itsprasun commited on
Commit
cf623de
·
verified ·
1 Parent(s): fb721fe

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,650 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:156
8
+ - loss:MatryoshkaLoss
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: Snowflake/snowflake-arctic-embed-l
11
+ widget:
12
+ - source_sentence: How did the construction of railways in the 1800s impact the environment?
13
+ sentences:
14
+ - 'This remains astonishing to me. I thought a model with the capabilities and output
15
+ quality of GPT-4 needed a datacenter class server with one or more $40,000+ GPUs.
16
+
17
+ These models take up enough of my 64GB of RAM that I don’t run them often—they
18
+ don’t leave much room for anything else.
19
+
20
+ The fact that they run at all is a testament to the incredible training and inference
21
+ performance gains that we’ve figured out over the past year. It turns out there
22
+ was a lot of low-hanging fruit to be harvested in terms of model efficiency. I
23
+ expect there’s still more to come.'
24
+ - 'An interesting point of comparison here could be the way railways rolled out
25
+ around the world in the 1800s. Constructing these required enormous investments
26
+ and had a massive environmental impact, and many of the lines that were built
27
+ turned out to be unnecessary—sometimes multiple lines from different companies
28
+ serving the exact same routes!
29
+
30
+ The resulting bubbles contributed to several financial crashes, see Wikipedia
31
+ for Panic of 1873, Panic of 1893, Panic of 1901 and the UK’s Railway Mania. They
32
+ left us with a lot of useful infrastructure and a great deal of bankruptcies and
33
+ environmental damage.
34
+
35
+ The year of slop'
36
+ - 'Those US export regulations on GPUs to China seem to have inspired some very
37
+ effective training optimizations!
38
+
39
+ The environmental impact got better
40
+
41
+ A welcome result of the increased efficiency of the models—both the hosted ones
42
+ and the ones I can run locally—is that the energy usage and environmental impact
43
+ of running a prompt has dropped enormously over the past couple of years.
44
+
45
+ OpenAI themselves are charging 100x less for a prompt compared to the GPT-3 days.
46
+ I have it on good authority that neither Google Gemini nor Amazon Nova (two of
47
+ the least expensive model providers) are running prompts at a loss.'
48
+ - source_sentence: What significant multi-modal models were released by major vendors
49
+ in 2024?
50
+ sentences:
51
+ - 'The boring yet crucial secret behind good system prompts is test-driven development.
52
+ You don’t write down a system prompt and find ways to test it. You write down
53
+ tests and find a system prompt that passes them.
54
+
55
+
56
+ It’s become abundantly clear over the course of 2024 that writing good automated
57
+ evals for LLM-powered systems is the skill that’s most needed to build useful
58
+ applications on top of these models. If you have a strong eval suite you can adopt
59
+ new models faster, iterate better and build more reliable and useful product features
60
+ than your competition.
61
+
62
+ Vercel’s Malte Ubl:'
63
+ - 'In 2024, almost every significant model vendor released multi-modal models. We
64
+ saw the Claude 3 series from Anthropic in March, Gemini 1.5 Pro in April (images,
65
+ audio and video), then September brought Qwen2-VL and Mistral’s Pixtral 12B and
66
+ Meta’s Llama 3.2 11B and 90B vision models. We got audio input and output from
67
+ OpenAI in October, then November saw SmolVLM from Hugging Face and December saw
68
+ image and video models from Amazon Nova.
69
+
70
+ In October I upgraded my LLM CLI tool to support multi-modal models via attachments.
71
+ It now has plugins for a whole collection of different vision models.'
72
+ - 'OpenAI made GPT-4o free for all users in May, and Claude 3.5 Sonnet was freely
73
+ available from its launch in June. This was a momentus change, because for the
74
+ previous year free users had mostly been restricted to GPT-3.5 level models, meaning
75
+ new users got a very inaccurate mental model of what a capable LLM could actually
76
+ do.
77
+
78
+ That era appears to have ended, likely permanently, with OpenAI’s launch of ChatGPT
79
+ Pro. This $200/month subscription service is the only way to access their most
80
+ capable model, o1 Pro.
81
+
82
+ Since the trick behind the o1 series (and the future models it will undoubtedly
83
+ inspire) is to expend more compute time to get better results, I don’t think those
84
+ days of free access to the best available models are likely to return.'
