Update from jack
Browse files- config.json +19 -0
- pytorch_model.bin +3 -0
- tokenization_morp.py +393 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_probs_dropout_prob": 0.1,
|
3 |
+
"directionality": "bidi",
|
4 |
+
"hidden_act": "gelu",
|
5 |
+
"hidden_dropout_prob": 0.1,
|
6 |
+
"hidden_size": 768,
|
7 |
+
"initializer_range": 0.02,
|
8 |
+
"intermediate_size": 3072,
|
9 |
+
"max_position_embeddings": 512,
|
10 |
+
"num_attention_heads": 12,
|
11 |
+
"num_hidden_layers": 12,
|
12 |
+
"pooler_fc_size": 768,
|
13 |
+
"pooler_num_attention_heads": 12,
|
14 |
+
"pooler_num_fc_layers": 3,
|
15 |
+
"pooler_size_per_head": 128,
|
16 |
+
"pooler_type": "first_token_transform",
|
17 |
+
"type_vocab_size": 2,
|
18 |
+
"vocab_size": 30349
|
19 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca0963b24d245ee2c4dbe3d413ec5306221340f8fa3b941f55ae07dbbe7de039
|
3 |
+
size 437453900
|
tokenization_morp.py
ADDED
@@ -0,0 +1,393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
#
|
16 |
+
#
|
17 |
+
# 형태소분석 기반 BERT를 위한 Tokenization Class
|
18 |
+
# 수정: joonho.lim
|
19 |
+
# 일자: 2019-05-23
|
20 |
+
#
|
21 |
+
"""Tokenization classes."""
|
22 |
+
|
23 |
+
from __future__ import absolute_import
|
24 |
+
from __future__ import division
|
25 |
+
from __future__ import print_function
|
26 |
+
|
27 |
+
import collections
|
28 |
+
import unicodedata
|
29 |
+
import os
|
30 |
+
import logging
|
31 |
+
|
32 |
+
from transformers.file_utils import cached_path
|
33 |
+
|
34 |
+
logger = logging.getLogger(__name__)
|
35 |
+
|
36 |
+
PRETRAINED_VOCAB_ARCHIVE_MAP = {
|
37 |
+
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt",
|
38 |
+
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt",
|
39 |
+
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt",
|
40 |
+
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt",
|
41 |
+
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-vocab.txt",
|
42 |
+
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt",
|
43 |
+
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt",
|
44 |
+
}
|
45 |
+
PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = {
|
46 |
+
'bert-base-uncased': 512,
|
47 |
+
'bert-large-uncased': 512,
|
48 |
+
'bert-base-cased': 512,
|
49 |
+
'bert-large-cased': 512,
|
50 |
+
'bert-base-multilingual-uncased': 512,
|
51 |
+
'bert-base-multilingual-cased': 512,
|
52 |
+
'bert-base-chinese': 512,
|
53 |
+
}
|
54 |
+
VOCAB_NAME = 'vocab.txt'
|
55 |
+
|
56 |
+
|
57 |
+
def load_vocab(vocab_file):
|
58 |
+
"""Loads a vocabulary file into a dictionary."""
|
59 |
+
vocab = collections.OrderedDict()
|
60 |
+
index = 0
|
61 |
+
with open(vocab_file, "r", encoding="utf-8") as reader:
|
62 |
+
while True:
|
63 |
+
token = reader.readline()
|
64 |
+
if not token:
|
65 |
+
break
|
66 |
+
|
67 |
+
### joonho.lim @ 2019-03-15
|
68 |
+
if token.find('n_iters=') == 0 or token.find('max_length=') == 0 :
|
69 |
+
continue
|
70 |
+
token = token.split('\t')[0]
|
71 |
+
|
72 |
+
token = token.strip()
|
73 |
+
vocab[token] = index
|
74 |
+
index += 1
|
75 |
+
return vocab
|
76 |
+
|
77 |
+
|
78 |
+
def whitespace_tokenize(text):
|
79 |
+
"""Runs basic whitespace cleaning and splitting on a peice of text."""
