ivillar commited on
Commit
25d994d
1 Parent(s): 8c2ae25

End of training

Browse files
README.md ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: Akashpb13/Swahili_xlsr
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - ml-superb-subset
8
+ metrics:
9
+ - wer
10
+ model-index:
11
+ - name: xty_finetune
12
+ results:
13
+ - task:
14
+ name: Automatic Speech Recognition
15
+ type: automatic-speech-recognition
16
+ dataset:
17
+ name: ml-superb-subset
18
+ type: ml-superb-subset
19
+ config: xty
20
+ split: test
21
+ args: xty
22
+ metrics:
23
+ - name: Wer
24
+ type: wer
25
+ value: 89.12633563796355
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # xty_finetune
32
+
33
+ This model is a fine-tuned version of [Akashpb13/Swahili_xlsr](https://huggingface.co/Akashpb13/Swahili_xlsr) on the ml-superb-subset dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 2.0874
36
+ - Wer: 89.1263
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 9.6e-05
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 2
60
+ - total_train_batch_size: 64
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: cosine
63
+ - lr_scheduler_warmup_steps: 25
64
+ - training_steps: 500
65
+ - mixed_precision_training: Native AMP
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
70
+ |:-------------:|:-------:|:----:|:---------------:|:--------:|
71
+ | 8.5823 | 1.0526 | 10 | 7.7265 | 100.0629 |
72
+ | 5.0617 | 2.1053 | 20 | 4.2231 | 100.0 |
73
+ | 3.6512 | 3.1579 | 30 | 3.5631 | 100.0 |
74
+ | 3.3211 | 4.2105 | 40 | 3.3414 | 100.0 |
75
+ | 3.2144 | 5.2632 | 50 | 3.2086 | 100.0 |
76
+ | 3.128 | 6.3158 | 60 | 3.1724 | 100.0 |
77
+ | 3.0999 | 7.3684 | 70 | 3.1261 | 100.0 |
78
+ | 3.0585 | 8.4211 | 80 | 3.1200 | 100.0 |
79
+ | 3.0318 | 9.4737 | 90 | 3.1001 | 100.0 |
80
+ | 3.0166 | 10.5263 | 100 | 3.0985 | 100.0 |
81
+ | 3.0147 | 11.5789 | 110 | 3.0971 | 100.0 |
82
+ | 3.0028 | 12.6316 | 120 | 3.0775 | 100.0 |
83
+ | 2.991 | 13.6842 | 130 | 3.0619 | 100.0 |
84
+ | 2.9692 | 14.7368 | 140 | 3.0477 | 100.0 |
85
+ | 2.9355 | 15.7895 | 150 | 3.0081 | 100.0 |
86
+ | 2.8754 | 16.8421 | 160 | 2.9190 | 100.0 |
87
+ | 2.7087 | 17.8947 | 170 | 2.7367 | 100.0 |
88
+ | 2.4346 | 18.9474 | 180 | 2.5043 | 108.5481 |
89
+ | 2.3184 | 20.0 | 190 | 2.3709 | 103.8969 |
90
+ | 2.0887 | 21.0526 | 200 | 2.2196 | 103.3941 |
91
+ | 1.9198 | 22.1053 | 210 | 2.1078 | 104.7140 |
92
+ | 1.6995 | 23.1579 | 220 | 2.0556 | 98.4287 |
93
+ | 1.6576 | 24.2105 | 230 | 2.0081 | 100.6914 |
94
+ | 1.4855 | 25.2632 | 240 | 1.9958 | 98.0515 |
95
+ | 1.3788 | 26.3158 | 250 | 1.9729 | 94.8460 |
96
+ | 1.3202 | 27.3684 | 260 | 1.9618 | 98.6172 |
97
+ | 1.2237 | 28.4211 | 270 | 1.9662 | 93.6518 |
98
+ | 1.1389 | 29.4737 | 280 | 1.9882 | 92.7090 |
99
+ | 1.0597 | 30.5263 | 290 | 1.9655 | 92.3947 |
100
+ | 1.0203 | 31.5789 | 300 | 1.9616 | 90.1948 |
101
+ | 0.9778 | 32.6316 | 310 | 1.9585 | 90.8234 |
102
+ | 0.9553 | 33.6842 | 320 | 1.9875 | 90.5091 |
103
+ | 0.895 | 34.7368 | 330 | 1.9913 | 91.3891 |
104
+ | 0.9021 | 35.7895 | 340 | 1.9906 | 90.2577 |
105
+ | 0.8105 | 36.8421 | 350 | 2.0182 | 89.4406 |
106
+ | 0.8052 | 37.8947 | 360 | 2.0227 | 89.5663 |
107
+ | 0.7484 | 38.9474 | 370 | 2.0539 | 89.0006 |
108
+ | 0.7886 | 40.0 | 380 | 2.0616 | 90.6977 |
109
+ | 0.7348 | 41.0526 | 390 | 2.0590 | 89.1892 |
110
+ | 0.7079 | 42.1053 | 400 | 2.0790 | 89.8806 |
111
+ | 0.7215 | 43.1579 | 410 | 2.0701 | 89.3149 |
112
+ | 0.6997 | 44.2105 | 420 | 2.0832 | 89.3777 |
113
+ | 0.721 | 45.2632 | 430 | 2.0798 | 89.3149 |
114
+ | 0.6609 | 46.3158 | 440 | 2.0834 | 88.4349 |
115
+ | 0.6562 | 47.3684 | 450 | 2.0892 | 89.0006 |
116
+ | 0.6418 | 48.4211 | 460 | 2.0878 | 89.3777 |
117
+ | 0.677 | 49.4737 | 470 | 2.0874 | 89.2520 |
118
+ | 0.6821 | 50.5263 | 480 | 2.0874 | 89.1263 |
119
+ | 0.6798 | 51.5789 | 490 | 2.0875 | 89.0635 |
120
+ | 0.7188 | 52.6316 | 500 | 2.0874 | 89.1263 |
121
+
122
+
123
+ ### Framework versions
124
+
125
+ - Transformers 4.41.1
126
+ - Pytorch 2.3.0+cu121
127
+ - Datasets 2.19.1
128
+ - Tokenizers 0.19.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b76a56c348763b5df9da31e301433a654d9dcc5552b8d4bcc8a7af201a138988
3
  size 1262012480
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5cb014878703bda3fad3368b42e2a1f3c1a9b64a323951649e70d1cb7f9c2d43
3
  size 1262012480
runs/May22_23-01-53_358fd2b9d7ca/events.out.tfevents.1716419579.358fd2b9d7ca.799.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:68fa74b09303b227c98c99fbe118a721c5725366779bb1bc0825d5dc98152a22
3
- size 42290
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a65a036cb81f0ad2e31194baa76f38d6b8a79907e2d36579a328ed94aec90b7c
3
+ size 43384