85
+ - source_sentence: Why does the author believe that gullibility is a barrier to the
86
+ development of AI agents?
87
+ sentences:
88
+ - 'An interesting point of comparison here could be the way railways rolled out
89
+ around the world in the 1800s. Constructing these required enormous investments
90
+ and had a massive environmental impact, and many of the lines that were built
91
+ turned out to be unnecessary—sometimes multiple lines from different companies
92
+ serving the exact same routes!
93
+
94
+ The resulting bubbles contributed to several financial crashes, see Wikipedia
95
+ for Panic of 1873, Panic of 1893, Panic of 1901 and the UK’s Railway Mania. They
96
+ left us with a lot of useful infrastructure and a great deal of bankruptcies and
97
+ environmental damage.
98
+
99
+ The year of slop'
100
+ - 'A lot of people are excited about AI agents—an infuriatingly vague term that
101
+ seems to be converging on “AI systems that can go away and act on your behalf”.
102
+ We’ve been talking about them all year, but I’ve seen few if any examples of them
103
+ running in production, despite lots of exciting prototypes.
104
+
105
+ I think this is because of gullibility.
106
+
107
+ Can we solve this? Honestly, I’m beginning to suspect that you can’t fully solve
108
+ gullibility without achieving AGI. So it may be quite a while before those agent
109
+ dreams can really start to come true!
110
+
111
+ Code may be the best application
112
+
113
+ Over the course of the year, it’s become increasingly clear that writing code
114
+ is one of the things LLMs are most capable of.'
115
+ - 'The environmental impact got much, much worse
116
+
117
+ The much bigger problem here is the enormous competitive buildout of the infrastructure
118
+ that is imagined to be necessary for these models in the future.
119
+
120
+ Companies like Google, Meta, Microsoft and Amazon are all spending billions of
121
+ dollars rolling out new datacenters, with a very material impact on the electricity
122
+ grid and the environment. There’s even talk of spinning up new nuclear power stations,
123
+ but those can take decades.
124
+
125
+ Is this infrastructure necessary? DeepSeek v3’s $6m training cost and the continued
126
+ crash in LLM prices might hint that it’s not. But would you want to be the big
127
+ tech executive that argued NOT to build out this infrastructure only to be proven
128
+ wrong in a few years’ time?'
129
+ - source_sentence: How did the team's approach to handling prompts change over time?
130
+ sentences:
131
+ - 'The two main categories I see are people who think AI agents are obviously things
132
+ that go and act on your behalf—the travel agent model—and people who think in
133
+ terms of LLMs that have been given access to tools which they can run in a loop
134
+ as part of solving a problem. The term “autonomy” is often thrown into the mix
135
+ too, again without including a clear definition.
136
+
137
+ (I also collected 211 definitions on Twitter a few months ago—here they are in
138
+ Datasette Lite—and had gemini-exp-1206 attempt to summarize them.)
139
+
140
+ Whatever the term may mean, agents still have that feeling of perpetually “coming
141
+ soon”.'
142
+ - 'So far, I think they’re a net positive. I’ve used them on a personal level to
143
+ improve my productivity (and entertain myself) in all sorts of different ways.
144
+ I think people who learn how to use them effectively can gain a significant boost
145
+ to their quality of life.
146
+
147
+ A lot of people are yet to be sold on their value! Some think their negatives
148
+ outweigh their positives, some think they are all hot air, and some even think
149
+ they represent an existential threat to humanity.
150
+
151
+ They’re actually quite easy to build
152
+
153
+ The most surprising thing we’ve learned about LLMs this year is that they’re actually
154
+ quite easy to build.'
155
+ - 'When @v0 first came out we were paranoid about protecting the prompt with all
156
+ kinds of pre and post processing complexity.
157
+
158
+ We completely pivoted to let it rip. A prompt without the evals, models, and especially
159
+ UX is like getting a broken ASML machine without a manual'
160
+ - source_sentence: How many lines of code are typically needed to train a basic version
161
+ of a powerful system, according to the context?
162
+ sentences:
163
+ - 'Intuitively, one would expect that systems this powerful would take millions
164
+ of lines of complex code. Instead, it turns out a few hundred lines of Python
165
+ is genuinely enough to train a basic version!
