|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Fine-tuning the library models for named entity recognition on CoNLL-2003 (Bert or Roberta). """ |
|
|
|
|
|
import argparse |
|
import glob |
|
import logging |
|
import os |
|
import random |
|
|
|
import numpy as np |
|
import torch |
|
|
|
|
|
from seqeval.metrics import f1_score, precision_score, recall_score |
|
from torch.nn import CrossEntropyLoss |
|
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset |
|
from torch.utils.data.distributed import DistributedSampler |
|
from tqdm import tqdm, trange |
|
|
|
from transformers import ( |
|
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, |
|
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_Seg, |
|
WEIGHTS_NAME, |
|
AdamW, |
|
AutoConfig, |
|
AutoModelForTokenClassification, |
|
AutoModelForTokenClassification_Seg, |
|
AutoTokenizer, |
|
get_linear_schedule_with_warmup, |
|
) |
|
from utils_seg import convert_examples_to_features, get_labels, read_examples_from_file |
|
|
|
|
|
try: |
|
from torch.utils.tensorboard import SummaryWriter |
|
except ImportError: |
|
from tensorboardX import SummaryWriter |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
MODEL_CONFIG_CLASSES = list(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.keys()) |
|
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) |
|
|
|
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in MODEL_CONFIG_CLASSES), ()) |
|
|
|
TOKENIZER_ARGS = ["do_lower_case", "strip_accents", "keep_accents", "use_fast"] |
|
|
|
|
|
def set_seed(args): |
|
random.seed(args.seed) |
|
np.random.seed(args.seed) |
|
torch.manual_seed(args.seed) |
|
if args.n_gpu > 0: |
|
torch.cuda.manual_seed_all(args.seed) |
|
|
|
|
|
def train(args, train_dataset, model, tokenizer, labels, pad_token_label_id): |
|
""" Train the model """ |
|
if args.local_rank in [-1, 0]: |
|
tb_writer = SummaryWriter() |
|
|
|
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) |
|
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) |
|
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) |
|
|
|
if args.max_steps > 0: |
|
t_total = args.max_steps |
|
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 |
|
else: |
|
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs |
|
|
|
|
|
no_decay = ["bias", "LayerNorm.weight"] |
|
optimizer_grouped_parameters = [ |
|
{ |
|
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], |
|
"weight_decay": args.weight_decay, |
|
}, |
|
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, |
|
] |
|
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) |
|
scheduler = get_linear_schedule_with_warmup( |
|
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total |
|
) |
|
|
|
|
|
if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile( |
|
os.path.join(args.model_name_or_path, "scheduler.pt") |
|
): |
|
|
|
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) |
|
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) |
|
|
|
if args.fp16: |
|
try: |
|
from apex import amp |
|
except ImportError: |
|
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") |
|
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) |
|
|
|
|
|
if args.n_gpu > 1: |
|
model = torch.nn.DataParallel(model) |
|
|
|
|
|
if args.local_rank != -1: |
|
model = torch.nn.parallel.DistributedDataParallel( |
|
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
global_step = 0 |
|
epochs_trained = 0 |
|
steps_trained_in_current_epoch = 0 |
|
|
|
if os.path.exists(args.model_name_or_path): |
|
|
|
try: |
|
global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0]) |
|
except ValueError: |
|
global_step = 0 |
|
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps) |
|
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps) |
|
|
|
|
|
|
|
|
|
|
|
|
|
tr_loss, logging_loss = 0.0, 0.0 |
|
model.zero_grad() |
|
train_iterator = trange( |
|
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0] |
|
) |
|
set_seed(args) |
|
for _ in train_iterator: |
|
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) |
|
for step, batch in enumerate(epoch_iterator): |
|
|
|
|
|
if steps_trained_in_current_epoch > 0: |
|
steps_trained_in_current_epoch -= 1 |
|
continue |
|
|
|
model.train() |
|
batch = tuple(t.to(args.device) for t in batch) |
|
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3], "labels_ctc": batch[4], "labels_md": batch[5], "freq_ids": batch[6]} |
|
if args.model_type != "distilbert": |
|
inputs["token_type_ids"] = ( |
|
batch[2] if args.model_type in ["bert", "xlnet"] else None |
|
) |
|
|
|
outputs = model(**inputs) |
|
loss = outputs[0] |
|
|
|
if args.n_gpu > 1: |
|
loss = loss.mean() |
|
if args.gradient_accumulation_steps > 1: |
|
loss = loss / args.gradient_accumulation_steps |