|
80 |
+
text = text.strip()
|
81 |
+
if not text:
|
82 |
+
return []
|
83 |
+
tokens = text.split()
|
84 |
+
return tokens
|
85 |
+
|
86 |
+
|
87 |
+
class BertTokenizer(object):
|
88 |
+
"""Runs end-to-end tokenization: punctuation splitting + wordpiece"""
|
89 |
+
|
90 |
+
def __init__(self, vocab_file, do_lower_case=True, max_len=None,
|
91 |
+
never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")):
|
92 |
+
if not os.path.isfile(vocab_file):
|
93 |
+
raise ValueError(
|
94 |
+
"Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained "
|
95 |
+
"model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file))
|
96 |
+
self.vocab = load_vocab(vocab_file)
|
97 |
+
self.ids_to_tokens = collections.OrderedDict(
|
98 |
+
[(ids, tok) for tok, ids in self.vocab.items()])
|
99 |
+
self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case,
|
100 |
+
never_split=never_split)
|
101 |
+
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
|
102 |
+
self.max_len = max_len if max_len is not None else int(1e12)
|
103 |
+
|
104 |
+
def tokenize(self, text):
|
105 |
+
split_tokens = []
|
106 |
+
for token in self.basic_tokenizer.tokenize(text):
|
107 |
+
### joonho.lim @ 2019-03-15
|
108 |
+
token += '_'
|
109 |
+
for sub_token in self.wordpiece_tokenizer.tokenize(token):
|
110 |
+
split_tokens.append(sub_token)
|
111 |
+
return split_tokens
|
112 |
+
|
113 |
+
def convert_tokens_to_ids(self, tokens):
|
114 |
+
"""Converts a sequence of tokens into ids using the vocab."""
|
115 |
+
ids = []
|
116 |
+
for token in tokens:
|
117 |
+
ids.append(self.vocab[token])
|
118 |
+
if len(ids) > self.max_len:
|
119 |
+
raise ValueError(
|
120 |
+
"Token indices sequence length is longer than the specified maximum "
|
121 |
+
" sequence length for this BERT model ({} > {}). Running this"
|
122 |
+
" sequence through BERT will result in indexing errors".format(len(ids), self.max_len)
|
123 |
+
)
|
124 |
+
return ids
|
125 |
+
|
126 |
+
def convert_ids_to_tokens(self, ids):
|
127 |
+
"""Converts a sequence of ids in wordpiece tokens using the vocab."""
|
128 |
+
tokens = []
|
129 |
+
for i in ids:
|
130 |
+
tokens.append(self.ids_to_tokens[i])
|
131 |
+
return tokens
|
132 |
+
|
133 |
+
@classmethod
|
134 |
+
def from_pretrained(cls, pretrained_model_name, cache_dir=None, *inputs, **kwargs):
|
135 |
+
"""
|
136 |
+
Instantiate a PreTrainedBertModel from a pre-trained model file.
|
137 |
+
Download and cache the pre-trained model file if needed.
|
138 |
+
"""
|
139 |
+
if pretrained_model_name in PRETRAINED_VOCAB_ARCHIVE_MAP:
|
140 |
+
vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name]
|
141 |
+
else:
|
142 |
+
vocab_file = pretrained_model_name
|
143 |
+
if os.path.isdir(vocab_file):
|
144 |
+
vocab_file = os.path.join(vocab_file, VOCAB_NAME)
|
145 |
+
# redirect to the cache, if necessary
|
146 |
+
try:
|
147 |
+
resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
|
148 |
+
except FileNotFoundError:
|
149 |
+
logger.error(
|
150 |
+
"Model name '{}' was not found in model name list ({}). "
|
151 |
+
"We assumed '{}' was a path or url but couldn't find any file "
|
152 |
+
"associated to this path or url.".format(
|
153 |
+
pretrained_model_name,
|
154 |
+
', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
|
155 |
+
vocab_file))
|
156 |
+
return None
|
157 |
+
if resolved_vocab_file == vocab_file:
|
158 |
+
logger.info("loading vocabulary file {}".format(vocab_file))
|
159 |
+
else:
|
160 |
+
logger.info("loading vocabulary file {} from cache at {}".format(
|
161 |
+
vocab_file, resolved_vocab_file))
|
162 |
+
if pretrained_model_name in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP:
|
163 |
+
# if we're using a pretrained model, ensure the tokenizer wont index sequences longer
|
164 |
+
# than the number of positional embeddings
|
165 |
+
max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name]
|
166 |
+
kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len)
|
167 |
+
# Instantiate tokenizer.
|
168 |
+
tokenizer = cls(resolved_vocab_file, *inputs, **kwargs)
|
169 |
+
return tokenizer
|
170 |
+
|
171 |
+
|
172 |
+
class BasicTokenizer(object):
|
173 |
+
"""Runs basic tokenization (punctuation splitting, lower casing, etc.)."""
|
174 |
+
|
175 |
+
def __init__(self,
|
176 |
+
do_lower_case=True,
|
177 |
+
never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")):
|
178 |
+
"""Constructs a BasicTokenizer.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
do_lower_case: Whether to lower case the input.
|
182 |
+
"""
|
183 |
+
self.do_lower_case = do_lower_case
|
184 |
+
self.never_split = never_split
|
185 |
+
|
186 |
+
def tokenize(self, text):
|
187 |
+
"""Tokenizes a piece of text."""
