38;5;241m=\u001b[39mfname, data\u001b[38;5;241m=\u001b[39mdata)\n\u001b[1;32m 144\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m result\n",
|
202 |
+
"File \u001b[0;32m~/miniconda3/envs/d2/lib/python3.10/tarfile.py:689\u001b[0m, in \u001b[0;36m_FileInFile.read\u001b[0;34m(self, size)\u001b[0m\n\u001b[1;32m 687\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m data:\n\u001b[1;32m 688\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfileobj\u001b[38;5;241m.\u001b[39mseek(offset \u001b[38;5;241m+\u001b[39m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mposition \u001b[38;5;241m-\u001b[39m start))\n\u001b[0;32m--> 689\u001b[0m b \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfileobj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\u001b[43mlength\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 690\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(b) \u001b[38;5;241m!=\u001b[39m length:\n\u001b[1;32m 691\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m ReadError(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124munexpected end of data\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
|
203 |
+
"File \u001b[0;32m~/miniconda3/envs/d2/lib/python3.10/tarfile.py:526\u001b[0m, in \u001b[0;36m_Stream.read\u001b[0;34m(self, size)\u001b[0m\n\u001b[1;32m 524\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Return the next size number of bytes from the stream.\"\"\"\u001b[39;00m\n\u001b[1;32m 525\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m size \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m--> 526\u001b[0m buf \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_read\u001b[49m\u001b[43m(\u001b[49m\u001b[43msize\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 527\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpos \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlen\u001b[39m(buf)\n\u001b[1;32m 528\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m buf\n",
|
204 |
+
"File \u001b[0;32m~/miniconda3/envs/d2/lib/python3.10/tarfile.py:544\u001b[0m, in \u001b[0;36m_Stream._read\u001b[0;34m(self, size)\u001b[0m\n\u001b[1;32m 542\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbuf \u001b[38;5;241m=\u001b[39m \u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 543\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 544\u001b[0m buf \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfileobj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbufsize\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 545\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m buf:\n\u001b[1;32m 546\u001b[0m \u001b[38;5;28;01mbreak\u001b[39;00m\n",
|
205 |
+
"File \u001b[0;32m~/miniconda3/envs/d2/lib/python3.10/site-packages/webdataset/gopen.py:87\u001b[0m, in \u001b[0;36mPipe.read\u001b[0;34m(self, *args, **kw)\u001b[0m\n\u001b[1;32m 85\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mread\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkw):\n\u001b[1;32m 86\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Wrap stream.read and checks status.\"\"\"\u001b[39;00m\n\u001b[0;32m---> 87\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkw\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 88\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcheck_status()\n\u001b[1;32m 89\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m result\n",
|
206 |
+
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
|
207 |
+
]
|
208 |
+
}
|
209 |
+
],
|
210 |
+
"source": [
|
211 |
+
"# %load script.py\n",
|
212 |
+
"### This is example of the script that will be run in the test environment.\n",
|
213 |
+
"### Some parts of the code are compulsory and you should NOT CHANGE THEM.\n",
|
214 |
+
"### They are between '''---compulsory---''' comments.\n",
|
215 |
+
"### You can change the rest of the code to define and test your solution.\n",
|
216 |
+
"### However, you should not change the signature of the provided function.\n",
|
217 |
+
"### The script would save \"submission.parquet\" file in the current directory.\n",
|
218 |
+
"### You can use any additional files and subdirectories to organize your code.\n",
|
219 |
+
"\n",
|
220 |
+
"'''---compulsory---'''\n",
|
221 |
+
"import hoho; hoho.setup() # YOU MUST CALL hoho.setup() BEFORE ANYTHING ELSE\n",
