itsmohit commited on
Commit
8b7c5f9
·
1 Parent(s): 4a6a754

Upload PPO used LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -1,3 +1,37 @@
1
  ---
2
- license: cc-by-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 243.46 +/- 71.57
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fae08713940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fae087139d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fae08713a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fae08713af0>", "_build": "<function ActorCriticPolicy._build at 0x7fae08713b80>", "forward": "<function ActorCriticPolicy.forward at 0x7fae08713c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fae08713ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fae08713d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7fae08713dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fae08713e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fae08713ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fae08713f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fae0870bea0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673779834210425915, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOPOaL65fhA/JuqMvZM/nr49xum9vZ5sPAAAAAAAAAAADdXnvRGEND9duew88znBvio7Br2lplE9AAAAAAAAAACAGlo9wzVauoqfzzoGoku28sN/O4y7NrUAAIA/AACAP83InLtIJ4e6VmiIOjezhbba35e6gJZ/tQAAgD8AAIA/AOEWvukKmj/lwA6/9C8Cv8V4Kb7VUA2+AAAAAAAAAAAzMQS+hZHMOqiBNzwzPlO6qXaWvJNIPTsAAIA/AACAPwAhuzwFcO67E91yvZH+Lzy/XU69cgQZPQAAgD8AAIA/mho5PY/CLLi+ljC5ovgftJzyt7t1mFA4AACAPwAAgD+afe27ri+TupKZOLPgMx8wSWHlOlKmwTMAAIA/AACAP5rnp72kgj27UR4KvAbaWjxXcV+8MnM/PQAAAAAAAIA/8/T7vbVzLj/nLqW6qQqwvqpzD70Y1Hk7AAAAAAAAAADNDsC88QezPxa+E7/edjS+RraOPM+8BT0AAAAAAAAAAE2PFT2fH9m7isjcuqDEV74HV7u7reaRPgAAgD8AAIA/00JYvtQgCb32aCs77UPZOZlXcz7+9Wu6AACAPwAAgD+Arxm9Kax/uk/kFjmTSkw0zU8kO7IkLbgAAIA/AACAPyYvDj7uMyU/TJyFvgAbqr7h4zk94BiOvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISl6dY8DxZkCUhpRSlIwBbJRN6AOMAXSUR0CYiWaP0Zm7dX2UKGgGaAloD0MIkKFjBxU1aECUhpRSlGgVTegDaBZHQJiW8UEgW8B1fZQoaAZoCWgPQwhgrG9g8pdlQJSGlFKUaBVN6ANoFkdAmJbyGJvYOHV9lChoBmgJaA9DCAhyUMJMcWRAlIaUUpRoFU3oA2gWR0CYmEBWPtD2dX2UKGgGaAloD0MI4Sh5dY6WZUCUhpRSlGgVTegDaBZHQJiZ8syzoll1fZQoaAZoCWgPQwhflQuV/5JgQJSGlFKUaBVN6ANoFkdAmJpp8Sf16HV9lChoBmgJaA9DCOLNGryvn2NAlIaUUpRoFU3oA2gWR0CYnZ0E5hjOdX2UKGgGaAloD0MI0cq9wCz1ZkCUhpRSlGgVTegDaBZHQJif9o+Ofd11fZQoaAZoCWgPQwiPjquRXaBnQJSGlFKUaBVN6ANoFkdAmKM8My8BdXV9lChoBmgJaA9DCKlMMQeBD3JAlIaUUpRoFU0nA2gWR0CYpFRYRujzdX2UKGgGaAloD0MIoKcBg2R6ckCUhpRSlGgVTWwDaBZHQJimTVz6rNp1fZQoaAZoCWgPQwimlxjL9BRQQJSGlFKUaBVL2GgWR0CYqjnl4keIdX2UKGgGaAloD0MIBKvq5fcoYUCUhpRSlGgVTegDaBZHQJit3O/tY0V1fZQoaAZoCWgPQwjHEtbG2OtkQJSGlFKUaBVN6ANoFkdAmMPwVTJhfHV9lChoBmgJaA9DCDPd66Q+ZmBAlIaUUpRoFU3oA2gWR0CYxowC8vmHdX2UKGgGaAloD0MIr1qZ8EvDZUCUhpRSlGgVTegDaBZHQJjHNYvFm4B1fZQoaAZoCWgPQwin64muizpvQJSGlFKUaBVN4gNoFkdAmMgBsqJ/G3V9lChoBmgJaA9DCFq9w+3QynFAlIaUUpRoFU1WA2gWR0CYyJornTy8dX2UKGgGaAloD0MI++qqQC18QUCUhpRSlGgVS9xoFkdAmMk3qzJIUnV9lChoBmgJaA9DCKq6RzZXB25AlIaUUpRoFU03AmgWR0CYydBvJiiJdX2UKGgGaAloD0MIwLLSpBRKUUCUhpRSlGgVS91oFkdAmNMLmITGpHV9lChoBmgJaA9DCKGBWDbzLGhAlIaUUpRoFU3oA2gWR0CY3RfWcz68dX2UKGgGaAloD0MIrDb/r7rKZkCUhpRSlGgVTegDaBZHQJjdF+kP+XJ1fZQoaAZoCWgPQwirdeJyvD1jQJSGlFKUaBVN6ANoFkdAmN5loxpL3HV9lChoBmgJaA9DCJLM6h3uC2FAlIaUUpRoFU3oA2gWR0CY4BG5tm+TdX2UKGgGaAloD0MIpFUt6agLZ0CUhpRSlGgVTegDaBZHQJjjpywOe8R1fZQoaAZoCWgPQwikjo6rkaVlQJSGlFKUaBVN6ANoFkdAmOmxxgiNbXV9lChoBmgJaA9DCOqVsgzxSmVAlIaUUpRoFU3oA2gWR0CY6tv+wTufdX2UKGgGaAloD0MIpN5TOe2YY0CUhpRSlGgVTegDaBZHQJjs+rDIikh1fZQoaAZoCWgPQwja44V0ODZxQJSGlFKUaBVNrgFoFkdAmPQNmYjSonV9lChoBmgJaA9DCMiVehYEyWBAlIaUUpRoFU3oA2gWR0CY9Mdszl90dX2UKGgGaAloD0MIMuiE0EGcYECUhpRSlGgVTegDaBZHQJkKuUiY9gZ1fZQoaAZoCWgPQwj03EJXYipyQJSGlFKUaBVNoANoFkdAmQxEaZQYUHV9lChoBmgJaA9DCJdzKa4q6mVAlIaUUpRoFU3oA2gWR0CZDSIV/MGHdX2UKGgGaAloD0MIFLGIYQc+Y0CUhpRSlGgVTegDaBZHQJkNrBInSfF1fZQoaAZoCWgPQwhUOe0pOelmQJSGlFKUaBVN6ANoFkdAmQ5cpCrtFHV9lChoBmgJaA9DCGjnNAu0THBAlIaUUpRoFU3bAWgWR0CZDt8aXKKYdX2UKGgGaAloD0MIrRQCucQSXUCUhpRSlGgVTegDaBZHQJkP9+uvECN1fZQoaAZoCWgPQwhnt5bJcERKQJSGlFKUaBVLwmgWR0CZF8g5imVJdX2UKGgGaAloD0MIAKyOHGnmZkCUhpRSlGgVTegDaBZHQJkZPDGcWj51fZQoaAZoCWgPQwjHYwYqY19oQJSGlFKUaBVN6ANoFkdAmSMjJQtSRHV9lChoBmgJaA9DCLUYPEz7I2VAlIaUUpRoFU3oA2gWR0CZIyc5sCT2dX2UKGgGaAloD0MI2bERiFdqcUCUhpRSlGgVTZ4BaBZHQJkl0lNUOut1fZQoaAZoCWgPQwheEJGa9tRkQJSGlFKUaBVN6ANoFkdAmSZZw84ginV9lChoBmgJaA9DCJzc71DUeXJAlIaUUpRoFU1+AmgWR0CZKSHDrJKbdX2UKGgGaAloD0MIkbdc/VjBb0CUhpRSlGgVTdECaBZHQJkxGTB68g91fZQoaAZoCWgPQwgge73747ZiQJSGlFKUaBVN6ANoFkdAmTIqSgXdkHV9lChoBmgJaA9DCPD9Ddqr2WdAlIaUUpRoFU3oA2gWR0CZM4OQQtjDdX2UKGgGaAloD0MIpDZxcr9gYUCUhpRSlGgVTegDaBZHQJk122NNrTJ1fZQoaAZoCWgPQwinH9RFih5kQJSGlFKUaBVN6ANoFkdAmT1P51vETHV9lChoBmgJaA9DCB8UlKKVxGJAlIaUUpRoFU3oA2gWR0CZVh31zySWdX2UKGgGaAloD0MI07zjFB1ZZUCUhpRSlGgVTegDaBZHQJlXOHbh3q11fZQoaAZoCWgPQwh9yjFZXOVhQJSGlFKUaBVN6ANoFkdAmVfuLR8c/HV9lChoBmgJaA9DCD0LQnkfOWVAlIaUUpRoFU3oA2gWR0CZWNaXrt3OdX2UKGgGaAloD0MI1PGYgUodcUCUhpRSlGgVTUQBaBZHQJlbqvmozep1fZQoaAZoCWgPQwjJxoMtdudxQJSGlFKUaBVNJAJoFkdAmVwYVARkE3V9lChoBmgJaA9DCKinj8AfskdAlIaUUpRoFUvBaBZHQJliC49X9zh1fZQoaAZoCWgPQwimK9hGvBljQJSGlFKUaBVN6ANoFkdAmWOPpD/lyXV9lChoBmgJaA9DCC3uPzIduWBAlIaUUpRoFU3oA2gWR0CZZQLGrCFcdX2UKGgGaAloD0MINum2RK4PY0CUhpRSlGgVTegDaBZHQJluHiwSrYJ1fZQoaAZoCWgPQwix3T1Adw5lQJSGlFKUaBVN6ANoFkdAmW4ed07r9nV9lChoBmgJaA9DCKxUUFF1ZGJAlIaUUpRoFU3oA2gWR0CZcK1GLDQ7dX2UKGgGaAloD0MIMxtkkpFQZkCUhpRSlGgVTegDaBZHQJlxNRl6JIl1fZQoaAZoCWgPQwh23zE89g1wQJSGlFKUaBVNPgNoFkdAmXQAMDwH7nV9lChoBmgJaA9DCHY4ukp3X25AlIaUUpRoFU15AWgWR0CZeSQNTcZcdX2UKGgGaAloD0MIZHWr56S1ZkCUhpRSlGgVTegDaBZHQJl666shgVp1fZQoaAZoCWgPQwjZIf5hS99hQJSGlFKUaBVN6ANoFkdAmXvapkwvg3V9lChoBmgJaA9DCFEVU+kngVJAlIaUUpRoFUvhaBZHQJmAAeZG8VZ1fZQoaAZoCWgPQwjyzTY3pnRsQJSGlFKUaBVNNANoFkdAmYLwWepXIXV9lChoBmgJaA9DCBpR2hv8s2ZAlIaUUpRoFU3oA2gWR0CZhrz544ZNdX2UKGgGaAloD0MIyNPyA9eLcECUhpRSlGgVTS8DaBZHQJmHFuEVWS51fZQoaAZoCWgPQwjhfsADwyVzQJSGlFKUaBVNOwNoFkdAmYgohUzbe3V9lChoBmgJaA9DCLzqAfOQKWhAlIaUUpRoFU3oA2gWR0CZi509QoCudX2UKGgGaAloD0MIzSN/MPCOXUCUhpRSlGgVTegDaBZHQJmhwaWHDaZ1fZQoaAZoCWgPQwjObcK9cltxQJSGlFKUaBVNbQFoFkdAmaI/8VHnU3V9lChoBmgJaA9DCP/LtWiB83FAlIaUUpRoFU2KAmgWR0CZp9MwlByCdX2UKGgGaAloD0MIX7adtsY0b0CUhpRSlGgVTcUCaBZHQJmoCsDGLk11fZQoaAZoCWgPQwjSxDvAk7JrQJSGlFKUaBVNtQJoFkdAmamfm9xp+XV9lChoBmgJaA9DCBN+qZ/3GXFAlIaUUpRoFU32AmgWR0CZqq+AmReUdX2UKGgGaAloD0MIKbSs+0c2Z0CUhpRSlGgVTegDaBZHQJmrSAJ9iMJ1fZQoaAZoCWgPQwi54Az+fjFhQJSGlFKUaBVN6ANoFkdAmayuKsMiKXV9lChoBmgJaA9DCCAkC5hAaXJAlIaUUpRoFUvyaBZHQJmu0Qd0aIh1fZQoaAZoCWgPQwg8LxUbM+lxQJSGlFKUaBVNDgJoFkdAmbWN8iOea3V9lChoBmgJaA9DCFmLTwEwfWtAlIaUUpRoFU0IAWgWR0CZttPldTo/dX2UKGgGaAloD0MITG9/Lto6cECUhpRSlGgVTXgCaBZHQJm3ml9Brvd1fZQoaAZoCWgPQwivRKD6x2JyQJSGlFKUaBVNjwFoFkdAmbxFAqur63V9lChoBmgJaA9DCJEOD2F8cG5AlIaUUpRoFU0UAmgWR0CZvWqIJqqPdX2UKGgGaAloD0MITbuYZjowcUCUhpRSlGgVTX8BaBZHQJm+Rr6+FlF1fZQoaAZoCWgPQwhSuB6Fq5NwQJSGlFKUaBVNsgNoFkdAmb7Bl18stnV9lChoBmgJaA9DCF7zqs5qA2NAlIaUUpRoFU3oA2gWR0CZxB5WBBiTdX2UKGgGaAloD0MIXtiarTxkcECUhpRSlGgVTS0DaBZHQJnE+ILw4Kh1fZQoaAZoCWgPQwjFxryOOLxhQJSGlFKUaBVN6ANoFkdAmcg7dSEUTXV9lChoBmgJaA9DCLWn5JyYA3JAlIaUUpRoFU1MAWgWR0CZyQ/rSmZWdX2UKGgGaAloD0MI8Nx7uORCcUCUhpRSlGgVTUkCaBZHQJnJYC0WuYB1fZQoaAZoCWgPQwjon+BiRVxcQJSGlFKUaBVN6ANoFkdAmc+hyn1nNHV9lChoBmgJaA9DCAd5PZgUjUVAlIaUUpRoFUvoaBZHQJnQBPznRsx1fZQoaAZoCWgPQwgY6rDCbYlwQJSGlFKUaBVNsgNoFkdAmdBCxA0KqnV9lChoBmgJaA9DCF3Ed2JWHm1AlIaUUpRoFU3wAWgWR0CZ0I19fCyhdX2UKGgGaAloD0MIHXHIBlLhb0CUhpRSlGgVTc8CaBZHQJnTjMeOn2t1fZQoaAZoCWgPQwiYF2AfnU5yQJSGlFKUaBVNXQJoFkdAmdRzru6VdHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
lunar_lander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f0ea36ee5f64be1667adbeb15efb72d4160612b143d813d7eadd5fcc2a874db
3
+ size 147416
lunar_lander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