166
+
167
+ What matters most is the training data. You need a lot of data to make these
168
+ things work, and the quantity and quality of the training data appears to be the
169
+ most important factor in how good the resulting model is.
170
+
171
+ If you can gather the right data, and afford to pay for the GPUs to train it,
172
+ you can build an LLM.'
173
+ - 'Terminology aside, I remain skeptical as to their utility based, once again,
174
+ on the challenge of gullibility. LLMs believe anything you tell them. Any systems
175
+ that attempts to make meaningful decisions on your behalf will run into the same
176
+ roadblock: how good is a travel agent, or a digital assistant, or even a research
177
+ tool if it can’t distinguish truth from fiction?
178
+
179
+ Just the other day Google Search was caught serving up an entirely fake description
180
+ of the non-existant movie “Encanto 2”. It turned out to be summarizing an imagined
181
+ movie listing from a fan fiction wiki.'
182
+ - 'DeepSeek v3 is a huge 685B parameter model—one of the largest openly licensed
183
+ models currently available, significantly bigger than the largest of Meta’s Llama
184
+ series, Llama 3.1 405B.
185
+
186
+ Benchmarks put it up there with Claude 3.5 Sonnet. Vibe benchmarks (aka the Chatbot
187
+ Arena) currently rank it 7th, just behind the Gemini 2.0 and OpenAI 4o/o1 models.
188
+ This is by far the highest ranking openly licensed model.
189
+
190
+ The really impressive thing about DeepSeek v3 is the training cost. The model
191
+ was trained on 2,788,000 H800 GPU hours at an estimated cost of $5,576,000. Llama
192
+ 3.1 405B trained 30,840,000 GPU hours—11x that used by DeepSeek v3, for a model
193
+ that benchmarks slightly worse.'
194
+ pipeline_tag: sentence-similarity
195
+ library_name: sentence-transformers
196
+ metrics:
197
+ - cosine_accuracy@1
198
+ - cosine_accuracy@3
199
+ - cosine_accuracy@5
200
+ - cosine_accuracy@10
201
+ - cosine_precision@1
202
+ - cosine_precision@3
203
+ - cosine_precision@5
204
+ - cosine_precision@10
205
+ - cosine_recall@1
206
+ - cosine_recall@3
207
+ - cosine_recall@5
208
+ - cosine_recall@10
209
+ - cosine_ndcg@10
210
+ - cosine_mrr@10
211
+ - cosine_map@100
212
+ model-index:
213
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
214
+ results:
215
+ - task:
216
+ type: information-retrieval
217
+ name: Information Retrieval
218
+ dataset:
219
+ name: Unknown
220
+ type: unknown
221
+ metrics:
222
+ - type: cosine_accuracy@1
223
+ value: 0.9583333333333334
224
+ name: Cosine Accuracy@1
225
+ - type: cosine_accuracy@3
226
+ value: 1.0
227
+ name: Cosine Accuracy@3
228
+ - type: cosine_accuracy@5
229
+ value: 1.0
230
+ name: Cosine Accuracy@5
231
+ - type: cosine_accuracy@10
232
+ value: 1.0
233
+ name: Cosine Accuracy@10
234
+ - type: cosine_precision@1
235
+ value: 0.9583333333333334
236
+ name: Cosine Precision@1
237
+ - type: cosine_precision@3
238
+ value: 0.3333333333333333
239
+ name: Cosine Precision@3
240
+ - type: cosine_precision@5
241
+ value: 0.20000000000000004
242
+ name: Cosine Precision@5
243
+ - type: cosine_precision@10
244
+ value: 0.10000000000000002
245
+ name: Cosine Precision@10
246
+ - type: cosine_recall@1
247
+ value: 0.9583333333333334
248
+ name: Cosine Recall@1
249
+ - type: cosine_recall@3
250
+ value: 1.0
251
+ name: Cosine Recall@3
252
+ - type: cosine_recall@5
253
+ value: 1.0
254
+ name: Cosine Recall@5
255
+ - type: cosine_recall@10
256
+ value: 1.0
257
+ name: Cosine Recall@10
258
+ - type: cosine_ndcg@10
259
+ value: 0.9846220730654774
260
+ name: Cosine Ndcg@10
261
+ - type: cosine_mrr@10
