ivanchangoluisa
commited on
Commit
•
3d87f8f
1
Parent(s):
e2d2192
Hello hugging, Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -157.86 +/- 46.82
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fea87c95ef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fea87c95f80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fea87c9b050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fea87c9b0e0>", "_build": "<function ActorCriticPolicy._build at 0x7fea87c9b170>", "forward": "<function ActorCriticPolicy.forward at 0x7fea87c9b200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fea87c9b290>", "_predict": "<function ActorCriticPolicy._predict at 0x7fea87c9b320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fea87c9b3b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fea87c9b440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fea87c9b4d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fea87ce8630>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1667152254793506667, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMBFx71ckwU743WhvGZZqbxGRCM7oQWFvAAAAAAAAAAAzUwUOWxb4j5cUzc+IXiNvwkynL6cU709AAAAAAAAAABAeiw+jLpNP/h86j5PwJO/2M+fPSYObT4AAAAAAAAAAJBpb75PSiw/vToov5OAcr/4pkc+VMKBPQAAAAAAAAAAs1IgvXcMoj+W7zW+4pUFv66o4LuKiwK+AAAAAAAAAABqhbE+BO24PnU+6jwea4K/qp7cPmipUz0AAAAAAAAAAJphVL2IyKI/kjIGvkPJA7+3yMQ8FkA3vgAAAAAAAAAAoAZ3PqwpQz/Nink+47NMvxDJ3T470Pk9AAAAAAAAAACz1ME99ne9P+NyGz/nmpw9+barvXYUDr0AAAAAAAAAAD3jY77hm1I/NggMvxejVb+Af++6XnwcvQAAAAAAAAAAzdK0vJpluz8Y7wq+FmehvftTvj32Igs+AAAAAAAAAACN3wQ+qX24P3bxKj+baAq9W1wHvYiOyj0AAAAAAAAAACaq/L2K3JY/QyhGvuBSDb94myU9o3rbvQAAAAAAAAAAQKyGvY4+vj+2mJ2+N9tBPSVcpz3ed6c6AAAAAAAAAAAg7hg+icSzPmZwDb3TiFW/NDmIPvLKh70AAAAAAAAAAPP8pL2hG6g/1rjnvZp4BL8qyPC9xgUfvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDycwndYRTcCUhpRSlIwBbJRLX4wBdJRHQHmVC8jAzpJ1fZQoaAZoCWgPQwgc6ndhayFfwJSGlFKUaBVLTWgWR0B5lVXGOuJUdX2UKGgGaAloD0MIY+3vbI+wRMCUhpRSlGgVS35oFkdAeZXHBUJfIHV9lChoBmgJaA9DCGpPyTmxEUTAlIaUUpRoFUtmaBZHQHmWXQUpNK11fZQoaAZoCWgPQwg51VqYhYJTwJSGlFKUaBVLS2gWR0B5lqUQkHD8dX2UKGgGaAloD0MIghspWyQnRcCUhpRSlGgVS4xoFkdAeZaiMo+fRXV9lChoBmgJaA9DCOvHJvkRH1HAlIaUUpRoFUt1aBZHQHmXT/uLJjl1fZQoaAZoCWgPQwjhJM0fU3tgwJSGlFKUaBVLdmgWR0B5mDExZdOZdX2UKGgGaAloD0MIXb9gN2zzT8CUhpRSlGgVS2poFkdAeZh3d9Dx9XV9lChoBmgJaA9DCK+xS1RvOlLAlIaUUpRoFUtoaBZHQHmYljRUm2N1fZQoaAZoCWgPQwg/qmG/J6RJwJSGlFKUaBVLTWgWR0B5mKG34Kx+dX2UKGgGaAloD0MImPp5U5FaGMCUhpRSlGgVS4loFkdAeZjcI7eVLXV9lChoBmgJaA9DCFU01v7OZVXAlIaUUpRoFUtHaBZHQHmZtaY/mkp1fZQoaAZoCWgPQwhPzHoxlN1BwJSGlFKUaBVLYmgWR0B5mmONo8ISdX2UKGgGaAloD0MIvlDAdjC5VcCUhpRSlGgVS0RoFkdAeZyW56MR6HV9lChoBmgJaA9DCCXP9X04OB7AlIaUUpRoFUtvaBZHQHmdeAI6bON1fZQoaAZoCWgPQwibIOo+AKVYwJSGlFKUaBVLYWgWR0B5nY1dgOSXdX2UKGgGaAloD0MIB7ZKsDjNWcCUhpRSlGgVS1doFkdAeZ4FcY64lXV9lChoBmgJaA9DCHYb1H5r81XAlIaUUpRoFUtBaBZHQHmeMuJ1q351fZQoaAZoCWgPQwjzdK4oJfpBwJSGlFKUaBVLbWgWR0B5nz26ClJpdX2UKGgGaAloD0MI4rGfxVIUVsCUhpRSlGgVS1FoFkdAeZ/wz+FUQ3V9lChoBmgJaA9DCB1aZDvfOVPAlIaUUpRoFUtmaBZHQHmgQKfFrEd1fZQoaAZoCWgPQwjEsplDUgxTwJSGlFKUaBVLbmgWR0B5oDZuhsZYdX2UKGgGaAloD0MIzLVoAVoUY8CUhpRSlGgVS4loFkdAeaEPU8V58nV9lChoBmgJaA9DCGbYKOs3Az7AlIaUUpRoFUtiaBZHQHmhQLRa5gB1fZQoaAZoCWgPQwizKVd4l+lVwJSGlFKUaBVLYGgWR0B5oWISDh99dX2UKGgGaAloD0MII/Qz9br9O8CUhpRSlGgVS0xoFkdAeaLFfiPyTnV9lChoBmgJaA9DCJojK78MrihAlIaUUpRoFUt9aBZHQHmjL8BMi8p1fZQoaAZoCWgPQwiafR6jPIZawJSGlFKUaBVLUmgWR0B5o++M6zVudX2UKGgGaAloD0MI2J3uPPH+QsCUhpRSlGgVS3JoFkdAeaQ16mfoR3V9lChoBmgJaA9DCDyFXKln/UrAlIaUUpRoFUtRaBZHQHmkZkK/mDF1fZQoaAZoCWgPQwgDeXb51iVPwJSGlFKUaBVLWmgWR0B5pKKTB68hdX2UKGgGaAloD0MIfH2tS41KXsCUhpRSlGgVS4FoFkdAeaTjqfOD8XV9lChoBmgJaA9DCCmV8IRelz3AlIaUUpRoFUtIaBZHQHmlhmPHT7V1fZQoaAZoCWgPQwjBqKROQJsowJSGlFKUaBVLZWgWR0B5phf/m1YydX2UKGgGaAloD0MI5BHcSNkWVsCUhpRSlGgVS0doFkdAeaazCUHIIXV9lChoBmgJaA9DCE4qGmt/rFDAlIaUUpRoFUtJaBZHQHmmrRKHwgF1fZQoaAZoCWgPQwi4dMx5xo1QwJSGlFKUaBVLWGgWR0B5pv/o7muDdX2UKGgGaAloD0MIxVkRNdHTUsCUhpRSlGgVS1RoFkdAeafchkiD/XV9lChoBmgJaA9DCHLD76ZbNjjAlIaUUpRoFUt6aBZHQHmoyEpRXOp1fZQoaAZoCWgPQwiGWWjnNMVLwJSGlFKUaBVLUGgWR0B5qQiHIp6QdX2UKGgGaAloD0MIEkvK3ecKUsCUhpRSlGgVS05oFkdAealQO4G2TnV9lChoBmgJaA9DCJsg6j4ACQbAlIaUUpRoFUtcaBZHQHmseCwr1/V1fZQoaAZoCWgPQwithVlo53ZHwJSGlFKUaBVLRmgWR0B5rKMwUQCkdX2UKGgGaAloD0MIaNDQP8FYbsCUhpRSlGgVS6NoFkdAea1uvECNj3V9lChoBmgJaA9DCPcGX5jMCmDAlIaUUpRoFUtvaBZHQHmtgHVwxWV1fZQoaAZoCWgPQwjNr+YAwYZRwJSGlFKUaBVLbGgWR0B5rbPszEaVdX2UKGgGaAloD0MIqFFIMqtRTsCUhpRSlGgVS3BoFkdAea3PAfuCw3V9lChoBmgJaA9DCCh/944aGzPAlIaUUpRoFUtdaBZHQHmuGOyVv/B1fZQoaAZoCWgPQwgrwk1GldZfwJSGlFKUaBVLe2gWR0B5rkiUxEfDdX2UKGgGaAloD0MIw6BMo8lDQsCUhpRSlGgVS2xoFkdAea7OMVDa5HV9lChoBmgJaA9DCFFpxMw+WlbAlIaUUpRoFUtfaBZHQHmu+S0Sh8J1fZQoaAZoCWgPQwi5izBFuZhMwJSGlFKUaBVLaGgWR0B5sBMN+b3HdX2UKGgGaAloD0MIHXQJh94sSMCUhpRSlGgVS1VoFkdAebB5Gz8gp3V9lChoBmgJaA9DCBpNLsbAtjHAlIaUUpRoFUtqaBZHQHmxQJC0F8p1fZQoaAZoCWgPQwhHkEqxo9NJwJSGlFKUaBVLamgWR0B5snlcQiA2dX2UKGgGaAloD0MICmXh62uPQsCUhpRSlGgVS1NoFkdAebPfHPu5SXV9lChoBmgJaA9DCH+IDRZO6lDAlIaUUpRoFUt6aBZHQHm0LVz6rNp1fZQoaAZoCWgPQwjXaDnQQ0lGwJSGlFKUaBVLSGgWR0B5tGZa3ZwodX2UKGgGaAloD0MIE51lFqGwTMCUhpRSlGgVS1JoFkdAebS7T2FnI3V9lChoBmgJaA9DCEYiNILNXXDAlIaUUpRoFUtSaBZHQHm07r9l2/11fZQoaAZoCWgPQwigxVIkX8hRwJSGlFKUaBVLUmgWR0B5tXJ4jbBXdX2UKGgGaAloD0MIMZi/QuY5UMCUhpRSlGgVS29oFkdAebZznRsuWnV9lChoBmgJaA9DCO9YbJOK2VTAlIaUUpRoFUtjaBZHQHm2eH8CPp91fZQoaAZoCWgPQwj5n/zdO/5TwJSGlFKUaBVLXWgWR0B5tueUY8+zdX2UKGgGaAloD0MIqgt4mWHPM8CUhpRSlGgVS1loFkdAeblGipNsWXV9lChoBmgJaA9DCOWbbW5M9U7AlIaUUpRoFUtpaBZHQHm54TsY2sJ1fZQoaAZoCWgPQwjSyOcVzxZpwJSGlFKUaBVLgWgWR0B5upi7TUiIdX2UKGgGaAloD0MINIC3QIIzVcCUhpRSlGgVS01oFkdAebsHoHLRr3V9lChoBmgJaA9DCO+rcqHyQUbAlIaUUpRoFUuWaBZHQHm7CTQmeDp1fZQoaAZoCWgPQwg83XniOSVWwJSGlFKUaBVLZGgWR0B5u62rn1WbdX2UKGgGaAloD0MITIxl+iWeUsCUhpRSlGgVS2toFkdAeb4eRxLkCHV9lChoBmgJaA9DCOdQhqqYdknAlIaUUpRoFUtwaBZHQHm/fNiYsup1fZQoaAZoCWgPQwghI6DCEd1YwJSGlFKUaBVLb2gWR0B5wAMSbpeNdX2UKGgGaAloD0MIPiMRGsGsRcCUhpRSlGgVS09oFkdAecEKsdT5wnV9lChoBmgJaA9DCN3vUBToF0zAlIaUUpRoFUtyaBZHQHnBqioKlYV1fZQoaAZoCWgPQwhnLJrOTthHwJSGlFKUaBVLi2gWR0B5wjHQyAQQdX2UKGgGaAloD0MIXU90XfgtQ8CUhpRSlGgVS5BoFkdAecJcLBsQ/XV9lChoBmgJaA9DCHCX/brTiTzAlIaUUpRoFUt9aBZHQHnC1jmSyMV1fZQoaAZoCWgPQwh87ZklATVQwJSGlFKUaBVLWWgWR0B5ws8Md92HdX2UKGgGaAloD0MIx/SEJR7eSsCUhpRSlGgVS3poFkdAecMTJQtSRHV9lChoBmgJaA9DCAAAAAAAEDvAlIaUUpRoFUtYaBZHQHnD+T3Zf2N1fZQoaAZoCWgPQwirsYS1MTRIwJSGlFKUaBVLXWgWR0B5xHgjyFwldX2UKGgGaAloD0MIFaxxNh3XT8CUhpRSlGgVS0xoFkdAecYE+PikwnV9lChoBmgJaA9DCPNy2H3Hn1bAlIaUUpRoFUtmaBZHQHnGBWT5ftx1fZQoaAZoCWgPQwjmBdhHpz4swJSGlFKUaBVLeGgWR0B5xqg13t8edX2UKGgGaAloD0MILLr1mh6QZ8CUhpRSlGgVS/FoFkdAecclSS/0unV9