End of training
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: deepset/gbert-large
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- universal_dependencies
|
8 |
+
model-index:
|
9 |
+
- name: gbert-large_deprel
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# gbert-large_deprel
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [deepset/gbert-large](https://huggingface.co/deepset/gbert-large) on the universal_dependencies dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.5226
|
21 |
+
- : {'precision': 0.9634146341463414, 'recall': 0.9693251533742331, 'f1': 0.966360856269113, 'number': 163}
|
22 |
+
- Arataxis: {'precision': 0.28, 'recall': 0.2413793103448276, 'f1': 0.25925925925925924, 'number': 29}
|
23 |
+
- Ark: {'precision': 0.8518518518518519, 'recall': 0.8385416666666666, 'f1': 0.8451443569553806, 'number': 192}
|
24 |
+
- Ase: {'precision': 0.9595864661654135, 'recall': 0.9686907020872866, 'f1': 0.964117091595845, 'number': 1054}
|
25 |
+
- Bj: {'precision': 0.9388185654008439, 'recall': 0.8829365079365079, 'f1': 0.9100204498977505, 'number': 504}
|
26 |
+
- Bl: {'precision': 0.8804841149773072, 'recall': 0.8609467455621301, 'f1': 0.8706058339566194, 'number': 676}
|
27 |
+
- C: {'precision': 0.9455958549222798, 'recall': 0.9102244389027432, 'f1': 0.9275730622617535, 'number': 401}
|
28 |
+
- Cl: {'precision': 0.7558139534883721, 'recall': 0.6770833333333334, 'f1': 0.7142857142857142, 'number': 96}
|
29 |
+
- Comp: {'precision': 0.7674418604651163, 'recall': 0.7746478873239436, 'f1': 0.7710280373831776, 'number': 213}
|
30 |
+
- Dvcl: {'precision': 0.7922077922077922, 'recall': 0.7625, 'f1': 0.7770700636942675, 'number': 80}
|
31 |
+
- Dvmod: {'precision': 0.9073001158748552, 'recall': 0.903114186851211, 'f1': 0.9052023121387283, 'number': 867}
|
32 |
+
- Ep: {'precision': 0.6176470588235294, 'recall': 0.23863636363636365, 'f1': 0.3442622950819672, 'number': 88}
|
33 |
+
- Et: {'precision': 0.9549745824255628, 'recall': 0.9711964549483013, 'f1': 0.9630172098132551, 'number': 1354}
|
34 |
+
- Et:poss: {'precision': 0.9302325581395349, 'recall': 0.9448818897637795, 'f1': 0.9375, 'number': 127}
|
35 |
+
- Ixed: {'precision': 0.42857142857142855, 'recall': 0.2727272727272727, 'f1': 0.33333333333333326, 'number': 11}
|
36 |
+
- Lat: {'precision': 0.7272727272727273, 'recall': 0.8188976377952756, 'f1': 0.7703703703703703, 'number': 127}
|
37 |
+
- Mod: {'precision': 0.8328474246841594, 'recall': 0.8544366899302094, 'f1': 0.8435039370078741, 'number': 1003}
|
38 |
+
- Mod:poss: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 0}
|
39 |
+
- Obj: {'precision': 0.9552238805970149, 'recall': 0.9142857142857143, 'f1': 0.9343065693430657, 'number': 70}
|
40 |
+
- Ocative: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2}
|
41 |
+
- Ompound: {'precision': 0.8111111111111111, 'recall': 0.5983606557377049, 'f1': 0.6886792452830189, 'number': 122}
|
42 |
+
- Ompound:prt: {'precision': 0.9078947368421053, 'recall': 0.8961038961038961, 'f1': 0.9019607843137255, 'number': 77}
|
43 |
+
- Onj: {'precision': 0.8546255506607929, 'recall': 0.8471615720524017, 'f1': 0.850877192982456, 'number': 458}
|
44 |
+
- Oot: {'precision': 0.9351620947630923, 'recall': 0.9398496240601504, 'f1': 0.9375, 'number': 798}
|
45 |
+
- Op: {'precision': 0.8957345971563981, 'recall': 0.9264705882352942, 'f1': 0.9108433734939759, 'number': 204}
|
46 |
+
- Ppos: {'precision': 0.7142857142857143, 'recall': 0.7851239669421488, 'f1': 0.7480314960629922, 'number': 121}
|
47 |
+
- Subj: {'precision': 0.9198355601233299, 'recall': 0.9049544994944388, 'f1': 0.9123343527013253, 'number': 989}
|
48 |
+
- Subj:pass: {'precision': 0.8666666666666667, 'recall': 0.9176470588235294, 'f1': 0.8914285714285715, 'number': 85}
|
49 |
+
- Ummod: {'precision': 0.9126984126984127, 'recall': 0.8646616541353384, 'f1': 0.888030888030888, 'number': 133}
|
50 |
+
- Unct: {'precision': 0.9735142118863049, 'recall': 0.9592616168045831, 'f1': 0.9663353638986855, 'number': 1571}
|
51 |
+
- Ux: {'precision': 0.9683544303797469, 'recall': 0.9216867469879518, 'f1': 0.9444444444444444, 'number': 332}
|
52 |
+
- Ux:pass: {'precision': 0.8653846153846154, 'recall': 0.9278350515463918, 'f1': 0.8955223880597015, 'number': 97}
|
53 |
+
- Xpl: {'precision': 0.37037037037037035, 'recall': 0.7692307692307693, 'f1': 0.5, 'number': 13}
|
54 |
+
- Xpl:pv: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3}
|
55 |
+
- Overall Precision: 0.9095
|
56 |
+
- Overall Recall: 0.9009
|
57 |
+
- Overall F1: 0.9052
|
58 |
+
- Overall Accuracy: 0.9148
|
59 |
+
|
60 |
+
## Model description
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Intended uses & limitations
|
65 |
+
|
66 |
+
More information needed
|
67 |
+
|
68 |
+
## Training and evaluation data
|
69 |
+
|
70 |
+
More information needed
|
71 |
+
|
72 |
+
## Training procedure
|
73 |
+
|
74 |
+
### Training hyperparameters
|
75 |
+
|
76 |
+
The following hyperparameters were used during training:
|
77 |
+
- learning_rate: 5e-05
|
78 |
+
- train_batch_size: 16
|
79 |
+
- eval_batch_size: 8
|
80 |
+
- seed: 42
|
81 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
82 |
+
- lr_scheduler_type: linear
|
83 |
+
- num_epochs: 10
|
84 |
+
|
85 |
+
### Training results
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.42.4
|
92 |
+
- Pytorch 2.3.1+cu121
|
93 |
+
- Datasets 2.20.0
|
94 |
+
- Tokenizers 0.19.1
|