umn-cyber/indobert-hoax-detection
Browse files- README.md +4 -4
- all_results.json +11 -11
- eval_results.json +8 -8
- test_results.json +7 -7
- train_results.json +4 -4
README.md
CHANGED
@@ -21,10 +21,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
21 |
|
22 |
This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on an unknown dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
-
- Loss: 0.
|
25 |
-
- Accuracy: 0.
|
26 |
-
- F1: 0.
|
27 |
-
- Precision: 0.
|
28 |
- Recall: 0.9872
|
29 |
|
30 |
## Model description
|
|
|
21 |
|
22 |
This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on an unknown dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.0457
|
25 |
+
- Accuracy: 0.9875
|
26 |
+
- F1: 0.9868
|
27 |
+
- Precision: 0.9865
|
28 |
- Recall: 0.9872
|
29 |
|
30 |
## Model description
|
all_results.json
CHANGED
@@ -1,16 +1,16 @@
|
|
1 |
{
|
2 |
"epoch": 5.0,
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_f1": 0.
|
5 |
-
"eval_loss": 0.
|
6 |
-
"eval_precision": 0.
|
7 |
"eval_recall": 0.9871977240398293,
|
8 |
-
"eval_runtime":
|
9 |
-
"eval_samples_per_second":
|
10 |
-
"eval_steps_per_second": 1.
|
11 |
"total_flos": 3.11005644392448e+16,
|
12 |
-
"train_loss": 0.
|
13 |
-
"train_runtime":
|
14 |
-
"train_samples_per_second":
|
15 |
-
"train_steps_per_second": 0.
|
16 |
}
|
|
|
1 |
{
|
2 |
"epoch": 5.0,
|
3 |
+
"eval_accuracy": 0.9874830852503383,
|
4 |
+
"eval_f1": 0.9868467827941699,
|
5 |
+
"eval_loss": 0.04571225121617317,
|
6 |
+
"eval_precision": 0.9864960909737029,
|
7 |
"eval_recall": 0.9871977240398293,
|
8 |
+
"eval_runtime": 81.5092,
|
9 |
+
"eval_samples_per_second": 36.266,
|
10 |
+
"eval_steps_per_second": 1.141,
|
11 |
"total_flos": 3.11005644392448e+16,
|
12 |
+
"train_loss": 0.03391138697509353,
|
13 |
+
"train_runtime": 20063.9202,
|
14 |
+
"train_samples_per_second": 5.891,
|
15 |
+
"train_steps_per_second": 0.184
|
16 |
}
|
eval_results.json
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
{
|
2 |
"epoch": 5.0,
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_f1": 0.
|
5 |
-
"eval_loss": 0.
|
6 |
-
"eval_precision": 0.
|
7 |
-
"eval_recall": 0.
|
8 |
-
"eval_runtime":
|
9 |
-
"eval_samples_per_second":
|
10 |
-
"eval_steps_per_second": 1.
|
11 |
}
|
|
|
1 |
{
|
2 |
"epoch": 5.0,
|
3 |
+
"eval_accuracy": 0.9895093062605753,
|
4 |
+
"eval_f1": 0.9889953851615193,
|
5 |
+
"eval_loss": 0.039101775735616684,
|
6 |
+
"eval_precision": 0.9872430900070872,
|
7 |
+
"eval_recall": 0.9907539118065434,
|
8 |
+
"eval_runtime": 81.401,
|
9 |
+
"eval_samples_per_second": 36.302,
|
10 |
+
"eval_steps_per_second": 1.142
|
11 |
}
|
test_results.json
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
{
|
2 |
"epoch": 5.0,
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_f1": 0.
|
5 |
-
"eval_loss": 0.
|
6 |
-
"eval_precision": 0.
|
7 |
"eval_recall": 0.9871977240398293,
|
8 |
-
"eval_runtime":
|
9 |
-
"eval_samples_per_second":
|
10 |
-
"eval_steps_per_second": 1.
|
11 |
}
|
|
|
1 |
{
|
2 |
"epoch": 5.0,
|
3 |
+
"eval_accuracy": 0.9874830852503383,
|
4 |
+
"eval_f1": 0.9868467827941699,
|
5 |
+
"eval_loss": 0.04571225121617317,
|
6 |
+
"eval_precision": 0.9864960909737029,
|
7 |
"eval_recall": 0.9871977240398293,
|
8 |
+
"eval_runtime": 81.5092,
|
9 |
+
"eval_samples_per_second": 36.266,
|
10 |
+
"eval_steps_per_second": 1.141
|
11 |
}
|
train_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
"epoch": 5.0,
|
3 |
"total_flos": 3.11005644392448e+16,
|
4 |
-
"train_loss": 0.
|
5 |
-
"train_runtime":
|
6 |
-
"train_samples_per_second":
|
7 |
-
"train_steps_per_second": 0.
|
8 |
}
|
|
|
1 |
{
|
2 |
"epoch": 5.0,
|
3 |
"total_flos": 3.11005644392448e+16,
|
4 |
+
"train_loss": 0.03391138697509353,
|
5 |
+
"train_runtime": 20063.9202,
|
6 |
+
"train_samples_per_second": 5.891,
|
7 |
+
"train_steps_per_second": 0.184
|
8 |
}
|