End of training
Browse files- README.md +128 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: Akashpb13/Swahili_xlsr
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- ml-superb-subset
|
8 |
+
metrics:
|
9 |
+
- wer
|
10 |
+
model-index:
|
11 |
+
- name: xho_finetune
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Automatic Speech Recognition
|
15 |
+
type: automatic-speech-recognition
|
16 |
+
dataset:
|
17 |
+
name: ml-superb-subset
|
18 |
+
type: ml-superb-subset
|
19 |
+
config: xho
|
20 |
+
split: test
|
21 |
+
args: xho
|
22 |
+
metrics:
|
23 |
+
- name: Wer
|
24 |
+
type: wer
|
25 |
+
value: 53.510895883777245
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# xho_finetune
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [Akashpb13/Swahili_xlsr](https://huggingface.co/Akashpb13/Swahili_xlsr) on the ml-superb-subset dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.5370
|
36 |
+
- Wer: 53.5109
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 9.6e-05
|
56 |
+
- train_batch_size: 32
|
57 |
+
- eval_batch_size: 8
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 2
|
60 |
+
- total_train_batch_size: 64
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: cosine
|
63 |
+
- lr_scheduler_warmup_steps: 25
|
64 |
+
- training_steps: 500
|
65 |
+
- mixed_precision_training: Native AMP
|
66 |
+
|
67 |
+
### Training results
|
68 |
+
|
69 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
70 |
+
|:-------------:|:-------:|:----:|:---------------:|:-------:|
|
71 |
+
| 25.5184 | 0.7692 | 10 | 24.2275 | 100.0 |
|
72 |
+
| 14.5363 | 1.5385 | 20 | 9.8357 | 100.0 |
|
73 |
+
| 4.5811 | 2.3077 | 30 | 3.8367 | 100.0 |
|
74 |
+
| 3.4822 | 3.0769 | 40 | 3.3922 | 100.0 |
|
75 |
+
| 3.2732 | 3.8462 | 50 | 3.2398 | 100.0 |
|
76 |
+
| 3.1796 | 4.6154 | 60 | 3.1705 | 100.0 |
|
77 |
+
| 3.1504 | 5.3846 | 70 | 3.1419 | 100.0 |
|
78 |
+
| 3.1119 | 6.1538 | 80 | 3.1084 | 100.0 |
|
79 |
+
| 3.0789 | 6.9231 | 90 | 3.0735 | 100.0 |
|
80 |
+
| 3.0619 | 7.6923 | 100 | 3.0590 | 100.0 |
|
81 |
+
| 3.0298 | 8.4615 | 110 | 3.0247 | 100.0 |
|
82 |
+
| 2.9933 | 9.2308 | 120 | 2.9716 | 100.0 |
|
83 |
+
| 2.9079 | 10.0 | 130 | 2.8647 | 100.0 |
|
84 |
+
| 2.8414 | 10.7692 | 140 | 2.7931 | 100.0 |
|
85 |
+
| 2.6939 | 11.5385 | 150 | 2.5932 | 100.0 |
|
86 |
+
| 2.3274 | 12.3077 | 160 | 2.1000 | 99.7579 |
|
87 |
+
| 1.7068 | 13.0769 | 170 | 1.4580 | 93.4625 |
|
88 |
+
| 1.206 | 13.8462 | 180 | 1.1027 | 83.0508 |
|
89 |
+
| 0.9587 | 14.6154 | 190 | 0.9152 | 79.4189 |
|
90 |
+
| 0.7806 | 15.3846 | 200 | 0.8122 | 69.7337 |
|
91 |
+
| 0.7118 | 16.1538 | 210 | 0.7445 | 69.0073 |
|
92 |
+
| 0.6814 | 16.9231 | 220 | 0.6945 | 62.9540 |
|
93 |
+
| 0.5709 | 17.6923 | 230 | 0.6787 | 67.5545 |
|
94 |
+
| 0.5653 | 18.4615 | 240 | 0.6758 | 62.2276 |
|
95 |
+
| 0.5437 | 19.2308 | 250 | 0.6511 | 60.7748 |
|
96 |
+
| 0.5092 | 20.0 | 260 | 0.6237 | 62.7119 |
|
97 |
+
| 0.4239 | 20.7692 | 270 | 0.6000 | 61.5012 |
|
98 |
+
| 0.4355 | 21.5385 | 280 | 0.5899 | 59.8063 |
|
99 |
+
| 0.4456 | 22.3077 | 290 | 0.5960 | 59.3220 |
|
100 |
+
| 0.3986 | 23.0769 | 300 | 0.5764 | 56.6586 |
|
101 |
+
| 0.3856 | 23.8462 | 310 | 0.5801 | 55.9322 |
|
102 |
+
| 0.3607 | 24.6154 | 320 | 0.5682 | 57.6271 |
|
103 |
+
| 0.358 | 25.3846 | 330 | 0.5675 | 55.9322 |
|
104 |
+
| 0.3452 | 26.1538 | 340 | 0.5630 | 57.8692 |
|
105 |
+
| 0.3289 | 26.9231 | 350 | 0.5515 | 57.8692 |
|
106 |
+
| 0.353 | 27.6923 | 360 | 0.5621 | 57.3850 |
|
107 |
+
| 0.2907 | 28.4615 | 370 | 0.5486 | 55.2058 |
|
108 |
+
| 0.3237 | 29.2308 | 380 | 0.5445 | 54.4794 |
|
109 |
+
| 0.3202 | 30.0 | 390 | 0.5384 | 52.7845 |
|
110 |
+
| 0.2918 | 30.7692 | 400 | 0.5370 | 55.6901 |
|
111 |
+
| 0.3106 | 31.5385 | 410 | 0.5422 | 53.7530 |
|
112 |
+
| 0.3105 | 32.3077 | 420 | 0.5438 | 55.2058 |
|
113 |
+
| 0.2835 | 33.0769 | 430 | 0.5437 | 55.9322 |
|
114 |
+
| 0.2966 | 33.8462 | 440 | 0.5416 | 54.7215 |
|
115 |
+
| 0.2719 | 34.6154 | 450 | 0.5394 | 54.2373 |
|
116 |
+
| 0.2859 | 35.3846 | 460 | 0.5384 | 53.7530 |
|
117 |
+
| 0.29 | 36.1538 | 470 | 0.5379 | 53.2688 |
|
118 |
+
| 0.2879 | 36.9231 | 480 | 0.5372 | 53.5109 |
|
119 |
+
| 0.2871 | 37.6923 | 490 | 0.5370 | 53.5109 |
|
120 |
+
| 0.3019 | 38.4615 | 500 | 0.5370 | 53.5109 |
|
121 |
+
|
122 |
+
|
123 |
+
### Framework versions
|
124 |
+
|
125 |
+
- Transformers 4.41.1
|
126 |
+
- Pytorch 2.3.0+cu121
|
127 |
+
- Datasets 2.19.1
|
128 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1261942780
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d2c99e9fc65b1305846507dfcc2f15f3e16049e9d76b7396791140af088ca2d
|
3 |
size 1261942780
|