|
222 |
+
"'''---compulsory---'''\n",
|
223 |
+
"\n",
|
224 |
+
"from pathlib import Path\n",
|
225 |
+
"from tqdm import tqdm\n",
|
226 |
+
"import pandas as pd\n",
|
227 |
+
"import numpy as np\n",
|
228 |
+
"\n",
|
229 |
+
"\n",
|
230 |
+
"def empty_solution(sample):\n",
|
231 |
+
" '''Return a minimal valid solution, i.e. 2 vertices and 1 edge.'''\n",
|
232 |
+
" return np.zeros((2,3)), [(0, 1)]\n",
|
233 |
+
"\n",
|
234 |
+
"\n",
|
235 |
+
"if __name__ == \"__main__\":\n",
|
236 |
+
" print (\"------------ Loading dataset------------ \")\n",
|
237 |
+
" params = hoho.get_params()\n",
|
238 |
+
" \n",
|
239 |
+
" # by default it is usually better to use `get_dataset()` like this\n",
|
240 |
+
" # \n",
|
241 |
+
" # dataset = hoho.get_dataset(split='all')\n",
|
242 |
+
" # \n",
|
243 |
+
" # but in this case (because we don't do anything with the sample \n",
|
244 |
+
" # anyway) we set `decode=None`. We can set the `split` argument \n",
|
245 |
+
" # to 'train' or 'val' ('all' defaults back to 'train') if we are \n",
|
246 |
+
" # testing ourselves locally. \n",
|
247 |
+
" # \n",
|
248 |
+
" # dataset = hoho.get_dataset(split='val', decode=None)\n",
|
249 |
+
" #\n",
|
250 |
+
" # On the test server *`split` must be set to 'all'* \n",
|
251 |
+
" # to compute both the public and private leaderboards.\n",
|
252 |
+
" # \n",
|
253 |
+
" dataset = hoho.get_dataset(split='all', decode=None)\n",
|
254 |
+
" \n",
|
255 |
+
" print('------------ Now you can do your solution ---------------')\n",
|
256 |
+
" solution = []\n",
|
257 |
+
" for i, sample in enumerate(tqdm(dataset)):\n",
|
258 |
+
" # replace this with your solution\n",
|
259 |
+
" pred_vertices, pred_edges = empty_solution(sample)\n",
|
260 |
+
" \n",
|
261 |
+
" solution.append({\n",
|
262 |
+
" '__key__': sample['__key__'], \n",
|
263 |
+
" 'wf_vertices': pred_vertices.tolist(),\n",
|
264 |
+
" 'wf_edges': pred_edges\n",
|
265 |
+
" })\n",
|
266 |
+
" print('------------ Saving results ---------------')\n",
|
267 |
+
" sub = pd.DataFrame(solution, columns=[\"__key__\", \"wf_vertices\", \"wf_edges\"])\n",
|
268 |
+
" sub.to_parquet(Path(params['output_path']) / \"submission.parquet\")\n",
|
269 |
+
" print(\"------------ Done ------------ \")"
|
270 |
+
]
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"cell_type": "code",
|
274 |
+
"execution_count": null,
|
275 |
+
"id": "f077cbd7",
|
276 |
+
"metadata": {},
|
277 |
+
"outputs": [],
|
278 |
+
"source": []
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"cell_type": "code",
|
282 |
+
"execution_count": null,
|
283 |
+
"id": "b65ed78e",
|
284 |
+
"metadata": {},
|
285 |
+
"outputs": [],
|
286 |
+
"source": []
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"cell_type": "code",
|
290 |
+
"execution_count": null,
|
291 |
+
"id": "a4584502",
|
292 |
+
"metadata": {},
|
293 |
+
"outputs": [],
|
294 |
+
"source": []
|
295 |
+
}
|
296 |
+
],
|
297 |
+
"metadata": {
|
298 |
+
"colab": {
|
299 |
+
"provenance": [],
|
300 |
+
"toc_visible": true
|
301 |
+
},
|
302 |
+
"kernelspec": {
|
303 |
+
"display_name": "Python 3 (ipykernel)",
|
304 |
+
"language": "python",
|
305 |
+
"name": "python3"
|
306 |
+
},
|
307 |
+
"language_info": {
|
308 |
+
"codemirror_mode": {
|
309 |
+
"name": "ipython",
|
310 |
+
"version": 3
|
311 |
+
},
|
312 |
+
"file_extension": ".py",
|
313 |
+
"mimetype": "text/x-python",
|
314 |
+
"name": "python",
|
315 |
+
"nbconvert_exporter": "python",
|
316 |
+
"pygments_lexer": "ipython3",
|
317 |
+
"version": "3.10.13"
|
318 |
+
},
|
319 |
+
"widgets": {
|
320 |
+
"application/vnd.jupyter.widget-state+json": {
|
321 |
+
"00dd3ba2c97a4a5f9e20e4c90ad4bcf8": {
|
322 |
+
"model_module": "@jupyter-widgets/controls",
|
323 |
+
"model_module_version": "1.5.0",
|
324 |
+
"model_name": "HTMLModel",
|
325 |
+
"state": {
|
326 |
+
"_dom_classes": [],
|
327 |
+
"_model_module": "@jupyter-widgets/controls",
|
328 |
+
"_model_module_version": "1.5.0",
|
329 |
+
"_model_name": "HTMLModel",
|
330 |
+
"_view_count": null,
|
331 |
+
"_view_module": "@jupyter-widgets/controls",
|
332 |
+
"_view_module_version": "1.5.0",
|
333 |
+
"_view_name": "HTMLView",
|
334 |
+
"description": "",
|
335 |
+
"description_tooltip": null,
|
336 |
+
"layout": "IPY_MODEL_e11a7d4a03954577aa59223fbe24780d",
|
337 |
+
"placeholder": "",
|
338 |
+
"style": "IPY_MODEL_4d456e625cc248c18a6ee6171919a462",
|
339 |
+
"value": ""
|
340 |
+
}
|
341 |
+
},
|
342 |
+
"025d370c61d84fcba1a866731a16ee27": {
|
343 |
+
"model_module": "@jupyter-widgets/base",
|
344 |
+
"model_module_version": "1.2.0",
|
345 |
+
"model_name": "LayoutModel",
|
346 |
+
"state": {
|
347 |
+
"_model_module": "@jupyter-widgets/base",
|
348 |
+
"_model_module_version": "1.2.0",
|
349 |
+
"_model_name": "LayoutModel",
|
350 |
+
"_view_count": null,
|
351 |
+
"_view_module": "@jupyter-widgets/base",
|
352 |
+
"_view_module_version": "1.2.0",
|
353 |
+
"_view_name": "LayoutView",
|
354 |
+
"align_content": null,
|
355 |
+
"align_items": null,
|
356 |
+
"align_self": null,
|
357 |
+
"border": null,
|
358 |
+
"bottom": null,
|
359 |
+
"display": null,
|
360 |
+
"flex": null,
|
361 |
+
"flex_flow": null,
|
362 |
+
"grid_area": null,
|
363 |
+
"grid_auto_columns": null,
|
364 |
+
"grid_auto_flow": null,
|
365 |
+
"grid_auto_rows": null,
|
366 |
+
"grid_column": null,
|
367 |
+
"grid_gap": null,
|
368 |
+
"grid_row": null,
|
369 |
+
"grid_template_areas": null,
|
370 |
+
"grid_template_columns": null,
|
371 |
+
"grid_template_rows": null,
|
372 |
+
"height": null,
|
373 |
+
"justify_content": null,
|
374 |
+
"justify_items": null,
|
375 |
+
"left": null,
|
376 |
+
"margin": null,
|
377 |
+
"max_height": null,
|
378 |
+
"max_width": null,
|
379 |
+
"min_height": null,
|
380 |
+
"min_width": null,
|
381 |
+
"object_fit": null,
|
382 |
+
"object_position": null,
|
383 |
+
"order": null,
|
384 |
+
"overflow": null,
|
385 |
+
"overflow_x": null,
|
386 |
+
"overflow_y": null,
|
387 |
+
"padding": null,
|
388 |
+
"right": null,
|
389 |
+
"top": null,
|
390 |
+
"visibility": null,
|
391 |
+
"width": null
|
392 |
+
}
|
393 |
+
},
|
394 |
+
"1bee0e2f81104a22bad736cea9725dcb": {
|
395 |
+
"model_module": "@jupyter-widgets/controls",
|
396 |
+
"model_module_version": "1.5.0",
|
397 |
+
"model_name": "DescriptionStyleModel",
|
398 |
+
"state": {
|
399 |
+
"_model_module": "@jupyter-widgets/controls",
|
400 |
+
"_model_module_version": "1.5.0",
|
401 |
+
"_model_name": "DescriptionStyleModel",
|
402 |
+
"_view_count": null,
|
403 |
+
"_view_module": "@jupyter-widgets/base",
|
404 |
+
"_view_module_version": "1.2.0",
|
405 |
+
"_view_name": "StyleView",
|
406 |
+
"description_width": ""
|
407 |
+
}
|
408 |
+
},
|
409 |
+
"2509efdc0c6a4dd6b1ade16d30e8209d": {
|
410 |
+
"model_module": "@jupyter-widgets/base",
|
411 |
+
"model_module_version": "1.2.0",
|
412 |
+
"model_name": "LayoutModel",
|
413 |
+
"state": {
|
414 |
+
"_model_module": "@jupyter-widgets/base",
|
415 |
+
"_model_module_version": "1.2.0",
|
416 |
+
"_model_name": "LayoutModel",
|
417 |
+
"_view_count": null,
|
418 |
+
"_view_module": "@jupyter-widgets/base",
|
419 |
+
"_view_module_version": "1.2.0",
|
420 |
+
"_view_name": "LayoutView",
|
421 |
+
"align_content": null,
|
422 |
+
"align_items": null,
|
423 |
+
"align_self": null,
|
424 |
+
"border": null,
|
425 |
+
"bottom": null,
|
426 |
+
"display": null,
|
427 |
+
"flex": null,
|
428 |
+
"flex_flow": null,
|
429 |
+
"grid_area": null,
|
430 |
+
"grid_auto_columns": null,
|
431 |
+
"grid_auto_flow": null,
|
432 |
+
"grid_auto_rows": null,
|
433 |
+
"grid_column": null,
|
434 |
+
"grid_gap": null,
|
435 |
+
"grid_row": null,
|
436 |
+
"grid_template_areas": null,
|
437 |
+
"grid_template_columns": null,
|
438 |
+
"grid_template_rows": null,
|
439 |
+
"height": null,
|
440 |
+
"justify_content": null,
|
441 |
+
"justify_items": null,
|
442 |
+
"left": null,
|
443 |
+
"margin": null,
|
444 |
+
"max_height": null,
|
445 |
+
"max_width": null,
|
446 |
+
"min_height": null,
|
447 |
+
"min_width": null,
|
448 |
+
"object_fit": null,
|
449 |
+
"object_position": null,
|
450 |
+
"order": null,
|
451 |
+
"overflow": null,
|
452 |
+
"overflow_x": null,
|
453 |
+
"overflow_y": null,
|
454 |
+
"padding": null,
|
455 |
+
"right": null,
|
456 |
+
"top": null,
|
457 |
+
"visibility": null,
|
458 |
+
"width": null
|
459 |
+
}
|
460 |
+
},
|
461 |
+
"2ac27da2aa014ec782d2e7073d153f99": {
|
462 |
+
"model_module": "@jupyter-widgets/controls",
|
463 |
+
"model_module_version": "1.5.0",
|
464 |
+
"model_name": "DescriptionStyleModel",
|
465 |
+
"state": {
|
466 |
+
"_model_module": "@jupyter-widgets/controls",