|
188 |
+
text = self._clean_text(text)
|
189 |
+
|
190 |
+
### joonho.lim @ 2019-03-15
|
191 |
+
# # # This was added on November 1st, 2018 for the multilingual and Chinese
|
192 |
+
# # # models. This is also applied to the English models now, but it doesn't
|
193 |
+
# # # matter since the English models were not trained on any Chinese data
|
194 |
+
# # # and generally don't have any Chinese data in them (there are Chinese
|
195 |
+
# # # characters in the vocabulary because Wikipedia does have some Chinese
|
196 |
+
# # # words in the English Wikipedia.).
|
197 |
+
# # text = self._tokenize_chinese_chars(text)
|
198 |
+
|
199 |
+
orig_tokens = whitespace_tokenize(text)
|
200 |
+
split_tokens = []
|
201 |
+
for token in orig_tokens:
|
202 |
+
if self.do_lower_case and token not in self.never_split:
|
203 |
+
token = token.lower()
|
204 |
+
token = self._run_strip_accents(token)
|
205 |
+
split_tokens.extend(self._run_split_on_punc(token))
|
206 |
+
|
207 |
+
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
208 |
+
return output_tokens
|
209 |
+
|
210 |
+
def _run_strip_accents(self, text):
|
211 |
+
"""Strips accents from a piece of text."""
|
212 |
+
text = unicodedata.normalize("NFD", text)
|
213 |
+
output = []
|
214 |
+
for char in text:
|
215 |
+
cat = unicodedata.category(char)
|
216 |
+
if cat == "Mn":
|
217 |
+
continue
|
218 |
+
output.append(char)
|
219 |
+
return "".join(output)
|
220 |
+
|
221 |
+
def _run_split_on_punc(self, text):
|
222 |
+
"""Splits punctuation on a piece of text."""
|
223 |
+
if text in self.never_split:
|
224 |
+
return [text]
|
225 |
+
chars = list(text)
|
226 |
+
i = 0
|
227 |
+
start_new_word = True
|
228 |
+
output = []
|
229 |
+
while i < len(chars):
|
230 |
+
char = chars[i]
|
231 |
+
if _is_punctuation(char):
|
232 |
+
output.append([char])
|
233 |
+
start_new_word = True
|
234 |
+
else:
|
235 |
+
if start_new_word:
|
236 |
+
output.append([])
|
237 |
+
start_new_word = False
|
238 |
+
output[-1].append(char)
|
239 |
+
i += 1
|
240 |
+
|
241 |
+
return ["".join(x) for x in output]
|
242 |
+
|
243 |
+
def _tokenize_chinese_chars(self, text):
|
244 |
+
"""Adds whitespace around any CJK character."""
|
245 |
+
output = []
|
246 |
+
for char in text:
|
247 |
+
cp = ord(char)
|
248 |
+
if self._is_chinese_char(cp):
|
249 |
+
output.append(" ")
|
250 |
+
output.append(char)
|
251 |
+
output.append(" ")
|
252 |
+
else:
|
253 |
+
output.append(char)
|
254 |
+
return "".join(output)
|
255 |
+
|
256 |
+
def _is_chinese_char(self, cp):
|
257 |
+
"""Checks whether CP is the codepoint of a CJK character."""
|
258 |
+
# This defines a "chinese character" as anything in the CJK Unicode block:
|
259 |
+
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
260 |
+
#
|
261 |
+
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
262 |
+
# despite its name. The modern Korean Hangul alphabet is a different block,
|
263 |
+
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
264 |
+
# space-separated words, so they are not treated specially and handled
|
265 |
+
# like the all of the other languages.
|
266 |
+
if ((cp >= 0x4E00 and cp <= 0x9FFF) or #
|
267 |
+
(cp >= 0x3400 and cp <= 0x4DBF) or #
|
268 |
+
(cp >= 0x20000 and cp <= 0x2A6DF) or #
|
269 |
+
(cp >= 0x2A700 and cp <= 0x2B73F) or #
|
270 |
+
(cp >= 0x2B740 and cp <= 0x2B81F) or #
|
271 |
+
(cp >= 0x2B820 and cp <= 0x2CEAF) or
|
272 |
+
(cp >= 0xF900 and cp <= 0xFAFF) or #
|
273 |
+
(cp >= 0x2F800 and cp <= 0x2FA1F)): #
|
274 |
+
return True
|
275 |
+
|
276 |
+
return False
|
277 |
+
|
278 |
+
def _clean_text(self, text):
|
279 |
+
"""Performs invalid character removal and whitespace cleanup on text."""
|
280 |
+
output = []
|
281 |
+
for char in text:
|
282 |
+
cp = ord(char)
|
283 |
+
if cp == 0 or cp == 0xfffd or _is_control(char):
|
284 |
+
continue
|
285 |
+
if _is_whitespace(char):
|
286 |
+
output.append(" ")
|
287 |
+
else:
|
288 |
+
output.append(char)
|
289 |
+
return "".join(output)
|
290 |
+
|
291 |
+
|
292 |
+
class WordpieceTokenizer(object):
|
293 |
+
"""Runs WordPiece tokenization."""