lunar_lander/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fae08713940>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fae087139d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fae08713a60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fae08713af0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fae08713b80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fae08713c10>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fae08713ca0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fae08713d30>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fae08713dc0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fae08713e50>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fae08713ee0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fae08713f70>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fae0870bea0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673779834210425915,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOPOaL65fhA/JuqMvZM/nr49xum9vZ5sPAAAAAAAAAAADdXnvRGEND9duew88znBvio7Br2lplE9AAAAAAAAAACAGlo9wzVauoqfzzoGoku28sN/O4y7NrUAAIA/AACAP83InLtIJ4e6VmiIOjezhbba35e6gJZ/tQAAgD8AAIA/AOEWvukKmj/lwA6/9C8Cv8V4Kb7VUA2+AAAAAAAAAAAzMQS+hZHMOqiBNzwzPlO6qXaWvJNIPTsAAIA/AACAPwAhuzwFcO67E91yvZH+Lzy/XU69cgQZPQAAgD8AAIA/mho5PY/CLLi+ljC5ovgftJzyt7t1mFA4AACAPwAAgD+afe27ri+TupKZOLPgMx8wSWHlOlKmwTMAAIA/AACAP5rnp72kgj27UR4KvAbaWjxXcV+8MnM/PQAAAAAAAIA/8/T7vbVzLj/nLqW6qQqwvqpzD70Y1Hk7AAAAAAAAAADNDsC88QezPxa+E7/edjS+RraOPM+8BT0AAAAAAAAAAE2PFT2fH9m7isjcuqDEV74HV7u7reaRPgAAgD8AAIA/00JYvtQgCb32aCs77UPZOZlXcz7+9Wu6AACAPwAAgD+Arxm9Kax/uk/kFjmTSkw0zU8kO7IkLbgAAIA/AACAPyYvDj7uMyU/TJyFvgAbqr7h4zk94BiOvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISl6dY8DxZkCUhpRSlIwBbJRN6AOMAXSUR0CYiWaP0Zm7dX2UKGgGaAloD0MIkKFjBxU1aECUhpRSlGgVTegDaBZHQJiW8UEgW8B1fZQoaAZoCWgPQwhgrG9g8pdlQJSGlFKUaBVN6ANoFkdAmJbyGJvYOHV9lChoBmgJaA9DCAhyUMJMcWRAlIaUUpRoFU3oA2gWR0CYmEBWPtD2dX2UKGgGaAloD0MI4Sh5dY6WZUCUhpRSlGgVTegDaBZHQJiZ8syzoll1fZQoaAZoCWgPQwhflQuV/5JgQJSGlFKUaBVN6ANoFkdAmJpp8Sf16HV9lChoBmgJaA9DCOLNGryvn2NAlIaUUpRoFU3oA2gWR0CYnZ0E5hjOdX2UKGgGaAloD0MI0cq9wCz1ZkCUhpRSlGgVTegDaBZHQJif9o+Ofd11fZQoaAZoCWgPQwiPjquRXaBnQJSGlFKUaBVN6ANoFkdAmKM8My8BdXV9lChoBmgJaA9DCKlMMQeBD3JAlIaUUpRoFU0nA2gWR0CYpFRYRujzdX2UKGgGaAloD0MIoKcBg2R6ckCUhpRSlGgVTWwDaBZHQJimTVz6rNp1fZQoaAZoCWgPQwimlxjL9BRQQJSGlFKUaBVL2GgWR0CYqjnl4keIdX2UKGgGaAloD0MIBKvq5fcoYUCUhpRSlGgVTegDaBZHQJit3O/tY0V1fZQoaAZoCWgPQwjHEtbG2OtkQJSGlFKUaBVN6ANoFkdAmMPwVTJhfHV9lChoBmgJaA9DCDPd66Q+ZmBAlIaUUpRoFU3oA2gWR0CYxowC8vmHdX2UKGgGaAloD0MIr1qZ8EvDZUCUhpRSlGgVTegDaBZHQJjHNYvFm4B1fZQoaAZoCWgPQwin64muizpvQJSGlFKUaBVN4gNoFkdAmMgBsqJ/G3V9lChoBmgJaA9DCFq9w+3QynFAlIaUUpRoFU1WA2gWR0CYyJornTy8dX2UKGgGaAloD0MI++qqQC18QUCUhpRSlGgVS9xoFkdAmMk3qzJIUnV9lChoBmgJaA9DCKq6RzZXB25AlIaUUpRoFU03AmgWR0CYydBvJiiJdX2UKGgGaAloD0MIwLLSpBRKUUCUhpRSlGgVS91oFkdAmNMLmITGpHV9lChoBmgJaA9DCKGBWDbzLGhAlIaUUpRoFU3oA2gWR0CY3RfWcz68dX2UKGgGaAloD0MIrDb/r7rKZkCUhpRSlGgVTegDaBZHQJjdF+kP+XJ1fZQoaAZoCWgPQwirdeJyvD1jQJSGlFKUaBVN6ANoFkdAmN5loxpL3HV9lChoBmgJaA9DCJLM6h3uC2FAlIaUUpRoFU3oA2gWR0CY4BG5tm+TdX2UKGgGaAloD0MIpFUt6agLZ0CUhpRSlGgVTegDaBZHQJjjpywOe8R1fZQoaAZoCWgPQwikjo6rkaVlQJSGlFKUaBVN6ANoFkdAmOmxxgiNbXV9lChoBmgJaA9DCOqVsgzxSmVAlIaUUpRoFU3oA2gWR0CY6tv+wTufdX2UKGgGaAloD0MIpN5TOe2YY0CUhpRSlGgVTegDaBZHQJjs+rDIikh1fZQoaAZoCWgPQwja44V0ODZxQJSGlFKUaBVNrgFoFkdAmPQNmYjSonV9lChoBmgJaA9DCMiVehYEyWBAlIaUUpRoFU3oA2gWR0CY9Mdszl90dX2UKGgGaAloD0MIMuiE0EGcYECUhpRSlGgVTegDaBZHQJkKuUiY9gZ1fZQoaAZoCWgPQwj03EJXYipyQJSGlFKUaBVNoANoFkdAmQxEaZQYUHV9lChoBmgJaA9DCJdzKa4q6mVAlIaUUpRoFU3oA2gWR0CZDSIV/MGHdX2UKGgGaAloD0MIFLGIYQc+Y0CUhpRSlGgVTegDaBZHQJkNrBInSfF1fZQoaAZoCWgPQwhUOe0pOelmQJSGlFKUaBVN6ANoFkdAmQ5cpCrtFHV9lChoBmgJaA9DCGjnNAu0THBAlIaUUpRoFU3bAWgWR0CZDt8aXKKYdX2UKGgGaAloD0MIrRQCucQSXUCUhpRSlGgVTegDaBZHQJkP9+uvECN1fZQoaAZoCWgPQwhnt5bJcERKQJSGlFKUaBVLwmgWR0CZF8g5imVJdX2UKGgGaAloD0MIAKyOHGnmZkCUhpRSlGgVTegDaBZHQJkZPDGcWj51fZQoaAZoCWgPQwjHYwYqY19oQJSGlFKUaBVN6ANoFkdAmSMjJQtSRHV9lChoBmgJaA9DCLUYPEz7I2VAlIaUUpRoFU3oA2gWR0CZIyc5sCT2dX2UKGgGaAloD0MI2bERiFdqcUCUhpRSlGgVTZ4BaBZHQJkl0lNUOut1fZQoaAZoCWgPQwheEJGa9tRkQJSGlFKUaBVN6ANoFkdAmSZZw84ginV9lChoBmgJaA9DCJzc71DUeXJAlIaUUpRoFU1+AmgWR0CZKSHDrJKbdX2UKGgGaAloD0MIkbdc/VjBb0CUhpRSlGgVTdECaBZHQJkxGTB68g91fZQoaAZoCWgPQwgge73747ZiQJSGlFKUaBVN6ANoFkdAmTIqSgXdkHV9lChoBmgJaA9DCPD9Ddqr2WdAlIaUUpRoFU3oA2gWR0CZM4OQQtjDdX2UKGgGaAloD0MIpDZxcr9gYUCUhpRSlGgVTegDaBZHQJk122NNrTJ1fZQoaAZoCWgPQwinH9RFih5kQJSGlFKUaBVN6ANoFkdAmT1P51vETHV9lChoBmgJaA9DCB8UlKKVxGJAlIaUUpRoFU3oA2gWR0CZVh31zySWdX2UKGgGaAloD0MI07zjFB1ZZUCUhpRSlGgVTegDaBZHQJlXOHbh3q11fZQoaAZoCWgPQwh9yjFZXOVhQJSGlFKUaBVN6ANoFkdAmVfuLR8c/HV9lChoBmgJaA9DCD0LQnkfOWVAlIaUUpRoFU3oA2gWR0CZWNaXrt3OdX2UKGgGaAloD0MI1PGYgUodcUCUhpRSlGgVTUQBaBZHQJlbqvmozep1fZQoaAZoCWgPQwjJxoMtdudxQJSGlFKUaBVNJAJoFkdAmVwYVARkE3V9lChoBmgJaA9DCKinj8AfskdAlIaUUpRoFUvBaBZHQJliC49X9zh1fZQoaAZoCWgPQwimK9hGvBljQJSGlFKUaBVN6ANoFkdAmWOPpD/lyXV9lChoBmgJaA9DCC3uPzIduWBAlIaUUpRoFU3oA2gWR0CZZQLGrCFcdX2UKGgGaAloD0MINum2RK4PY0CUhpRSlGgVTegDaBZHQJluHiwSrYJ1fZQoaAZoCWgPQwix3T1Adw5lQJSGlFKUaBVN6ANoFkdAmW4ed07r9nV9lChoBmgJaA9DCKxUUFF1ZGJAlIaUUpRoFU3oA2gWR0CZcK1GLDQ7dX2UKGgGaAloD0MIMxtkkpFQZkCUhpRSlGgVTegDaBZHQJlxNRl6JIl1fZQoaAZoCWgPQwh23zE89g1wQJSGlFKUaBVNPgNoFkdAmXQAMDwH7nV9lChoBmgJaA9DCHY4ukp3X25AlIaUUpRoFU15AWgWR0CZeSQNTcZcdX2UKGgGaAloD0MIZHWr56S1ZkCUhpRSlGgVTegDaBZHQJl666shgVp1fZQoaAZoCWgPQwjZIf5hS99hQJSGlFKUaBVN6ANoFkdAmXvapkwvg3V9lChoBmgJaA9DCFEVU+kngVJAlIaUUpRoFUvhaBZHQJmAAeZG8VZ1fZQoaAZoCWgPQwjyzTY3pnRsQJSGlFKUaBVNNANoFkdAmYLwWepXIXV9lChoBmgJaA9DCBpR2hv8s2ZAlIaUUpRoFU3oA2gWR0CZhrz544ZNdX2UKGgGaAloD0MIyNPyA9eLcECUhpRSlGgVTS8DaBZHQJmHFuEVWS51fZQoaAZoCWgPQwjhfsADwyVzQJSGlFKUaBVNOwNoFkdAmYgohUzbe3V9lChoBmgJaA9DCLzqAfOQKWhAlIaUUpRoFU3oA2gWR0CZi509QoCudX2UKGgGaAloD0MIzSN/MPCOXUCUhpRSlGgVTegDaBZHQJmhwaWHDaZ1fZQoaAZoCWgPQwjObcK9cltxQJSGlFKUaBVNbQFoFkdAmaI/8VHnU3V9lChoBmgJaA9DCP/LtWiB83FAlIaUUpRoFU2KAmgWR0CZp9MwlByCdX2UKGgGaAloD0MIX7adtsY0b0CUhpRSlGgVTcUCaBZHQJmoCsDGLk11fZQoaAZoCWgPQwjSxDvAk7JrQJSGlFKUaBVNtQJoFkdAmamfm9xp+XV9lChoBmgJaA9DCBN+qZ/3GXFAlIaUUpRoFU32AmgWR0CZqq+AmReUdX2UKGgGaAloD0MIKbSs+0c2Z0CUhpRSlGgVTegDaBZHQJmrSAJ9iMJ1fZQoaAZoCWgPQwi54Az+fjFhQJSGlFKUaBVN6ANoFkdAmayuKsMiKXV9lChoBmgJaA9DCCAkC5hAaXJAlIaUUpRoFUvyaBZHQJmu0Qd0aIh1fZQoaAZoCWgPQwg8LxUbM+lxQJSGlFKUaBVNDgJoFkdAmbWN8iOea3V9lChoBmgJaA9DCFmLTwEwfWtAlIaUUpRoFU0IAWgWR0CZttPldTo/dX2UKGgGaAloD0MITG9/Lto6cECUhpRSlGgVTXgCaBZHQJm3ml9Brvd1fZQoaAZoCWgPQwivRKD6x2JyQJSGlFKUaBVNjwFoFkdAmbxFAqur63V9lChoBmgJaA9DCJEOD2F8cG5AlIaUUpRoFU0UAmgWR0CZvWqIJqqPdX2UKGgGaAloD0MITbuYZjowcUCUhpRSlGgVTX8BaBZHQJm+Rr6+FlF1fZQoaAZoCWgPQwhSuB6Fq5NwQJSGlFKUaBVNsgNoFkdAmb7Bl18stnV9lChoBmgJaA9DCF7zqs5qA2NAlIaUUpRoFU3oA2gWR0CZxB5WBBiTdX2UKGgGaAloD0MIXtiarTxkcECUhpRSlGgVTS0DaBZHQJnE+ILw4Kh1fZQoaAZoCWgPQwjFxryOOLxhQJSGlFKUaBVN6ANoFkdAmcg7dSEUTXV9lChoBmgJaA9DCLWn5JyYA3JAlIaUUpRoFU1MAWgWR0CZyQ/rSmZWdX2UKGgGaAloD0MI8Nx7uORCcUCUhpRSlGgVTUkCaBZHQJnJYC0WuYB1fZQoaAZoCWgPQwjon+BiRVxcQJSGlFKUaBVN6ANoFkdAmc+hyn1nNHV9lChoBmgJaA9DCAd5PZgUjUVAlIaUUpRoFUvoaBZHQJnQBPznRsx1fZQoaAZoCWgPQwgY6rDCbYlwQJSGlFKUaBVNsgNoFkdAmdBCxA0KqnV9lChoBmgJaA9DCF3Ed2JWHm1AlIaUUpRoFU3wAWgWR0CZ0I19fCyhdX2UKGgGaAloD0MIHXHIBlLhb0CUhpRSlGgVTc8CaBZHQJnTjMeOn2t1fZQoaAZoCWgPQwiYF2AfnU5yQJSGlFKUaBVNXQJoFkdAmdRzru6VdHVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
lunar_lander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10a820b3a81c14c12cd729823ca5408dc8228531f919540530b1afdfbee4699c
3
+ size 87929
lunar_lander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50061639406af8d8ebeaec2c1e88997b09fd8fb7951a7fe72a214373af670047
3
+ size 43393
lunar_lander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunar_lander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (229 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 243.4570201002427, "std_reward": 71.57380808130415, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-15T11:11:13.690025"}