|
467 |
+
"_model_module_version": "1.5.0",
|
468 |
+
"_model_name": "DescriptionStyleModel",
|
469 |
+
"_view_count": null,
|
470 |
+
"_view_module": "@jupyter-widgets/base",
|
471 |
+
"_view_module_version": "1.2.0",
|
472 |
+
"_view_name": "StyleView",
|
473 |
+
"description_width": ""
|
474 |
+
}
|
475 |
+
},
|
476 |
+
"452e42ee4a734b7a98b5945cffff9dac": {
|
477 |
+
"model_module": "@jupyter-widgets/controls",
|
478 |
+
"model_module_version": "1.5.0",
|
479 |
+
"model_name": "HTMLModel",
|
480 |
+
"state": {
|
481 |
+
"_dom_classes": [],
|
482 |
+
"_model_module": "@jupyter-widgets/controls",
|
483 |
+
"_model_module_version": "1.5.0",
|
484 |
+
"_model_name": "HTMLModel",
|
485 |
+
"_view_count": null,
|
486 |
+
"_view_module": "@jupyter-widgets/controls",
|
487 |
+
"_view_module_version": "1.5.0",
|
488 |
+
"_view_name": "HTMLView",
|
489 |
+
"description": "",
|
490 |
+
"description_tooltip": null,
|
491 |
+
"layout": "IPY_MODEL_2509efdc0c6a4dd6b1ade16d30e8209d",
|
492 |
+
"placeholder": "",
|
493 |
+
"style": "IPY_MODEL_2ac27da2aa014ec782d2e7073d153f99",
|
494 |
+
"value": "Map: 100%"
|
495 |
+
}
|
496 |
+
},
|
497 |
+
"453f4cacb5bf490cb90f10c9cdccca30": {
|
498 |
+
"model_module": "@jupyter-widgets/controls",
|
499 |
+
"model_module_version": "1.5.0",
|
500 |
+
"model_name": "HBoxModel",
|
501 |
+
"state": {
|
502 |
+
"_dom_classes": [],
|
503 |
+
"_model_module": "@jupyter-widgets/controls",
|
504 |
+
"_model_module_version": "1.5.0",
|
505 |
+
"_model_name": "HBoxModel",
|
506 |
+
"_view_count": null,
|
507 |
+
"_view_module": "@jupyter-widgets/controls",
|
508 |
+
"_view_module_version": "1.5.0",
|
509 |
+
"_view_name": "HBoxView",
|
510 |
+
"box_style": "",
|
511 |
+
"children": [
|
512 |
+
"IPY_MODEL_452e42ee4a734b7a98b5945cffff9dac",
|
513 |
+
"IPY_MODEL_f4f69c0ea946405a8c1b88e68cfe6e38",
|
514 |
+
"IPY_MODEL_8e41e4539ee54d708b593c5d44699855"
|
515 |
+
],
|
516 |
+
"layout": "IPY_MODEL_9a3ccc55920d4f9588e89e4d5579b0b0"
|
517 |
+
}
|
518 |
+
},
|
519 |
+
"4d456e625cc248c18a6ee6171919a462": {
|
520 |
+
"model_module": "@jupyter-widgets/controls",
|
521 |
+
"model_module_version": "1.5.0",
|
522 |
+
"model_name": "DescriptionStyleModel",
|
523 |
+
"state": {
|
524 |
+
"_model_module": "@jupyter-widgets/controls",
|
525 |
+
"_model_module_version": "1.5.0",
|
526 |
+
"_model_name": "DescriptionStyleModel",
|
527 |
+
"_view_count": null,
|
528 |
+
"_view_module": "@jupyter-widgets/base",
|
529 |
+
"_view_module_version": "1.2.0",
|
530 |
+
"_view_name": "StyleView",
|
531 |
+
"description_width": ""
|
532 |
+
}
|
533 |
+
},
|
534 |
+
"8d39835b987249799b1d000f9960e6f9": {
|
535 |
+
"model_module": "@jupyter-widgets/base",
|
536 |
+
"model_module_version": "1.2.0",
|
537 |
+
"model_name": "LayoutModel",
|
538 |
+
"state": {
|
539 |
+
"_model_module": "@jupyter-widgets/base",
|
540 |
+
"_model_module_version": "1.2.0",
|
541 |
+
"_model_name": "LayoutModel",
|
542 |
+
"_view_count": null,
|
543 |
+
"_view_module": "@jupyter-widgets/base",
|
544 |
+
"_view_module_version": "1.2.0",
|
545 |
+
"_view_name": "LayoutView",
|
546 |
+
"align_content": null,
|
547 |
+
"align_items": null,
|
548 |
+
"align_self": null,
|
549 |
+
"border": null,
|
550 |
+
"bottom": null,
|
551 |
+
"display": null,
|
552 |
+
"flex": null,
|
553 |
+
"flex_flow": null,
|
554 |
+
"grid_area": null,
|
555 |
+
"grid_auto_columns": null,
|
556 |
+
"grid_auto_flow": null,
|
557 |
+
"grid_auto_rows": null,
|
558 |
+
"grid_column": null,
|
559 |
+
"grid_gap": null,
|
560 |
+
"grid_row": null,
|
561 |
+
"grid_template_areas": null,
|
562 |
+
"grid_template_columns": null,
|
563 |
+
"grid_template_rows": null,
|
564 |
+
"height": null,
|
565 |
+
"justify_content": null,
|
566 |
+
"justify_items": null,
|
567 |
+
"left": null,
|
568 |
+
"margin": null,
|
569 |
+
"max_height": null,
|
570 |
+
"max_width": null,
|
571 |
+
"min_height": null,
|
572 |
+
"min_width": null,
|
573 |
+
"object_fit": null,
|
574 |
+
"object_position": null,
|
575 |
+
"order": null,
|
576 |
+
"overflow": null,
|
577 |
+
"overflow_x": null,
|
578 |
+
"overflow_y": null,
|
579 |
+
"padding": null,
|
580 |
+
"right": null,
|
581 |
+
"top": null,
|
582 |
+
"visibility": null,
|
583 |
+
"width": null
|
584 |
+
}
|
585 |
+
},
|
586 |
+
"8e41e4539ee54d708b593c5d44699855": {