|
294 |
+
|
295 |
+
def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=100):
|
296 |
+
self.vocab = vocab
|
297 |
+
self.unk_token = unk_token
|
298 |
+
self.max_input_chars_per_word = max_input_chars_per_word
|
299 |
+
|
300 |
+
def tokenize(self, text):
|
301 |
+
"""Tokenizes a piece of text into its word pieces.
|
302 |
+
|
303 |
+
This uses a greedy longest-match-first algorithm to perform tokenization
|
304 |
+
using the given vocabulary.
|
305 |
+
|
306 |
+
For example:
|
307 |
+
input = "unaffable"
|
308 |
+
output = ["un", "##aff", "##able"]
|
309 |
+
|
310 |
+
Args:
|
311 |
+
text: A single token or whitespace separated tokens. This should have
|
312 |
+
already been passed through `BasicTokenizer`.
|
313 |
+
|
314 |
+
Returns:
|
315 |
+
A list of wordpiece tokens.
|
316 |
+
"""
|
317 |
+
|
318 |
+
output_tokens = []
|
319 |
+
for token in whitespace_tokenize(text):
|
320 |
+
chars = list(token)
|
321 |
+
if len(chars) > self.max_input_chars_per_word:
|
322 |
+
output_tokens.append(self.unk_token)
|
323 |
+
continue
|
324 |
+
|
325 |
+
is_bad = False
|
326 |
+
start = 0
|
327 |
+
sub_tokens = []
|
328 |
+
while start < len(chars):
|
329 |
+
end = len(chars)
|
330 |
+
cur_substr = None
|
331 |
+
while start < end:
|
332 |
+
substr = "".join(chars[start:end])
|
333 |
+
### joonho.lim @ 2019-03-15
|
334 |
+
# if start > 0:
|
335 |
+
# substr = "##" + substr
|
336 |
+
if substr in self.vocab:
|
337 |
+
cur_substr = substr
|
338 |
+
break
|
339 |
+
end -= 1
|
340 |
+
if cur_substr is None:
|
341 |
+
is_bad = True
|
342 |
+
break
|
343 |
+
sub_tokens.append(cur_substr)
|
344 |
+
start = end
|
345 |
+
|
346 |
+
if is_bad:
|
347 |
+
output_tokens.append(self.unk_token)
|
348 |
+
else:
|
349 |
+
output_tokens.extend(sub_tokens)
|
350 |
+
return output_tokens
|
351 |
+
|
352 |
+
|
353 |
+
def _is_whitespace(char):
|
354 |
+
"""Checks whether `chars` is a whitespace character."""
|
355 |
+
# \t, \n, and \r are technically contorl characters but we treat them
|
356 |
+
# as whitespace since they are generally considered as such.
|
357 |
+
if char == " " or char == "\t" or char == "\n" or char == "\r":
|
358 |
+
return True
|
359 |
+
cat = unicodedata.category(char)
|
360 |
+
if cat == "Zs":
|
361 |
+
return True
|
362 |
+
return False
|
363 |
+
|
364 |
+
|
365 |
+
def _is_control(char):
|
366 |
+
"""Checks whether `chars` is a control character."""
|
367 |
+
# These are technically control characters but we count them as whitespace
|
368 |
+
# characters.
|
369 |
+
if char == "\t" or char == "\n" or char == "\r":
|
370 |
+
return False
|
371 |
+
cat = unicodedata.category(char)
|
372 |
+
if cat.startswith("C"):
|
373 |
+
return True
|
374 |
+
return False
|
375 |
+
|
376 |
+
|
377 |
+
def _is_punctuation(char):
|
378 |
+
### joonho.lim @ 2019-03-15
|
379 |
+
return char == ' '
|
380 |
+
|
381 |
+
# """Checks whether `chars` is a punctuation character."""
|
382 |
+
# cp = ord(char)
|
383 |
+
# # We treat all non-letter/number ASCII as punctuation.
|
384 |
+
# # Characters such as "^", "$", and "`" are not in the Unicode
|
385 |
+
# # Punctuation class but we treat them as punctuation anyways, for
|
386 |
+
# # consistency.
|
387 |
+
# if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
|
388 |
+
# (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
|
389 |
+
# return True
|
390 |
+
# cat = unicodedata.category(char)
|
391 |
+
# if cat.startswith("P"):
|
392 |
+
# return True
|
393 |
+
# return False
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": false, "max_model_length": 512, "special_tokens_map_file": null, "full_tokenizer_file": null}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|