lChoBmgJaA9DCKOs30xM9VHAlIaUUpRoFUtVaBZHQHnIrzkIX0p1fZQoaAZoCWgPQwi5izBFuYFfwJSGlFKUaBVLSGgWR0B5ye+rU9ZBdX2UKGgGaAloD0MIc2VQbXDSWMCUhpRSlGgVS1xoFkdAecpRG+bmVHV9lChoBmgJaA9DCC2yne+nGFbAlIaUUpRoFUtaaBZHQHnLPvOQhfV1fZQoaAZoCWgPQwjR6Xk3FnpXwJSGlFKUaBVLTmgWR0B5y7Q8fV7QdX2UKGgGaAloD0MIueLiqNwgNsCUhpRSlGgVS3toFkdAecwYRujynXV9lChoBmgJaA9DCFHex9EcVWfAlIaUUpRoFUthaBZHQHnMsk6cRUZ1fZQoaAZoCWgPQwgsSDMWTS85wJSGlFKUaBVLRWgWR0B5zQQGwA2idX2UKGgGaAloD0MIoYDtYMTOVsCUhpRSlGgVS2toFkdAec3MfRu0kXV9lChoBmgJaA9DCG1Wfa62pEPAlIaUUpRoFUt7aBZHQHnOGq94/u91fZQoaAZoCWgPQwjg2omSkKZCwJSGlFKUaBVLR2gWR0B5zkT238XOdX2UKGgGaAloD0MI2EY82c3aVMCUhpRSlGgVS3ZoFkdAec45QP7N0XV9lChoBmgJaA9DCJeqtMU1DEvAlIaUUpRoFUtkaBZHQHnOdV3ljmV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1bd7401fe755eec87c6454e18279565d8eba0fd8b58c38b4bec24ec9a80b2cc
|
3 |
+
size 147019
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fea87c95ef0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fea87c95f80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fea87c9b050>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fea87c9b0e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fea87c9b170>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fea87c9b200>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fea87c9b290>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fea87c9b320>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fea87c9b3b0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fea87c9b440>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fea87c9b4d0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fea87ce8630>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 114688,
|
46 |
+
"_total_timesteps": 100000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1667152254793506667,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMBFx71ckwU743WhvGZZqbxGRCM7oQWFvAAAAAAAAAAAzUwUOWxb4j5cUzc+IXiNvwkynL6cU709AAAAAAAAAABAeiw+jLpNP/h86j5PwJO/2M+fPSYObT4AAAAAAAAAAJBpb75PSiw/vToov5OAcr/4pkc+VMKBPQAAAAAAAAAAs1IgvXcMoj+W7zW+4pUFv66o4LuKiwK+AAAAAAAAAABqhbE+BO24PnU+6jwea4K/qp7cPmipUz0AAAAAAAAAAJphVL2IyKI/kjIGvkPJA7+3yMQ8FkA3vgAAAAAAAAAAoAZ3PqwpQz/Nink