|
587 |
+
"model_module": "@jupyter-widgets/controls",
|
588 |
+
"model_module_version": "1.5.0",
|
589 |
+
"model_name": "HTMLModel",
|
590 |
+
"state": {
|
591 |
+
"_dom_classes": [],
|
592 |
+
"_model_module": "@jupyter-widgets/controls",
|
593 |
+
"_model_module_version": "1.5.0",
|
594 |
+
"_model_name": "HTMLModel",
|
595 |
+
"_view_count": null,
|
596 |
+
"_view_module": "@jupyter-widgets/controls",
|
597 |
+
"_view_module_version": "1.5.0",
|
598 |
+
"_view_name": "HTMLView",
|
599 |
+
"description": "",
|
600 |
+
"description_tooltip": null,
|
601 |
+
"layout": "IPY_MODEL_ccfd6307c2cd4ba6b49e10ddb4a70d66",
|
602 |
+
"placeholder": "",
|
603 |
+
"style": "IPY_MODEL_1bee0e2f81104a22bad736cea9725dcb",
|
604 |
+
"value": " 150/150 [00:02<00:00, 55.18 examples/s]"
|
605 |
+
}
|
606 |
+
},
|
607 |
+
"9a3ccc55920d4f9588e89e4d5579b0b0": {
|
608 |
+
"model_module": "@jupyter-widgets/base",
|
609 |
+
"model_module_version": "1.2.0",
|
610 |
+
"model_name": "LayoutModel",
|
611 |
+
"state": {
|
612 |
+
"_model_module": "@jupyter-widgets/base",
|
613 |
+
"_model_module_version": "1.2.0",
|
614 |
+
"_model_name": "LayoutModel",
|
615 |
+
"_view_count": null,
|
616 |
+
"_view_module": "@jupyter-widgets/base",
|
617 |
+
"_view_module_version": "1.2.0",
|
618 |
+
"_view_name": "LayoutView",
|
619 |
+
"align_content": null,
|
620 |
+
"align_items": null,
|
621 |
+
"align_self": null,
|
622 |
+
"border": null,
|
623 |
+
"bottom": null,
|
624 |
+
"display": null,
|
625 |
+
"flex": null,
|
626 |
+
"flex_flow": null,
|
627 |
+
"grid_area": null,
|
628 |
+
"grid_auto_columns": null,
|
629 |
+
"grid_auto_flow": null,
|
630 |
+
"grid_auto_rows": null,
|
631 |
+
"grid_column": null,
|
632 |
+
"grid_gap": null,
|
633 |
+
"grid_row": null,
|
634 |
+
"grid_template_areas": null,
|
635 |
+
"grid_template_columns": null,
|
636 |
+
"grid_template_rows": null,
|
637 |
+
"height": null,
|
638 |
+
"justify_content": null,
|
639 |
+
"justify_items": null,
|
640 |
+
"left": null,
|
641 |
+
"margin": null,
|
642 |
+
"max_height": null,
|
643 |
+
"max_width": null,
|
644 |
+
"min_height": null,
|
645 |
+
"min_width": null,
|
646 |
+
"object_fit": null,
|
647 |
+
"object_position": null,
|
648 |
+
"order": null,
|
649 |
+
"overflow": null,
|
650 |
+
"overflow_x": null,
|
651 |
+
"overflow_y": null,
|
652 |
+
"padding": null,
|
653 |
+
"right": null,
|
654 |
+
"top": null,
|
655 |
+
"visibility": null,
|
656 |
+
"width": null
|
657 |
+
}
|
658 |
+
},
|
659 |
+
"9bac4c96e2b741b782da7fc36b79ead1": {
|
660 |
+
"model_module": "@jupyter-widgets/controls",
|
661 |
+
"model_module_version": "1.5.0",
|
662 |
+
"model_name": "FloatProgressModel",
|
663 |
+
"state": {
|
664 |
+
"_dom_classes": [],
|
665 |
+
"_model_module": "@jupyter-widgets/controls",
|
666 |
+
"_model_module_version": "1.5.0",
|
667 |
+
"_model_name": "FloatProgressModel",
|
668 |
+
"_view_count": null,
|
669 |
+
"_view_module": "@jupyter-widgets/controls",
|
670 |
+
"_view_module_version": "1.5.0",
|
671 |
+
"_view_name": "ProgressView",
|
672 |
+
"bar_style": "success",
|
673 |
+
"description": "",
|
674 |
+
"description_tooltip": null,
|
675 |
+
"layout": "IPY_MODEL_f0190337a99243e4b022dcf565dc7f5c",
|
676 |
+
"max": 1,
|
677 |
+
"min": 0,
|
678 |
+
"orientation": "horizontal",
|
679 |
+
"style": "IPY_MODEL_a9355a1d675c4ac4a2f68f4663a1d390",
|
680 |
+
"value": 1
|
681 |
+
}
|
682 |
+
},
|
683 |
+
"a9355a1d675c4ac4a2f68f4663a1d390": {
|
684 |
+
"model_module": "@jupyter-widgets/controls",
|
685 |
+
"model_module_version": "1.5.0",
|
686 |
+
"model_name": "ProgressStyleModel",
|
687 |
+
"state": {
|
688 |
+
"_model_module": "@jupyter-widgets/controls",
|
689 |
+
"_model_module_version": "1.5.0",
|
690 |
+
"_model_name": "ProgressStyleModel",
|
691 |
+
"_view_count": null,
|
692 |
+
"_view_module": "@jupyter-widgets/base",
|
693 |
+
"_view_module_version": "1.2.0",
|
694 |
+
"_view_name": "StyleView",
|
695 |
+
"bar_color": null,
|
696 |
+
"description_width": ""
|
697 |
+
}
|
698 |
+
},
|
699 |
+
"a9ef94f8656c483ebb8ee36c33c21a15": {
|
700 |
+
"model_module": "@jupyter-widgets/controls",
|
701 |
+
"model_module_version": "1.5.0",
|
702 |
+
"model_name": "HBoxModel",
|
703 |
+
"state": {
|
704 |
+
"_dom_classes": [],
|
705 |
+
"_model_module": "@jupyter-widgets/controls",
|
706 |
+
