ixxan commited on
Commit
b2a309c
·
verified ·
1 Parent(s): 3ae66b3

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ language:
4
+ - ug
5
+ license: apache-2.0
6
+ base_model: openai/whisper-small
7
+ tags:
8
+ - generated_from_trainer
9
+ metrics:
10
+ - cer
11
+ - wer
12
+ model-index:
13
+ - name: Whisper Small Fine-tuned with Uyghur Common Voice
14
+ results:
15
+ - task:
16
+ name: Automatic Speech Recognition
17
+ type: automatic-speech-recognition
18
+ dataset:
19
+ name: Common Voice 15
20
+ type: mozilla-foundation/common_voice_15_0
21
+ metrics:
22
+ - name: Wer
23
+ type: wer
24
+ value: 28.29947071879802
25
+ - name: Cer
26
+ type: cer
27
+ value: 10.896777936451267
28
+ ---
29
+
30
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
31
+ should probably proofread and complete it, then remove this comment. -->
32
+
33
+ # Whisper Small Fine-tuned with Uyghur Common Voice
34
+
35
+ This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Uyghur Common Voice dataset.
36
+
37
+ This model achieves the following results on the evaluation set:
38
+ - Loss: 1.59201979637146
39
+ - Wer Ortho: 42.97005356986037
40
+ - Wer: 28.29947071879802
41
+ - Cer: 10.896777936451267
42
+
43
+ ## Training and evaluation data
44
+
45
+ The training was done using the combined train and dev set of common_voice_15_0 (11215 recordings, \~20hrs of audio).
46
+
47
+ The testing was done using the test set of THUYG20 as the standard benchmark for Uyghur speech models.
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 0.0001
55
+ - train_batch_size: 8
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 2
59
+ - total_train_batch_size: 16
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_steps: 300
63
+ - training_steps: 4000
64
+ - mixed_precision_training: Native AMP
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | Cer |
69
+ |:-------------:|:-------:|:----:|:---------------:|:---------:|:---------:|:---------:|
70
+ | 0.574400 | 0.7133 | 500 | 1.413890 | 59.765522 | 48.561550 | 17.639905 |
71
+ | 0.299600 | 1.4256 | 1000 | 1.283326 | 52.819004 | 41.377838 | 14.717958 |
72
+ | 0.130600 | 2.1398 | 1500 | 1.379338 | 52.265742 | 38.953389 | 16.260934 |
73
+ | 0.122500 | 2.8531 | 2000 | 1.313730 | 50.245894 | 36.494793 | 14.762585 |
74
+ | 0.060500 | 3.5663 | 2500 | 1.434626 | 47.589356 | 32.998976 | 12.185938 |
75
+ | 0.019500 | 4.2796 | 3000 | 1.526625 | 45.345570 | 30.975756 | 11.307346 |
76
+ | 0.015300 | 4.9929 | 3500 | 1.531676 | 44.120488 | 29.285470 | 11.690021 |
77
+ | 0.003300 | 5.7061 | 4000 | 1.592020 | 42.970054 | 28.299471 | 10.896778 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.46.2
83
+ - Pytorch 2.5.1+cu121
84
+ - Datasets 3.1.0
85
+ - Tokenizers 0.20.3