+47NMvxDJ3T470Pk9AAAAAAAAAACz1ME99ne9P+NyGz/nmpw9+barvXYUDr0AAAAAAAAAAD3jY77hm1I/NggMvxejVb+Af++6XnwcvQAAAAAAAAAAzdK0vJpluz8Y7wq+FmehvftTvj32Igs+AAAAAAAAAACN3wQ+qX24P3bxKj+baAq9W1wHvYiOyj0AAAAAAAAAACaq/L2K3JY/QyhGvuBSDb94myU9o3rbvQAAAAAAAAAAQKyGvY4+vj+2mJ2+N9tBPSVcpz3ed6c6AAAAAAAAAAAg7hg+icSzPmZwDb3TiFW/NDmIPvLKh70AAAAAAAAAAPP8pL2hG6g/1rjnvZp4BL8qyPC9xgUfvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.1468799999999999,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDycwndYRTcCUhpRSlIwBbJRLX4wBdJRHQHmVC8jAzpJ1fZQoaAZoCWgPQwgc6ndhayFfwJSGlFKUaBVLTWgWR0B5lVXGOuJUdX2UKGgGaAloD0MIY+3vbI+wRMCUhpRSlGgVS35oFkdAeZXHBUJfIHV9lChoBmgJaA9DCGpPyTmxEUTAlIaUUpRoFUtmaBZHQHmWXQUpNK11fZQoaAZoCWgPQwg51VqYhYJTwJSGlFKUaBVLS2gWR0B5lqUQkHD8dX2UKGgGaAloD0MIghspWyQnRcCUhpRSlGgVS4xoFkdAeZaiMo+fRXV9lChoBmgJaA9DCOvHJvkRH1HAlIaUUpRoFUt1aBZHQHmXT/uLJjl1fZQoaAZoCWgPQwjhJM0fU3tgwJSGlFKUaBVLdmgWR0B5mDExZdOZdX2UKGgGaAloD0MIXb9gN2zzT8CUhpRSlGgVS2poFkdAeZh3d9Dx9XV9lChoBmgJaA9DCK+xS1RvOlLAlIaUUpRoFUtoaBZHQHmYljRUm2N1fZQoaAZoCWgPQwg/qmG/J6RJwJSGlFKUaBVLTWgWR0B5mKG34Kx+dX2UKGgGaAloD0MImPp5U5FaGMCUhpRSlGgVS4loFkdAeZjcI7eVLXV9lChoBmgJaA9DCFU01v7OZVXAlIaUUpRoFUtHaBZHQHmZtaY/mkp1fZQoaAZoCWgPQwhPzHoxlN1BwJSGlFKUaBVLYmgWR0B5mmONo8ISdX2UKGgGaAloD0MIvlDAdjC5VcCUhpRSlGgVS0RoFkdAeZyW56MR6HV9lChoBmgJaA9DCCXP9X04OB7AlIaUUpRoFUtvaBZHQHmdeAI6bON1fZQoaAZoCWgPQwibIOo+AKVYwJSGlFKUaBVLYWgWR0B5nY1dgOSXdX2UKGgGaAloD0MIB7ZKsDjNWcCUhpRSlGgVS1doFkdAeZ4FcY64lXV9lChoBmgJaA9DCHYb1H5r81XAlIaUUpRoFUtBaBZHQHmeMuJ1q351fZQoaAZoCWgPQwjzdK4oJfpBwJSGlFKUaBVLbWgWR0B5nz26ClJpdX2UKGgGaAloD0MI4rGfxVIUVsCUhpRSlGgVS1FoFkdAeZ/wz+FUQ3V9lChoBmgJaA9DCB1aZDvfOVPAlIaUUpRoFUtmaBZHQHmgQKfFrEd1fZQoaAZoCWgPQwjEsplDUgxTwJSGlFKUaBVLbmgWR0B5oDZuhsZYdX2UKGgGaAloD0MIzLVoAVoUY8CUhpRSlGgVS4loFkdAeaEPU8V58nV9lChoBmgJaA9DCGbYKOs3Az7AlIaUUpRoFUtiaBZHQHmhQLRa5gB1fZQoaAZoCWgPQwizKVd4l+lVwJSGlFKUaBVLYGgWR0B5oWISDh99dX2UKGgGaAloD0MII/Qz9br9O8CUhpRSlGgVS0xoFkdAeaLFfiPyTnV9lChoBmgJaA9DCJojK78MrihAlIaUUpRoFUt9aBZHQHmjL8BMi8p1fZQoaAZoCWgPQwiafR6jPIZawJSGlFKUaBVLUmgWR0B5o++M6zVudX2UKGgGaAloD0MI2J3uPPH+QsCUhpRSlGgVS3JoFkdAeaQ16mfoR3V9lChoBmgJaA9DCDyFXKln/UrAlIaUUpRoFUtRaBZHQHmkZkK/mDF1fZQoaAZoCWgPQwgDeXb51iVPwJSGlFKUaBVLWmgWR0B5pKKTB68hdX2UKGgGaAloD0MIfH2tS41KXsCUhpRSlGgVS4FoFkdAeaTjqfOD8XV9lChoBmgJaA9DCCmV8IRelz3AlIaUUpRoFUtIaBZHQHmlhmPHT7V1fZQoaAZoCWgPQwjBqKROQJsowJSGlFKUaBVLZWgWR0B5phf/m1YydX2UKGgGaAloD0MI5BHcSNkWVsCUhpRSlGgVS0doFkdAeaazCUHIIXV9lChoBmgJaA9DCE4qGmt/rFDAlIaUUpRoFUtJaBZHQHmmrRKHwgF1fZQoaAZoCWgPQwi4dMx5xo1QwJSGlFKUaBVLWGgWR0B5pv/o7muDdX2UKGgGaAloD0MIxVkRNdHTUsCUhpRSlGgVS1RoFkdAeafchkiD/XV9lChoBmgJaA9DCHLD76ZbNjjAlIaUUpRoFUt6aBZHQHmoyEpRXOp1fZQoaAZoCWgPQwiGWWjnNMVLwJSGlFKUaBVLUGgWR0B5qQiHIp6QdX2UKGgGaAloD0MIEkvK3ecKUsCUhpRSlGgVS05oFkdAealQO4G2TnV9lChoBmgJaA9DCJsg6j4ACQbAlIaUUpRoFUtcaBZHQHmseCwr1/V1fZQoaAZoCWgPQwithVlo53ZHwJSGlFKUaBVLRmgWR0B5rKMwUQCkdX2UKGgGaAloD0MIaNDQP8FYbsCUhpRSlGgVS6NoFkdAea1uvECNj3V9lChoBmgJaA9DCPcGX5jMCmDAlIaUUpRoFUtvaBZHQHmtgHVwxWV1fZQoaAZoCWgPQwjNr+YAwYZRwJSGlFKUaBVLbGgWR0B5rbPszEaVdX2UKGgGaAloD0MIqFFIMqtRTsCUhpRSlGgVS3BoFkdAea3PAfuCw3V9lChoBmgJaA9DCCh/944aGzPAlIaUUpRoFUtdaBZHQHmuGOyVv/B1fZQoaAZoCWgPQwgrwk1GldZfwJSGlFKUaBVLe2gWR0B5rkiUxEfDdX2UKGgGaAloD0MIw6BMo8lDQsCUhpRSlGgVS2xoFkdAea7OMVDa5HV9lChoBmgJaA9DCFFpxMw+WlbAlIaUUpRoFUtfaBZHQHmu+S0Sh8J1fZQoaAZoCWgPQwi5izBFuZhMwJSGlFKUaBVLaGgWR0B5sBMN+b3HdX2UKGgGaAloD0MIHXQJh94sSMCUhpRSlGgVS1VoFkdAebB5Gz8gp3V9lChoBmgJaA9DCBpNLsbAtjHAlIaUUpRoFUtqaBZHQHmxQJC0F8p1fZQoaAZoCWgPQwhHkEqxo9NJwJSGlFKUaBVLamgWR0B5snlcQiA2dX2UKGgGaAloD0MICmXh62uPQsCUhpRSlGgVS1NoFkdAebPfHPu5SXV9lChoBmgJaA9DCH+IDRZO6lDAlIaUUpRoFUt6aBZHQHm0LVz6rNp1fZQoaAZoCWgPQwjXaDnQQ0lGwJSGlFKUaBVLSGgWR0B5tGZa3ZwodX2UKGgGaAloD0MIE51lFqGwTMCUhpRSlGgVS1JoFkdAebS7T2FnI3V9lChoBmgJaA9DCEYiNILNXXDAlIaUUpRoFUtSaBZHQHm07r9l2/11fZQoaAZoCWgPQwigxVIkX8hRwJSGlFKUaBVLUmgWR0B5tXJ4jbBXdX2UKGgGaAloD0MIMZi/QuY5UMCUhpRSlGgVS29oFkdAebZznRsuWnV9lChoBmgJaA9DCO9YbJOK2VTAlIaUUpRoFUtjaBZHQHm2eH8CPp91fZQoaAZoCWgPQwj5n/zdO/5TwJSGlFKUaBVLXWgWR0B5tueUY8+zdX2UKGgGaAloD0MIqgt4mWHPM8CUhpRSlGgVS1loFkdAeblGipNsWXV9lChoBmgJaA9DCOWbbW5M9U7AlIaUUpRoFUtpaBZHQHm54TsY2sJ1fZQoaAZoCWgPQwjSyOcVzxZpwJSGlFKUaBVLgWgWR0B5upi7TUiIdX2UKGgGaAloD0MINIC3QIIzVcCUhpRSlGgVS01oFkdAebsHoHLRr3V9lChoBmgJaA9DCO+rcqHyQUbAlIaUUpRoFUuWaBZHQHm7CTQmeDp1fZQoaAZoCWgPQwg83XniOSVWwJSGlFKUaBVLZGgWR0B5u62rn1WbdX2UKGgGaAloD0MITIxl+iWeUsCUhpRSlGgVS2toFkdAeb4eRxLkCHV9lChoBmgJaA9DCOdQhqqYdknAlIaUUpRoFUtwaBZHQHm/fNiYsup1fZQoaAZoCWgPQwghI6DCEd1YwJSGlFKUaBVLb2gWR0B5wAMSbpeNdX2UKGgGaAloD0MIPiMRGsGsRcCUhpRSlGgVS09oFkdAecEKsdT5wnV9lChoBmgJaA9DCN3vUBToF0zAlIaUUpRoFUtyaBZHQHnBqioKlYV1fZQoaAZoCWgPQwhnLJrOTthHwJSGlFKUaBVLi2gWR0B5wjHQyAQQdX2UKGgGaAloD0MIXU90XfgtQ8CUhpRSlGgVS5BoFkdAecJcLBsQ/XV9lChoBmgJaA9DCHCX/brTiTzAlIaUUpRoFUt9aBZHQHnC1jmSyMV1fZQoaAZoCWgPQwh87ZklATVQwJSGlFKUaBVLWWgWR0B5ws8Md92HdX2UKGgGaAloD0MIx/SEJR7eSsCUhpRSlGgVS3poFkdAecMTJQtSRHV9lChoBmgJaA9DCAAAAAAAEDvAlIaUUpRoFUtYaBZHQHnD+T3Zf2N1fZQoaAZoCWgPQwirsYS1MTRIwJSGlFKUaBVLXWgWR0B5xHgjyFwldX2UKGgGaAloD0MIFaxxNh3XT8CUhpRSlGgVS0xoFkdAecYE+PikwnV9lChoBmgJaA9DCPNy2H3Hn1bAlIaUUpRoFUtmaBZHQHnGBWT5ftx1fZQoaAZoCWgPQwjmBdhHpz4swJSGlFKUaBVLeGgWR0B5xqg13t8edX2UKGgGaAloD0MILLr1mh6QZ8CUhpRSlGgVS/FoFkdAecclSS/0unV9lChoBmgJaA9DCKOs30xM9VHAlIaUUpRoFUtVaBZHQHnIrzkIX0p1fZQoaAZoCWgPQwi5izBFuYFfwJSGlFKUaBVLSGgWR0B5ye+rU9ZBdX2UKGgGaAloD0MIc2VQbXDSWMCUhpRSlGgVS1xoFkdAecpRG+bmVHV9lChoBmgJaA9DCC2yne+nGFbAlIaUUpRoFUtaaBZHQHnLPvOQhfV1fZQoaAZoCWgPQwjR6Xk3FnpXwJSGlFKUaBVLTmgWR0B5y7Q8fV7QdX2UKGgGaAloD0MIueLiqNwgNsCUhpRSlGgVS3toFkdAecwYRujynXV9lChoBmgJaA9DCFHex9EcVWfAlIaUUpRoFUthaBZHQHnMsk6cRUZ1fZQoaAZoCWgPQwgsSDMWTS85wJSGlFKUaBVLRWgWR0B5zQQGwA2idX2UKGgGaAloD0MIoYDtYMTOVsCUhpRSlGgVS2toFkdAec3MfRu0kXV9lChoBmgJaA9DCG1Wfa62pEPAlIaUUpRoFUt7aBZHQHnOGq94/u91fZQoaAZoCWgPQwjg2omSkKZCwJSGlFKUaBVLR2gWR0B5zkT238XOdX2UKGgGaAloD0MI2EY82c3aVMCUhpRSlGgVS3ZoFkdAec45QP7N0XV9lChoBmgJaA9DCJeqtMU1DEvAlIaUUpRoFUtkaBZHQHnOdV3ljmV1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 28,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4d28eec460fc29682042df4aaf9b7a492866af91efade01051a8ab5b5877df2
|
3 |
+
size 87865
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c2fb7b4fc11d26d094096358d9045b27b9ef99714b67bab9c68d961ed47f295
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.7.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (275 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -157.8557600866552, "std_reward": 46.82168945070349, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-10-30T18:06:15.022458"}
|