"_model_module_version": "1.5.0",
|
707 |
+
"_model_name": "HBoxModel",
|
708 |
+
"_view_count": null,
|
709 |
+
"_view_module": "@jupyter-widgets/controls",
|
710 |
+
"_view_module_version": "1.5.0",
|
711 |
+
"_view_name": "HBoxView",
|
712 |
+
"box_style": "",
|
713 |
+
"children": [
|
714 |
+
"IPY_MODEL_00dd3ba2c97a4a5f9e20e4c90ad4bcf8",
|
715 |
+
"IPY_MODEL_9bac4c96e2b741b782da7fc36b79ead1",
|
716 |
+
"IPY_MODEL_d4f9d577a48e46d39a86be7ad18f96d9"
|
717 |
+
],
|
718 |
+
"layout": "IPY_MODEL_e47db715aee544a38f1286b2861e378f"
|
719 |
+
}
|
720 |
+
},
|
721 |
+
"b6d2b0649d794440aa5e5c77fdba4c34": {
|
722 |
+
"model_module": "@jupyter-widgets/controls",
|
723 |
+
"model_module_version": "1.5.0",
|
724 |
+
"model_name": "DescriptionStyleModel",
|
725 |
+
"state": {
|
726 |
+
"_model_module": "@jupyter-widgets/controls",
|
727 |
+
"_model_module_version": "1.5.0",
|
728 |
+
"_model_name": "DescriptionStyleModel",
|
729 |
+
"_view_count": null,
|
730 |
+
"_view_module": "@jupyter-widgets/base",
|
731 |
+
"_view_module_version": "1.2.0",
|
732 |
+
"_view_name": "StyleView",
|
733 |
+
"description_width": ""
|
734 |
+
}
|
735 |
+
},
|
736 |
+
"ccfd6307c2cd4ba6b49e10ddb4a70d66": {
|
737 |
+
"model_module": "@jupyter-widgets/base",
|
738 |
+
"model_module_version": "1.2.0",
|
739 |
+
"model_name": "LayoutModel",
|
740 |
+
"state": {
|
741 |
+
"_model_module": "@jupyter-widgets/base",
|
742 |
+
"_model_module_version": "1.2.0",
|
743 |
+
"_model_name": "LayoutModel",
|
744 |
+
"_view_count": null,
|
745 |
+
"_view_module": "@jupyter-widgets/base",
|
746 |
+
"_view_module_version": "1.2.0",
|
747 |
+
"_view_name": "LayoutView",
|
748 |
+
"align_content": null,
|
749 |
+
"align_items": null,
|
750 |
+
"align_self": null,
|
751 |
+
"border": null,
|
752 |
+
"bottom": null,
|
753 |
+
"display": null,
|
754 |
+
"flex": null,
|
755 |
+
"flex_flow": null,
|
756 |
+
"grid_area": null,
|
757 |
+
"grid_auto_columns": null,
|
758 |
+
"grid_auto_flow": null,
|
759 |
+
"grid_auto_rows": null,
|
760 |
+
"grid_column": null,
|
761 |
+
"grid_gap": null,
|
762 |
+
"grid_row": null,
|
763 |
+
"grid_template_areas": null,
|
764 |
+
"grid_template_columns": null,
|
765 |
+
"grid_template_rows": null,
|
766 |
+
"height": null,
|
767 |
+
"justify_content": null,
|
768 |
+
"justify_items": null,
|
769 |
+
"left": null,
|
770 |
+
"margin": null,
|
771 |
+
"max_height": null,
|
772 |
+
"max_width": null,
|
773 |
+
"min_height": null,
|
774 |
+
"min_width": null,
|
775 |
+
"object_fit": null,
|
776 |
+
"object_position": null,
|
777 |
+
"order": null,
|
778 |
+
"overflow": null,
|
779 |
+
"overflow_x": null,
|
780 |
+
"overflow_y": null,
|
781 |
+
"padding": null,
|
782 |
+
"right": null,
|
783 |
+
"top": null,
|
784 |
+
"visibility": null,
|
785 |
+
"width": null
|
786 |
+
}
|
787 |
+
},
|
788 |
+
"d354d88c25b04ca18c0d23d61f4e9cba": {
|
789 |
+
"model_module": "@jupyter-widgets/controls",
|
790 |
+
"model_module_version": "1.5.0",
|
791 |
+
"model_name": "ProgressStyleModel",
|
792 |
+
"state": {
|
793 |
+
"_model_module": "@jupyter-widgets/controls",
|
794 |
+
"_model_module_version": "1.5.0",
|
795 |
+
"_model_name": "ProgressStyleModel",
|
796 |
+
"_view_count": null,
|
797 |
+
"_view_module": "@jupyter-widgets/base",
|
798 |
+
"_view_module_version": "1.2.0",
|
799 |
+
"_view_name": "StyleView",
|
800 |
+
"bar_color": null,
|
801 |
+
"description_width": ""
|
802 |
+
}
|
803 |
+
},
|
804 |
+
"d4f9d577a48e46d39a86be7ad18f96d9": {
|
805 |
+
"model_module": "@jupyter-widgets/controls",
|
806 |
+
"model_module_version": "1.5.0",
|
807 |
+
"model_name": "HTMLModel",
|
808 |
+
"state": {
|
809 |
+
"_dom_classes": [],
|
810 |
+
"_model_module": "@jupyter-widgets/controls",
|
811 |
+
"_model_module_version": "1.5.0",
|
812 |
+
"_model_name": "HTMLModel",
|
813 |
+
"_view_count": null,
|
814 |
+
"_view_module": "@jupyter-widgets/controls",
|
815 |
+
"_view_module_version": "1.5.0",
|
816 |
+
"_view_name": "HTMLView",
|
817 |
+
"description": "",
|
818 |
+
"description_tooltip": null,
|
819 |
+
"layout": "IPY_MODEL_025d370c61d84fcba1a866731a16ee27",
|
820 |
+
"placeholder": "",
|
821 |
+
"style": "IPY_MODEL_b6d2b0649d794440aa5e5c77fdba4c34",
|
822 |
+
"value": " 191/? [00:17<00:00, 22.28it/s]"
|
823 |
+
}
|
824 |
+
},
|
825 |
+
"e11a7d4a03954577aa59223fbe24780d": {
|
826 |
+
"model_module": "@jupyter-widgets/base",
|
827 |
+
"model_module_version": "1.2.0",
|
828 |
+
"model_name": "LayoutModel",
|
829 |
+
"state": {
|
830 |
+
"_model_module": "@jupyter-widgets/base",
|
831 |
+
"_model_module_version": "1.2.0",
|
832 |
+
"_model_name": "LayoutModel",
|
833 |
+
"_view_count": null,
|
834 |
+
"_view_module": "@jupyter-widgets/base",
|
835 |
+
"_view_module_version": "1.2.0",
|
836 |
+
"_view_name": "LayoutView",
|
837 |
+
"align_content": null,
|
838 |
+
"align_items": null,
|
839 |
+
"align_self": null,
|
840 |
+
"border": null,
|
841 |
+
"bottom": null,
|
842 |
+
"display": null,
|
843 |
+
"flex": null,
|
844 |
+
"flex_flow": null,
|
845 |
+
"grid_area": null,
|
846 |
+
"grid_auto_columns": null,
|
847 |
+
"grid_auto_flow": null,
|
848 |
+
"grid_auto_rows": null,
|
849 |
+
"grid_column": null,
|
850 |
+
"grid_gap": null,
|
851 |
+
"grid_row": null,
|
852 |
+
"grid_template_areas": null,
|
853 |
+
"grid_template_columns": null,
|
854 |
+
"grid_template_rows": null,
|
855 |
+
"height": null,
|
856 |
+
"justify_content": null,
|
857 |
+
"justify_items": null,
|
858 |
+
"left": null,
|
859 |
+
"margin": null,
|
860 |
+
"max_height": null,
|
861 |
+
"max_width": null,
|
862 |
+
"min_height": null,
|
863 |
+
"min_width": null,
|
864 |
+
"object_fit": null,
|
865 |
+
"object_position": null,
|
866 |
+
"order": null,
|
867 |
+
"overflow": null,
|
868 |
+
"overflow_x": null,
|
869 |
+
"overflow_y": null,
|
870 |
+
"padding": null,
|
871 |
+
"right": null,
|
872 |
+
"top": null,
|
873 |
+
"visibility": null,
|
874 |
+
"width": null
|
875 |
+
}
|
876 |
+
},
|
877 |
+
"e47db715aee544a38f1286b2861e378f": {
|
878 |
+
"model_module": "@jupyter-widgets/base",
|
879 |
+
"model_module_version": "1.2.0",
|
880 |
+
"model_name": "LayoutModel",
|
881 |
+
"state": {
|
882 |
+
"_model_module": "@jupyter-widgets/base",
|
883 |
+
"_model_module_version": "1.2.0",
|
884 |
+
"_model_name": "LayoutModel",
|
885 |
+
"_view_count": null,
|
886 |
+
"_view_module": "@jupyter-widgets/base",
|
887 |
+
"_view_module_version": "1.2.0",
|
888 |
+
"_view_name": "LayoutView",
|
889 |
+
"align_content": null,
|
890 |
+
"align_items": null,
|
891 |
+
"align_self": null,
|
892 |
+
"border": null,
|
893 |
+
"bottom": null,
|
894 |
+
"display": null,
|
895 |
+
"flex": null,
|
896 |
+
"flex_flow": null,
|
897 |
+
"grid_area": null,
|
898 |
+
"grid_auto_columns": null,
|
899 |
+
"grid_auto_flow": null,
|
900 |
+
"grid_auto_rows": null,
|
901 |
+
"grid_column": null,
|
902 |
+
"grid_gap": null,
|
903 |
+
"grid_row": null,
|
904 |
+
"grid_template_areas": null,
|
905 |
+
"grid_template_columns": null,
|
906 |
+
"grid_template_rows": null,
|
907 |
+
"height": null,
|
908 |
+
"justify_content": null,
|
909 |
+
"justify_items": null,
|
910 |
+
"left": null,
|
911 |
+
"margin": null,
|
912 |
+
"max_height": null,
|
913 |
+
"max_width": null,
|
914 |
+
"min_height": null,
|
915 |
+
"min_width": null,
|
916 |
+
"object_fit": null,
|
917 |
+
"object_position": null,
|
918 |
+
"order": null,
|
919 |
+
"overflow": null,
|
920 |
+
"overflow_x": null,
|
921 |
+
"overflow_y": null,
|
922 |
+
"padding": null,
|
923 |
+
"right": null,
|
924 |
+
"top": null,
|
925 |
+
"visibility": null,
|
926 |
+
"width": null
|
927 |
+
}
|
928 |
+
},
|
929 |
+
"f0190337a99243e4b022dcf565dc7f5c": {
|
930 |
+
"model_module": "@jupyter-widgets/base",
|
931 |
+
"model_module_version": "1.2.0",
|
932 |
+
"model_name": "LayoutModel",
|
933 |
+
"state": {
|
934 |
+
"_model_module": "@jupyter-widgets/base",
|
935 |
+
"_model_module_version": "1.2.0",
|
936 |
+
"_model_name": "LayoutModel",
|
937 |
+
"_view_count": null,
|
938 |
+
"_view_module": "@jupyter-widgets/base",
|
939 |
+
"_view_module_version": "1.2.0",
|
940 |
+
"_view_name": "LayoutView",
|
941 |
+
"align_content": null,
|
942 |
+
"align_items": null,
|
943 |
+
"align_self": null,
|
944 |
+
"border": null,
|
945 |
+
"bottom": null,
|
946 |
+
"display": null,
|
947 |
+
"flex": null,
|
948 |
+
"flex_flow": null,
|
949 |
+
"grid_area": null,
|
950 |
+
"grid_auto_columns": null,
|
951 |
+
"grid_auto_flow": null,
|
952 |
+
"grid_auto_rows": null,
|
953 |
+
"grid_column": null,
|
954 |
+
"grid_gap": null,
|
955 |
+
"grid_row": null,
|
956 |
+
"grid_template_areas": null,
|
957 |
+
"grid_template_columns": null,
|
958 |
