izaitova commited on
Commit
ff111cd
1 Parent(s): 13f7042

End of training

Browse files
Files changed (1) hide show
  1. README.md +94 -0
README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: deepset/gbert-large
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - universal_dependencies
8
+ model-index:
9
+ - name: gbert-large_deprel
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # gbert-large_deprel
17
+
18
+ This model is a fine-tuned version of [deepset/gbert-large](https://huggingface.co/deepset/gbert-large) on the universal_dependencies dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.5226
21
+ - : {'precision': 0.9634146341463414, 'recall': 0.9693251533742331, 'f1': 0.966360856269113, 'number': 163}
22
+ - Arataxis: {'precision': 0.28, 'recall': 0.2413793103448276, 'f1': 0.25925925925925924, 'number': 29}
23
+ - Ark: {'precision': 0.8518518518518519, 'recall': 0.8385416666666666, 'f1': 0.8451443569553806, 'number': 192}
24
+ - Ase: {'precision': 0.9595864661654135, 'recall': 0.9686907020872866, 'f1': 0.964117091595845, 'number': 1054}
25
+ - Bj: {'precision': 0.9388185654008439, 'recall': 0.8829365079365079, 'f1': 0.9100204498977505, 'number': 504}
26
+ - Bl: {'precision': 0.8804841149773072, 'recall': 0.8609467455621301, 'f1': 0.8706058339566194, 'number': 676}
27
+ - C: {'precision': 0.9455958549222798, 'recall': 0.9102244389027432, 'f1': 0.9275730622617535, 'number': 401}
28
+ - Cl: {'precision': 0.7558139534883721, 'recall': 0.6770833333333334, 'f1': 0.7142857142857142, 'number': 96}
29
+ - Comp: {'precision': 0.7674418604651163, 'recall': 0.7746478873239436, 'f1': 0.7710280373831776, 'number': 213}
30
+ - Dvcl: {'precision': 0.7922077922077922, 'recall': 0.7625, 'f1': 0.7770700636942675, 'number': 80}
31
+ - Dvmod: {'precision': 0.9073001158748552, 'recall': 0.903114186851211, 'f1': 0.9052023121387283, 'number': 867}
32
+ - Ep: {'precision': 0.6176470588235294, 'recall': 0.23863636363636365, 'f1': 0.3442622950819672, 'number': 88}
33
+ - Et: {'precision': 0.9549745824255628, 'recall': 0.9711964549483013, 'f1': 0.9630172098132551, 'number': 1354}
34
+ - Et:poss: {'precision': 0.9302325581395349, 'recall': 0.9448818897637795, 'f1': 0.9375, 'number': 127}
35
+ - Ixed: {'precision': 0.42857142857142855, 'recall': 0.2727272727272727, 'f1': 0.33333333333333326, 'number': 11}
36
+ - Lat: {'precision': 0.7272727272727273, 'recall': 0.8188976377952756, 'f1': 0.7703703703703703, 'number': 127}
37
+ - Mod: {'precision': 0.8328474246841594, 'recall': 0.8544366899302094, 'f1': 0.8435039370078741, 'number': 1003}
38
+ - Mod:poss: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 0}
39
+ - Obj: {'precision': 0.9552238805970149, 'recall': 0.9142857142857143, 'f1': 0.9343065693430657, 'number': 70}
40
+ - Ocative: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2}
41
+ - Ompound: {'precision': 0.8111111111111111, 'recall': 0.5983606557377049, 'f1': 0.6886792452830189, 'number': 122}
42
+ - Ompound:prt: {'precision': 0.9078947368421053, 'recall': 0.8961038961038961, 'f1': 0.9019607843137255, 'number': 77}
43
+ - Onj: {'precision': 0.8546255506607929, 'recall': 0.8471615720524017, 'f1': 0.850877192982456, 'number': 458}
44
+ - Oot: {'precision': 0.9351620947630923, 'recall': 0.9398496240601504, 'f1': 0.9375, 'number': 798}
45
+ - Op: {'precision': 0.8957345971563981, 'recall': 0.9264705882352942, 'f1': 0.9108433734939759, 'number': 204}
46
+ - Ppos: {'precision': 0.7142857142857143, 'recall': 0.7851239669421488, 'f1': 0.7480314960629922, 'number': 121}
47
+ - Subj: {'precision': 0.9198355601233299, 'recall': 0.9049544994944388, 'f1': 0.9123343527013253, 'number': 989}
48
+ - Subj:pass: {'precision': 0.8666666666666667, 'recall': 0.9176470588235294, 'f1': 0.8914285714285715, 'number': 85}
49
+ - Ummod: {'precision': 0.9126984126984127, 'recall': 0.8646616541353384, 'f1': 0.888030888030888, 'number': 133}
50
+ - Unct: {'precision': 0.9735142118863049, 'recall': 0.9592616168045831, 'f1': 0.9663353638986855, 'number': 1571}
51
+ - Ux: {'precision': 0.9683544303797469, 'recall': 0.9216867469879518, 'f1': 0.9444444444444444, 'number': 332}
52
+ - Ux:pass: {'precision': 0.8653846153846154, 'recall': 0.9278350515463918, 'f1': 0.8955223880597015, 'number': 97}
53
+ - Xpl: {'precision': 0.37037037037037035, 'recall': 0.7692307692307693, 'f1': 0.5, 'number': 13}
54
+ - Xpl:pv: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3}
55
+ - Overall Precision: 0.9095
56
+ - Overall Recall: 0.9009
57
+ - Overall F1: 0.9052
58
+ - Overall Accuracy: 0.9148
59
+
60
+ ## Model description
61
+
62
+ More information needed
63
+
64
+ ## Intended uses & limitations
65
+
66
+ More information needed
67
+
68
+ ## Training and evaluation data
69
+
70
+ More information needed
71
+
72
+ ## Training procedure
73
+
74
+ ### Training hyperparameters
75
+
76
+ The following hyperparameters were used during training:
77
+ - learning_rate: 5e-05
78
+ - train_batch_size: 16
79
+ - eval_batch_size: 8
80
+ - seed: 42
81
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
82
+ - lr_scheduler_type: linear
83
+ - num_epochs: 10
84
+
85
+ ### Training results
86
+
87
+
88
+
89
+ ### Framework versions
90
+
91
+ - Transformers 4.42.4
92
+ - Pytorch 2.3.1+cu121
93
+ - Datasets 2.20.0
94
+ - Tokenizers 0.19.1