262
+ value: 0.9791666666666666
263
+ name: Cosine Mrr@10
264
+ - type: cosine_map@100
265
+ value: 0.9791666666666666
266
+ name: Cosine Map@100
267
+ ---
268
+
269
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
270
+
271
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
272
+
273
+ ## Model Details
274
+
275
+ ### Model Description
276
+ - **Model Type:** Sentence Transformer
277
+ - **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b -->
278
+ - **Maximum Sequence Length:** 512 tokens
279
+ - **Output Dimensionality:** 1024 dimensions
280
+ - **Similarity Function:** Cosine Similarity
281
+ <!-- - **Training Dataset:** Unknown -->
282
+ <!-- - **Language:** Unknown -->
283
+ <!-- - **License:** Unknown -->
284
+
285
+ ### Model Sources
286
+
287
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
288
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
289
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
290
+
291
+ ### Full Model Architecture
292
+
293
+ ```
294
+ SentenceTransformer(
295
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
296
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
297
+ (2): Normalize()
298
+ )
299
+ ```
300
+
301
+ ## Usage
302
+
303
+ ### Direct Usage (Sentence Transformers)
304
+
305
+ First install the Sentence Transformers library:
306
+
307
+ ```bash
308
+ pip install -U sentence-transformers
309
+ ```
310
+
311
+ Then you can load this model and run inference.
312
+ ```python
313
+ from sentence_transformers import SentenceTransformer
314
+
315
+ # Download from the 🤗 Hub
316
+ model = SentenceTransformer("itsprasun/arctic-embed-state-ai-ft")
317
+ # Run inference
318
+ sentences = [
319
+ 'How many lines of code are typically needed to train a basic version of a powerful system, according to the context?',
320
+ 'Intuitively, one would expect that systems this powerful would take millions of lines of complex code. Instead, it turns out a few hundred lines of Python is genuinely enough to train a basic version!\nWhat matters most is the training data. You need a lot of data to make these things work, and the quantity and quality of the training data appears to be the most important factor in how good the resulting model is.\nIf you can gather the right data, and afford to pay for the GPUs to train it, you can build an LLM.',
321
+ 'DeepSeek v3 is a huge 685B parameter model—one of the largest openly licensed models currently available, significantly bigger than the largest of Meta’s Llama series, Llama 3.1 405B.\nBenchmarks put it up there with Claude 3.5 Sonnet. Vibe benchmarks (aka the Chatbot Arena) currently rank it 7th, just behind the Gemini 2.0 and OpenAI 4o/o1 models. This is by far the highest ranking openly licensed model.\nThe really impressive thing about DeepSeek v3 is the training cost. The model was trained on 2,788,000 H800 GPU hours at an estimated cost of $5,576,000. Llama 3.1 405B trained 30,840,000 GPU hours—11x that used by DeepSeek v3, for a model that benchmarks slightly worse.',
322
+ ]
323
+ embeddings = model.encode(sentences)
324
+ print(embeddings.shape)
325
+ # [3, 1024]
326
+
327
+ # Get the similarity scores for the embeddings
328
+ similarities = model.similarity(embeddings, embeddings)
329
+ print(similarities.shape)
330
+ # [3, 3]
331
+ ```
332
+
333
+ <!--
334
+ ### Direct Usage (Transformers)
335
+
336
+ <details><summary>Click to see the direct usage in Transformers</summary>
337
+
338
+ </details>
339
+ -->
340
+
341
+ <!--
342
+ ### Downstream Usage (Sentence Transformers)
343
+
344
+ You can finetune this model on your own dataset.
