ivarm11 commited on
Commit
c717d8e
·
verified ·
1 Parent(s): d428d82

Training complete

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: bert-base-cased
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: bert-finetuned-ner
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # bert-finetuned-ner
21
+
22
+ This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.2261
25
+ - Precision: 0.4952
26
+ - Recall: 0.6894
27
+ - F1: 0.5764
28
+ - Accuracy: 0.9443
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 2e-05
48
+ - train_batch_size: 8
49
+ - eval_batch_size: 8
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 3
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | No log | 1.0 | 249 | 0.2259 | 0.4379 | 0.6109 | 0.5101 | 0.9397 |
60
+ | No log | 2.0 | 498 | 0.2110 | 0.4844 | 0.6749 | 0.5640 | 0.9425 |
61
+ | 0.201 | 3.0 | 747 | 0.2261 | 0.4952 | 0.6894 | 0.5764 | 0.9443 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.44.2
67
+ - Pytorch 2.5.0+cu121
68
+ - Datasets 3.1.0
69
+ - Tokenizers 0.19.1