|
|
|
if args.fp16: |
|
with amp.scale_loss(loss, optimizer) as scaled_loss: |
|
scaled_loss.backward() |
|
else: |
|
loss.backward() |
|
|
|
tr_loss += loss.item() |
|
if (step + 1) % args.gradient_accumulation_steps == 0: |
|
if args.fp16: |
|
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) |
|
else: |
|
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) |
|
|
|
optimizer.step() |
|
scheduler.step() |
|
model.zero_grad() |
|
global_step += 1 |
|
|
|
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: |
|
|
|
if ( |
|
args.local_rank == -1 and args.evaluate_during_training |
|
): |
|
results, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="dev") |
|
for key, value in results.items(): |
|
tb_writer.add_scalar("eval_{}".format(key), value, global_step) |
|
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step) |
|
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step) |
|
logging_loss = tr_loss |
|
|
|
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: |
|
|
|
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
model_to_save = ( |
|
model.module if hasattr(model, "module") else model |
|
) |
|
model_to_save.save_pretrained(output_dir) |
|
tokenizer.save_pretrained(output_dir) |
|
|
|
torch.save(args, os.path.join(output_dir, "training_args.bin")) |
|
|
|
|
|
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) |
|
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) |
|
|
|
|
|
if args.max_steps > 0 and global_step > args.max_steps: |
|
epoch_iterator.close() |
|
break |
|
if args.max_steps > 0 and global_step > args.max_steps: |
|
train_iterator.close() |
|
break |
|
|
|
if args.local_rank in [-1, 0]: |
|
tb_writer.close() |
|
|
|
return global_step, tr_loss / global_step |
|
|
|
|
|
def evaluate(args, model, tokenizer, labels, pad_token_label_id, mode, prefix="", path=None): |
|
eval_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode=mode, path=path) |
|
|
|
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) |
|
|
|
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) |
|
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) |
|
|
|
|
|
if args.n_gpu > 1: |
|
model = torch.nn.DataParallel(model) |
|
|
|
|
|
|
|
eval_loss = 0.0 |
|
nb_eval_steps = 0 |
|
preds = None |
|
out_label_ids = None |
|
model.eval() |
|
for batch in tqdm(eval_dataloader, desc="Evaluating", disable=True): |
|
batch = tuple(t.to(args.device) for t in batch) |
|
|
|
with torch.no_grad(): |
|
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3], "labels_ctc": batch[4], "labels_md": batch[5], "freq_ids": batch[6]} |
|
if args.model_type != "distilbert": |
|
inputs["token_type_ids"] = ( |
|
batch[2] if args.model_type in ["bert", "xlnet"] else None |
|
) |
|
outputs = model(**inputs) |
|
tmp_eval_loss, logits = outputs[:2] |
|
|
|
if args.n_gpu > 1: |
|
tmp_eval_loss = tmp_eval_loss.mean() |
|
|
|
eval_loss += tmp_eval_loss.item() |
|
nb_eval_steps += 1 |
|
if preds is None: |
|
preds = logits.detach().cpu().numpy() |
|
out_label_ids = inputs["labels"].detach().cpu().numpy() |
|
else: |
|
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) |
|
out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) |
|
|
|
eval_loss = eval_loss / nb_eval_steps |
|
preds = np.argmax(preds, axis=2) |
|
|
|
label_map = {i: label for i, label in enumerate(labels)} |
|
|
|
out_label_list = [[] for _ in range(out_label_ids.shape[0])] |
|
preds_list = [[] for _ in range(out_label_ids.shape[0])] |
|
|
|
for i in range(out_label_ids.shape[0]): |
|
for j in range(out_label_ids.shape[1]): |
|
if out_label_ids[i, j] != pad_token_label_id: |
|
out_label_list[i].append(label_map[out_label_ids[i][j]]) |
|
preds_list[i].append(label_map[preds[i][j]]) |
|
|
|
results = { |
|
"precision": precision_score(out_label_list, preds_list), |
|
"recall": recall_score(out_label_list, preds_list), |
|
"f1": f1_score(out_label_list, preds_list), |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logger.info("***** Eval results %s *****", prefix) |
|
logger.info("***** Input Files Path %s *****", path) |
|
logger.info("***** Mode %s *****", mode) |
|
for key in sorted(results.keys()): |
|
logger.info(" %s = %s", key, str(results[key])) |
|
|
|
return results, preds_list |
|
|
|
|
|
def load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode, path=None): |
|
if args.local_rank not in [-1, 0] and not evaluate: |
|
torch.distributed.barrier() |
|
|
|
|
|
cached_features_file = os.path.join( |
|
args.data_dir, |
|
"cached_{}_{}_{}".format( |
|
mode, list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length) |
|
), |
|
) |
|
if os.path.exists(cached_features_file) and not args.overwrite_cache: |
|
|
|
|
|
features = torch.load(cached_features_file) |