345
+
346
+ <details><summary>Click to expand</summary>
347
+
348
+ </details>
349
+ -->
350
+
351
+ <!--
352
+ ### Out-of-Scope Use
353
+
354
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
355
+ -->
356
+
357
+ ## Evaluation
358
+
359
+ ### Metrics
360
+
361
+ #### Information Retrieval
362
+
363
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
364
+
365
+ | Metric | Value |
366
+ |:--------------------|:-----------|
367
+ | cosine_accuracy@1 | 0.9583 |
368
+ | cosine_accuracy@3 | 1.0 |
369
+ | cosine_accuracy@5 | 1.0 |
370
+ | cosine_accuracy@10 | 1.0 |
371
+ | cosine_precision@1 | 0.9583 |
372
+ | cosine_precision@3 | 0.3333 |
373
+ | cosine_precision@5 | 0.2 |
374
+ | cosine_precision@10 | 0.1 |
375
+ | cosine_recall@1 | 0.9583 |
376
+ | cosine_recall@3 | 1.0 |
377
+ | cosine_recall@5 | 1.0 |
378
+ | cosine_recall@10 | 1.0 |
379
+ | **cosine_ndcg@10** | **0.9846** |
380
+ | cosine_mrr@10 | 0.9792 |
381
+ | cosine_map@100 | 0.9792 |
382
+
383
+ <!--
384
+ ## Bias, Risks and Limitations
385
+
386
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
387
+ -->
388
+
389
+ <!--
390
+ ### Recommendations
391
+
392
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
393
+ -->
394
+
395
+ ## Training Details
396
+
397
+ ### Training Dataset
398
+
399
+ #### Unnamed Dataset
400
+
401
+ * Size: 156 training samples
402
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
403
+ * Approximate statistics based on the first 156 samples:
404
+ | | sentence_0 | sentence_1 |
405
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
406
+ | type | string | string |
407
+ | details | <ul><li>min: 12 tokens</li><li>mean: 20.03 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 43 tokens</li><li>mean: 135.01 tokens</li><li>max: 214 tokens</li></ul> |
408
+ * Samples:
409
+ | sentence_0 | sentence_1 |
410
+ |:------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
411
+ | <code>What significant advancements in AI were noted in 2023, particularly regarding Large Language Models (LLMs)?</code> | <code>Stuff we figured out about AI in 2023<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>Simon Willison’s Weblog<br>Subscribe<br><br><br><br><br><br><br>Stuff we figured out about AI in 2023<br>31st December 2023<br>2023 was the breakthrough year for Large Language Models (LLMs). I think it’s OK to call these AI—they’re the latest and (currently) most interesting development in the academic field of Artificial Intelligence that dates back to the 1950s.<br>Here’s my attempt to round up the highlights in one place!</code> |
412
+ | <code>How does the author characterize the development of AI in relation to its historical context dating back to the 1950s?</code> | <code>Stuff we figured out about AI in 2023<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>Simon Willison’s Weblog<br>Subscribe<br><br><br><br><br><br><br>Stuff we figured out about AI in 2023<br>31st December 2023<br>2023 was the breakthrough year for Large Language Models (LLMs). I think it’s OK to call these AI—they’re the latest and (currently) most interesting development in the academic field of Artificial Intelligence that dates back to the 1950s.<br>Here’s my attempt to round up the highlights in one place!</code> |
413
+ | <code>What are some characteristics of Large Language Models (LLMs) mentioned in the context?</code> | <code>Large Language Models<br>They’re actually quite easy to build<br>You can run LLMs on your own devices<br>Hobbyists can build their own fine-tuned models<br>We don’t yet know how to build GPT-4<br>Vibes Based Development<br>LLMs are really smart, and also really, really dumb<br>Gullibility is the biggest unsolved problem<br>Code may be the best application<br>The ethics of this space remain diabolically complex<br>My blog in 2023</code> |
414
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
415