+
"grid_template_rows": null,
|
959 |
+
"height": null,
|
960 |
+
"justify_content": null,
|
961 |
+
"justify_items": null,
|
962 |
+
"left": null,
|
963 |
+
"margin": null,
|
964 |
+
"max_height": null,
|
965 |
+
"max_width": null,
|
966 |
+
"min_height": null,
|
967 |
+
"min_width": null,
|
968 |
+
"object_fit": null,
|
969 |
+
"object_position": null,
|
970 |
+
"order": null,
|
971 |
+
"overflow": null,
|
972 |
+
"overflow_x": null,
|
973 |
+
"overflow_y": null,
|
974 |
+
"padding": null,
|
975 |
+
"right": null,
|
976 |
+
"top": null,
|
977 |
+
"visibility": null,
|
978 |
+
"width": "20px"
|
979 |
+
}
|
980 |
+
},
|
981 |
+
"f4f69c0ea946405a8c1b88e68cfe6e38": {
|
982 |
+
"model_module": "@jupyter-widgets/controls",
|
983 |
+
"model_module_version": "1.5.0",
|
984 |
+
"model_name": "FloatProgressModel",
|
985 |
+
"state": {
|
986 |
+
"_dom_classes": [],
|
987 |
+
"_model_module": "@jupyter-widgets/controls",
|
988 |
+
"_model_module_version": "1.5.0",
|
989 |
+
"_model_name": "FloatProgressModel",
|
990 |
+
"_view_count": null,
|
991 |
+
"_view_module": "@jupyter-widgets/controls",
|
992 |
+
"_view_module_version": "1.5.0",
|
993 |
+
"_view_name": "ProgressView",
|
994 |
+
"bar_style": "success",
|
995 |
+
"description": "",
|
996 |
+
"description_tooltip": null,
|
997 |
+
"layout": "IPY_MODEL_8d39835b987249799b1d000f9960e6f9",
|
998 |
+
"max": 150,
|
999 |
+
"min": 0,
|
1000 |
+
"orientation": "horizontal",
|
1001 |
+
"style": "IPY_MODEL_d354d88c25b04ca18c0d23d61f4e9cba",
|
1002 |
+
"value": 150
|
1003 |
+
}
|
1004 |
+
}
|
1005 |
+
}
|
1006 |
+
}
|
1007 |
+
},
|
1008 |
+
"nbformat": 4,
|
1009 |
+
"nbformat_minor": 5
|
1010 |
+
}
|
script.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### This is example of the script that will be run in the test environment.
|
2 |
+
### Some parts of the code are compulsory and you should NOT CHANGE THEM.
|
3 |
+
### They are between '''---compulsory---''' comments.
|
4 |
+
### You can change the rest of the code to define and test your solution.
|
5 |
+
### However, you should not change the signature of the provided function.
|
6 |
+
### The script would save "submission.parquet" file in the current directory.
|
7 |
+
### You can use any additional files and subdirectories to organize your code.
|
8 |
+
|
9 |
+
'''---compulsory---'''
|
10 |
+
import hoho; hoho.setup() # YOU MUST CALL hoho.setup() BEFORE ANYTHING ELSE
|
11 |
+
'''---compulsory---'''
|
12 |
+
|
13 |
+
from pathlib import Path
|
14 |
+
from tqdm import tqdm
|
15 |
+
import pandas as pd
|
16 |
+
import numpy as np
|
17 |
+
|
18 |
+
|
19 |
+
def empty_solution(sample):
|
20 |
+
'''Return a minimal valid solution, i.e. 2 vertices and 1 edge.'''
|
21 |
+
return np.zeros((2,3)), [(0, 1)]
|
22 |
+
|
23 |
+
|
24 |
+
if __name__ == "__main__":
|
25 |
+
print ("------------ Loading dataset------------ ")
|
26 |
+
params = hoho.get_params()
|
27 |
+
|
28 |
+
# by default it is usually better to use `get_dataset()` like this
|
29 |
+
#
|
30 |
+
# dataset = hoho.get_dataset(split='all')
|
31 |
+
#
|
32 |
+
# but in this case (because we don't do anything with the sample
|
33 |
+
# anyway) we set `decode=None`. We can set the `split` argument
|
34 |
+
# to 'train' or 'val' ('all' defaults back to 'train') if we are
|
35 |
+
# testing ourselves locally.
|
36 |
+
#
|
37 |
+
# dataset = hoho.get_dataset(split='val', decode=None)
|
38 |
+
#
|
39 |
+
# On the test server *`split` must be set to 'all'*
|
40 |
+
# to compute both the public and private leaderboards.
|
41 |
+
#
|
42 |
+
dataset = hoho.get_dataset(split='all', decode=None)
|
43 |
+
|
44 |
+
print('------------ Now you can do your solution ---------------')
|
45 |
+
solution = []
|
46 |
+
for i, sample in enumerate(tqdm(dataset)):
|
47 |
+
# replace this with your solution
|
48 |
+
pred_vertices, pred_edges = empty_solution(sample)
|
49 |
+
|
50 |
+
solution.append({
|
51 |
+
'__key__': sample['__key__'],
|
52 |
+
'wf_vertices': pred_vertices.tolist(),
|
53 |
+
'wf_edges': pred_edges
|
54 |
+
})
|
55 |
+
print('------------ Saving results ---------------')
|
56 |
+
sub = pd.DataFrame(solution, columns=["__key__", "wf_vertices", "wf_edges"])
|
57 |
+
sub.to_parquet(Path(params['output_path']) / "submission.parquet")
|
58 |
+
print("------------ Done ------------ ")
|