|
else: |
|
|
|
examples = read_examples_from_file(args.data_dir, mode, path) |
|
|
|
features = convert_examples_to_features( |
|
examples, |
|
labels, |
|
args.max_seq_length, |
|
tokenizer, |
|
cls_token_at_end=bool(args.model_type in ["xlnet"]), |
|
|
|
cls_token=tokenizer.cls_token, |
|
cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0, |
|
sep_token=tokenizer.sep_token, |
|
sep_token_extra=bool(args.model_type in ["roberta"]), |
|
|
|
pad_on_left=bool(args.model_type in ["xlnet"]), |
|
|
|
pad_token=tokenizer.pad_token_id, |
|
pad_token_md_id=tokenizer.pad_token_type_id, |
|
pad_token_label_id=pad_token_label_id, |
|
) |
|
|
|
|
|
|
|
|
|
if args.local_rank == 0 and not evaluate: |
|
torch.distributed.barrier() |
|
|
|
|
|
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) |
|
all_input_freq_ids = torch.tensor([f.input_freq_ids for f in features], dtype=torch.long) |
|
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) |
|
all_md_ids = torch.tensor([f.md_ids for f in features], dtype=torch.long) |
|
all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long) |
|
all_label_ids_ctc = torch.tensor([f.label_ids_ctc for f in features], dtype=torch.long) |
|
all_label_ids_md = torch.tensor([f.label_ids_md for f in features], dtype=torch.long) |
|
|
|
dataset = TensorDataset(all_input_ids, all_input_mask, all_md_ids, all_label_ids, all_label_ids_ctc, all_label_ids_md, all_input_freq_ids) |
|
return dataset |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--input_file_for_segmenter", |
|
default='./ip_seg/dev.txt', |
|
type=str, |
|
) |
|
|
|
parser.add_argument( |
|
"--output_file_for_segmenter", |
|
default='segemeter_preds.txt', |
|
type=str, |
|
) |
|
|
|
|
|
|
|
|
|
parser.add_argument( |
|
"--data_dir", |
|
default='./ip_seg/', |
|
type=str, |
|
help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.", |
|
) |
|
parser.add_argument( |
|
"--model_type", |
|
default='bert', |
|
type=str, |
|
help="Model type selected in the list: " + ", ".join(MODEL_TYPES), |
|
) |
|
parser.add_argument( |
|
"--model_name_or_path", |
|
default='word_piece_seg/', |
|
type=str, |
|
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS), |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
default='bert-word-piece-seg/', |
|
type=str, |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--labels", |
|
default='./labels_seg.txt', |
|
type=str, |
|
help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.", |
|
) |
|
parser.add_argument( |
|
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" |
|
) |
|
parser.add_argument( |
|
"--tokenizer_name", |
|
default="", |
|
type=str, |
|
help="Pretrained tokenizer name or path if not the same as model_name", |
|
) |
|
parser.add_argument( |
|
"--cache_dir", |
|
default="", |
|
type=str, |
|
help="Where do you want to store the pre-trained models downloaded from s3", |
|
) |
|
parser.add_argument( |
|
"--max_seq_length", |
|
default=128, |
|
type=int, |
|
help="The maximum total input sequence length after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded.", |
|
) |
|
parser.add_argument("--do_train", action="store_true", help="Whether to run training.") |
|
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") |
|
parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.") |
|
parser.add_argument( |
|
"--evaluate_during_training", |
|
action="store_true", |
|
help="Whether to run evaluation during training at each logging step.", |
|
) |
|
parser.add_argument( |
|
"--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model." |
|
) |
|
parser.add_argument( |
|
"--keep_accents", action="store_const", const=True, help="Set this flag if model is trained with accents." |
|
) |
|
parser.add_argument( |
|
"--strip_accents", action="store_const", const=True, help="Set this flag if model is trained without accents." |
|
) |
|
parser.add_argument("--use_fast", action="store_const", const=True, help="Set this flag to use fast tokenization.") |
|
parser.add_argument("--per_gpu_train_batch_size", default=4, type=int, help="Batch size per GPU/CPU for training.") |
|
parser.add_argument( |
|
"--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation." |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") |
|
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") |
|
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument( |
|
"--num_train_epochs", default=5, type=float, help="Total number of training epochs to perform." |
|
) |
|
parser.add_argument( |
|
"--max_steps", |
|
default=-1, |
|
type=int, |
|
help="If > 0: set total number of training steps to perform. Override num_train_epochs.", |
|
) |
|
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") |
|
|
|
parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.") |
|
parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.") |
|
parser.add_argument( |
|
"--eval_all_checkpoints", |
|
action="store_true", |
|
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", |
|
) |
|
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available") |
|
parser.add_argument( |
|
"--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory" |
|
) |
|
parser.add_argument( |
|
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" |
|
) |
|
parser.add_argument("--seed", type=int, default=1, help="random seed for initialization") |
|
|
|
parser.add_argument( |
|
"--fp16", |
|
action="store_true", |
|
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", |
|
) |
|
parser.add_argument( |
|
"--fp16_opt_level", |
|
type=str, |
|
default="O1", |
|
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." |
|
"See details at https://nvidia.github.io/apex/amp.html", |
|
) |
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") |
|
parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.") |
|
parser.add_argument("--server_port", type=str, default="", help="For distant debugging.") |
|
args = parser.parse_args() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if args.server_ip and args.server_port: |
|
|
|
import ptvsd |
|
|
|
print("Waiting for debugger attach") |
|
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) |
|
ptvsd.wait_for_attach() |
|
|
|
|
|
|
|
return args |
|
|
|
|
|
|
|
|
|
def main(): |
|
|
|
args = parse_args() |
|
|
|
if args.local_rank == -1 or args.no_cuda: |
|
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") |
|
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() |
|
else: |
|
torch.cuda.set_device(args.local_rank) |
|
device = torch.device("cuda", args.local_rank) |
|
torch.distributed.init_process_group(backend="nccl") |
|
args.n_gpu = 1 |
|
args.device = device |
|
|
|
input_file=args.input_file_for_segmenter |
|
output_prediction_file=args.output_file_for_segmenter |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
set_seed(args) |
|
|
|
|
|
labels = get_labels(args.labels) |
|
num_labels = len(labels) - 4 |
|
|
|
pad_token_label_id = CrossEntropyLoss().ignore_index |
|
|
|
|
|
if args.local_rank not in [-1, 0]: |
|
torch.distributed.barrier() |
|
|
|
args.model_type = args.model_type.lower() |
|
config = AutoConfig.from_pretrained( |
|
args.config_name if args.config_name else args.model_name_or_path, |
|
num_labels=num_labels, |
|
id2label={str(i): label for i, label in enumerate(labels)}, |
|
label2id={label: i for i, label in enumerate(labels)}, |
|
cache_dir=args.cache_dir if args.cache_dir else None, |
|
) |
|
tokenizer_args = {k: v for k, v in vars(args).items() if v is not None and k in TOKENIZER_ARGS} |
|
|
|
|
|
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path,cache_dir=args.cache_dir if args.cache_dir else None,**tokenizer_args) |
|
model = AutoModelForTokenClassification_Seg.from_pretrained( |
|
args.model_name_or_path, |
|
from_tf=bool(".ckpt" in args.model_name_or_path), |
|
config=config, |
|
cache_dir=args.cache_dir if args.cache_dir else None, |
|
) |
|
|
|
if args.local_rank == 0: |
|
torch.distributed.barrier() |
|
|
|
model.to(args.device) |
|
|
|
logger.info("Parameters %s", args) |
|
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(args.output_dir, **tokenizer_args) |
|
model = AutoModelForTokenClassification_Seg.from_pretrained(args.output_dir) |
|
model.to(args.device) |
|
|
|
|
|
result, predictions = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="", path=input_file) |
|
output_test_results_file = "temp_results.txt" |
|
with open(output_test_results_file, "w") as writer: |
|
for key in sorted(result.keys()): |
|
writer.write("{} = {}\n".format(key, str(result[key]))) |
|
|
|
output_test_predictions_file = output_prediction_file |
|
with open(output_test_predictions_file, "w") as writer: |
|
with open(input_file, "r") as f: |
|
example_id = 0 |
|
for line in f: |
|
if line.startswith("-DOCSTART-") or line == "" or line == "\n": |
|
writer.write(line) |
|
if not predictions[example_id]: |
|
example_id += 1 |
|
elif predictions[example_id]: |
|
output_line = line.split()[0] + " " + predictions[example_id].pop(0) + "\n" |
|
writer.write(output_line) |
|
else: |
|
|
|
continue |
|
|
|
|
|
print("\n\n") |
|
print("-------------------------------------------------------------------------------------------------") |
|
print("***** Perdictions on sentences in ", input_file, " is stored at ", output_prediction_file,"*****" ) |
|
print("-------------------------------------------------------------------------------------------------") |
|
print("\n\n") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|