+ ```json
416
+ {
417
+ "loss": "MultipleNegativesRankingLoss",
418
+ "matryoshka_dims": [
419
+ 768,
420
+ 512,
421
+ 256,
422
+ 128,
423
+ 64
424
+ ],
425
+ "matryoshka_weights": [
426
+ 1,
427
+ 1,
428
+ 1,
429
+ 1,
430
+ 1
431
+ ],
432
+ "n_dims_per_step": -1
433
+ }
434
+ ```
435
+
436
+ ### Training Hyperparameters
437
+ #### Non-Default Hyperparameters
438
+
439
+ - `eval_strategy`: steps
440
+ - `per_device_train_batch_size`: 10
441
+ - `per_device_eval_batch_size`: 10
442
+ - `num_train_epochs`: 10
443
+ - `multi_dataset_batch_sampler`: round_robin
444
+
445
+ #### All Hyperparameters
446
+ <details><summary>Click to expand</summary>
447
+
448
+ - `overwrite_output_dir`: False
449
+ - `do_predict`: False
450
+ - `eval_strategy`: steps
451
+ - `prediction_loss_only`: True
452
+ - `per_device_train_batch_size`: 10
453
+ - `per_device_eval_batch_size`: 10
454
+ - `per_gpu_train_batch_size`: None
455
+ - `per_gpu_eval_batch_size`: None
456
+ - `gradient_accumulation_steps`: 1
457
+ - `eval_accumulation_steps`: None
458
+ - `torch_empty_cache_steps`: None
459
+ - `learning_rate`: 5e-05
460
+ - `weight_decay`: 0.0
461
+ - `adam_beta1`: 0.9
462
+ - `adam_beta2`: 0.999
463
+ - `adam_epsilon`: 1e-08
464
+ - `max_grad_norm`: 1
465
+ - `num_train_epochs`: 10
466
+ - `max_steps`: -1
467
+ - `lr_scheduler_type`: linear
468
+ - `lr_scheduler_kwargs`: {}
469
+ - `warmup_ratio`: 0.0
470
+ - `warmup_steps`: 0
471
+ - `log_level`: passive
472
+ - `log_level_replica`: warning
473
+ - `log_on_each_node`: True
474
+ - `logging_nan_inf_filter`: True
475
+ - `save_safetensors`: True
476
+ - `save_on_each_node`: False
477
+ - `save_only_model`: False
478
+ - `restore_callback_states_from_checkpoint`: False
479
+ - `no_cuda`: False
480
+ - `use_cpu`: False
481
+ - `use_mps_device`: False
482
+ - `seed`: 42
483
+ - `data_seed`: None
484
+ - `jit_mode_eval`: False
485
+ - `use_ipex`: False
486
+ - `bf16`: False
487
+ - `fp16`: False
488
+ - `fp16_opt_level`: O1
489
+ - `half_precision_backend`: auto
490
+ - `bf16_full_eval`: False
491
+ - `fp16_full_eval`: False
492
+ - `tf32`: None
493
+ - `local_rank`: 0
494
+ - `ddp_backend`: None
495
+ - `tpu_num_cores`: None
496
+ - `tpu_metrics_debug`: False
497
+ - `debug`: []
498
+ - `dataloader_drop_last`: False
499
+ - `dataloader_num_workers`: 0
500
+ - `dataloader_prefetch_factor`: None
501
+ - `past_index`: -1
502
+ - `disable_tqdm`: False
503
+ - `remove_unused_columns`: True
504
+ - `label_names`: None
505
+ - `load_best_model_at_end`: False
506
+ - `ignore_data_skip`: False
507
+ - `fsdp`: []
508
+ - `fsdp_min_num_params`: 0
509
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
510
+ - `fsdp_transformer_layer_cls_to_wrap`: None
511
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
512
+ - `deepspeed`: None
513
+ - `label_smoothing_factor`: 0.0
514
+ - `optim`: adamw_torch
515
+ - `optim_args`: None
516
+ - `adafactor`: False
517
+ - `group_by_length`: False
518
+ - `length_column_name`: length
519
+ - `ddp_find_unused_parameters`: None
520
+ - `ddp_bucket_cap_mb`: None
521
+ - `ddp_broadcast_buffers`: False
522
+ - `dataloader_pin_memory`: True
523
+ - `dataloader_persistent_workers`: False
524
+ - `skip_memory_metrics`: True
525
+ - `use_legacy_prediction_loop`: False
526
+ - `push_to_hub`: False
527
+ - `resume_from_checkpoint`: None
528
+ - `hub_model_id`: None
529
+ - `hub_strategy`: every_save
530
+ - `hub_private_repo`: None
531
+ - `hub_always_push`: False
532
+ - `gradient_checkpointing`: False
533
+ - `gradient_checkpointing_kwargs`: None
534
+ - `include_inputs_for_metrics`: False
535
+ - `include_for_metrics`: []
536
+ - `eval_do_concat_batches`: True
537
+ - `fp16_backend`: auto
538
+ - `push_to_hub_model_id`: None
539
+ - `push_to_hub_organization`: None
540
+ - `mp_parameters`:
541
+ - `auto_find_batch_size`: False
542
+ - `full_determinism`: False
543
+ - `torchdynamo`: None
544
+ - `ray_scope`: last
545
+ - `ddp_timeout`: 1800
546
+ - `torch_compile`: False
547
+ - `torch_compile_backend`: None
548
+ - `torch_compile_mode`: None
549
+ - `dispatch_batches`: None
550
+ - `split_batches`: None
551
+ - `include_tokens_per_second`: False
552
+ - `include_num_input_tokens_seen`: False
553
+ - `neftune_noise_alpha`: None
554
+ - `optim_target_modules`: None
555
+ - `batch_eval_metrics`: False
556
+ - `eval_on_start`: False
557
+ - `use_liger_kernel`: False
558
+ - `eval_use_gather_object`: False
559
+ - `average_tokens_across_devices`: False
560
+ - `prompts`: None
561
+ - `batch_sampler`: batch_sampler
562
+ - `multi_dataset_batch_sampler`: round_robin
563
+
564
+ </details>
565
+
566
+ ### Training Logs
567
+ | Epoch | Step | cosine_ndcg@10 |
568
+ |:-----:|:----:|:--------------:|
569
+ | 1.0 | 16 | 0.9846 |
570
+ | 2.0 | 32 | 1.0 |
571
+ | 3.0 | 48 | 0.9846 |
572
+ | 3.125 | 50 | 0.9846 |
573
+ | 4.0 | 64 | 0.9846 |
574
+ | 5.0 | 80 | 1.0 |
575
+ | 6.0 | 96 | 0.9846 |
576
+ | 6.25 | 100 | 0.9846 |
577
+ | 7.0 | 112 | 0.9846 |
578
+ | 8.0 | 128 | 0.9846 |
579
+ | 9.0 | 144 | 0.9846 |
580
+ | 9.375 | 150 | 0.9846 |
581
+ | 10.0 | 160 | 0.9846 |
582
+
583
+
584
+ ### Framework Versions
585
+ - Python: 3.13.1
586
+ - Sentence Transformers: 3.4.1
587
+ - Transformers: 4.48.3
588
+ - PyTorch: 2.6.0+cu124
589
+ - Accelerate: 1.3.0
590
+ - Datasets: 3.2.0
591
+ - Tokenizers: 0.21.0
592
+
593
+ ## Citation
594
+
595
+ ### BibTeX
596
+
597
+ #### Sentence Transformers
598
+ ```bibtex
599
+ @inproceedings{reimers-2019-sentence-bert,
600
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
601
+ author = "Reimers, Nils and Gurevych, Iryna",
602
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
603
+ month = "11",
604
+ year = "2019",
605
+ publisher = "Association for Computational Linguistics",
606
+ url = "https://arxiv.org/abs/1908.10084",
607
+ }
608
+ ```
609
+
610
+ #### MatryoshkaLoss
611
+ ```bibtex
612
+ @misc{kusupati2024matryoshka,
613
+ title={Matryoshka Representation Learning},
614
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
615
+ year={2024},
616
+ eprint={2205.13147},
617
+ archivePrefix={arXiv},
618
+ primaryClass={cs.LG}
619
+ }
620
+ ```
621
+
622
+ #### MultipleNegativesRankingLoss
623
+ ```bibtex
624
+ @misc{henderson2017efficient,
625
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
626
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
627
+ year={2017},
628
+ eprint={1705.00652},
629
+ archivePrefix={arXiv},
630
+ primaryClass={cs.CL}
631
+ }
632
+ ```
633
+
634
+ <!--
635
+ ## Glossary
636
+
637
+ *Clearly define terms in order to be accessible across audiences.*
638
+ -->
639
+
640
+ <!--
641
+ ## Model Card Authors
642
+
643
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
644
+ -->
645
+
646
+ <!--
647
+ ## Model Card Contact
648
+
649
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
650
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Snowflake/snowflake-arctic-embed-l",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 1024,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 4096,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 24,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.48.3",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": "cosine"
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcc91dcc602400aaa7de8f20a123ebf9685f2543cde56eae1b6e565b80dfe4da
3
+ size 1336413848
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "[PAD]",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "[SEP]",
56
+ "stride": 0,
57
+ "strip_accents": null,
58
+ "tokenize_chinese_chars": true,
59
+ "tokenizer_class": "BertTokenizer",
60
+ "truncation_side": "right",
61
+ "truncation_strategy": "longest_first",
62
+ "unk_token": "[UNK]"
63
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff