israel-avihail commited on
Commit
30f2b63
1 Parent(s): b08b572

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.76 +/- 0.83
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd6e36c3addf89e9637092f07180e0e900a01b5e793eb521ed29bcf0a66661b2
3
+ size 108112
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f58f63d8550>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f58f63d6ec0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1680447056014351218,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA9LvDPn3zy7pNdRA/9LvDPn3zy7pNdRA/9LvDPn3zy7pNdRA/9LvDPn3zy7pNdRA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhf9Cvw+jPD8/1dm/fuFFPxtkeD7BqGs/NY2sP8Cmzr8Ha3e/IrBsP/08wD8aH8I/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD0u8M+ffPLuk11ED/1PcI7aDqBtzC9kDv0u8M+ffPLuk11ED/1PcI7aDqBtzC9kDv0u8M+ffPLuk11ED/1PcI7aDqBtzC9kDv0u8M+ffPLuk11ED/1PcI7aDqBtzC9kDuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.38229334 -0.00155602 0.56428987]\n [ 0.38229334 -0.00155602 0.56428987]\n [ 0.38229334 -0.00155602 0.56428987]\n [ 0.38229334 -0.00155602 0.56428987]]",
60
+ "desired_goal": "[[-0.7617114 0.7368631 -1.7018203 ]\n [ 0.772972 0.24256937 0.92054373]\n [ 1.3480593 -1.6144638 -0.96647686]\n [ 0.9245626 1.5018612 1.5165741 ]]",
61
+ "observation": "[[ 3.8229334e-01 -1.5560236e-03 5.6428987e-01 5.9277960e-03\n -1.5405196e-05 4.4170842e-03]\n [ 3.8229334e-01 -1.5560236e-03 5.6428987e-01 5.9277960e-03\n -1.5405196e-05 4.4170842e-03]\n [ 3.8229334e-01 -1.5560236e-03 5.6428987e-01 5.9277960e-03\n -1.5405196e-05 4.4170842e-03]\n [ 3.8229334e-01 -1.5560236e-03 5.6428987e-01 5.9277960e-03\n -1.5405196e-05 4.4170842e-03]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9Tn9vUOfkz03/NA8i7iEPRhMETy4dFA+jwLhveWsgD3365I92O9WPazEDj0Os889lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.1236457 0.07208111 0.02551089]\n [ 0.06480511 0.00886824 0.20357025]\n [-0.10986816 0.06282977 0.07173913]\n [ 0.05247483 0.03485553 0.10141574]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7KNTVz6L8L+UhpRSlIwBbJRLMowBdJRHQKlEYVSn+AF1fZQoaAZoCWgPQwiaP6a1aaz2v5SGlFKUaBVLMmgWR0CpRAguqWC3dX2UKGgGaAloD0MI0F59PPSdAsCUhpRSlGgVSzJoFkdAqUOsWXTmXHV9lChoBmgJaA9DCGHB/YAHxvO/lIaUUpRoFUsyaBZHQKlDUgElme11fZQoaAZoCWgPQwjuJCL8iyD2v5SGlFKUaBVLMmgWR0CpRYkpRXOodX2UKGgGaAloD0MILq2GxD3W9r+UhpRSlGgVSzJoFkdAqUUvSH/LknV9lChoBmgJaA9DCPG4qBYRhfK/lIaUUpRoFUsyaBZHQKlE0qioKlZ1fZQoaAZoCWgPQwhP6zao/dbzv5SGlFKUaBVLMmgWR0CpRHdyDIzWdX2UKGgGaAloD0MIYadYNQjz57+UhpRSlGgVSzJoFkdAqUax3cHnlnV9lChoBmgJaA9DCFVP5h99E+i/lIaUUpRoFUsyaBZHQKlGV+zdDY11fZQoaAZoCWgPQwgMlBRYAPMAwJSGlFKUaBVLMmgWR0CpRftIK+i8dX2UKGgGaAloD0MINstlo3N+CsCUhpRSlGgVSzJoFkdAqUWgFHJ9zHV9lChoBmgJaA9DCB+/t+nPfvm/lIaUUpRoFUsyaBZHQKlH2v/zasZ1fZQoaAZoCWgPQwg6svLLYAwKwJSGlFKUaBVLMmgWR0CpR4EVnEl3dX2UKGgGaAloD0MI98lRgChY+b+UhpRSlGgVSzJoFkdAqUckZtNzsHV9lChoBmgJaA9DCD1JumbyTeO/lIaUUpRoFUsyaBZHQKlGySmIj4Z1fZQoaAZoCWgPQwj11VWBWgz1v5SGlFKUaBVLMmgWR0CpSQQKjSG8dX2UKGgGaAloD0MIotReRNsx9r+UhpRSlGgVSzJoFkdAqUip+YtxuXV9lChoBmgJaA9DCBxEa0WbY/S/lIaUUpRoFUsyaBZHQKlITUPQOWl1fZQoaAZoCWgPQwiSIjKs4i0QwJSGlFKUaBVLMmgWR0CpR/HlXA/LdX2UKGgGaAloD0MI7ImuCz+48b+UhpRSlGgVSzJoFkdAqUoo9FF2FHV9lChoBmgJaA9DCOV620yFePW/lIaUUpRoFUsyaBZHQKlJzwLE1l51fZQoaAZoCWgPQwj21OqrqwL/v5SGlFKUaBVLMmgWR0CpSXJKraM8dX2UKGgGaAloD0MIxxNBnIczBcCUhpRSlGgVSzJoFkdAqUkW8h9srXV9lChoBmgJaA9DCAge3941aPm/lIaUUpRoFUsyaBZHQKlLU6EJ0GN1fZQoaAZoCWgPQwhkP4ulSI4QwJSGlFKUaBVLMmgWR0CpSvnM+u/2dX2UKGgGaAloD0MI14hgHFw6+L+UhpRSlGgVSzJoFkdAqUqdKCg9NnV9lChoBmgJaA9DCJoK8Ui8/PO/lIaUUpRoFUsyaBZHQKlKQbsniNt1fZQoaAZoCWgPQwiQTIdOz7v0v5SGlFKUaBVLMmgWR0CpTHOWa+ewdX2UKGgGaAloD0MIkbQbfcwH+b+UhpRSlGgVSzJoFkdAqUwZgeA/cHV9lChoBmgJaA9DCEeSIFwBJQXAlIaUUpRoFUsyaBZHQKlLvMpw0fp1fZQoaAZoCWgPQwii725liQ7wv5SGlFKUaBVLMmgWR0CpS2GATZg5dX2UKGgGaAloD0MIFLGIYYfx/7+UhpRSlGgVSzJoFkdAqU2Vz4k/r3V9lChoBmgJaA9DCNpVSPlJtfS/lIaUUpRoFUsyaBZHQKlNO90zTF51fZQoaAZoCWgPQwja5Vsf1tv1v5SGlFKUaBVLMmgWR0CpTN8kMTewdX2UKGgGaAloD0MI6lp7n6oCAMCUhpRSlGgVSzJoFkdAqUyDyz5XVHV9lChoBmgJaA9DCJULlX8trwXAlIaUUpRoFUsyaBZHQKlOyGjbi6x1fZQoaAZoCWgPQwiaQ1ILJZPqv5SGlFKUaBVLMmgWR0CpTm5tNzsAdX2UKGgGaAloD0MIcCL6tfUT87+UhpRSlGgVSzJoFkdAqU4RsoDxLHV9lChoBmgJaA9DCMFwrmGGxvu/lIaUUpRoFUsyaBZHQKlNtlDF6zF1fZQoaAZoCWgPQwge3J212+4CwJSGlFKUaBVLMmgWR0CpT96+36RAdX2UKGgGaAloD0MIfEW3XtODD8CUhpRSlGgVSzJoFkdAqU+EbHZK4HV9lChoBmgJaA9DCHEC02ndZgDAlIaUUpRoFUsyaBZHQKlPJ8ohIOJ1fZQoaAZoCWgPQwjiPnJr0q0BwJSGlFKUaBVLMmgWR0CpTsx+z+m4dX2UKGgGaAloD0MIH4SAfAlV+b+UhpRSlGgVSzJoFkdAqVED3Gn4wnV9lChoBmgJaA9DCNPbn4uGDAbAlIaUUpRoFUsyaBZHQKlQqhxo7FN1fZQoaAZoCWgPQwhsCfmgZzPzv5SGlFKUaBVLMmgWR0CpUE1Fpfx+dX2UKGgGaAloD0MI3+ALk6liBMCUhpRSlGgVSzJoFkdAqU/xtvXK83V9lChoBmgJaA9DCNkJL8GpD/y/lIaUUpRoFUsyaBZHQKlSLwx33Yd1fZQoaAZoCWgPQwhZGY18XnH4v5SGlFKUaBVLMmgWR0CpUdUhvBJqdX2UKGgGaAloD0MIPFCnPLrxAMCUhpRSlGgVSzJoFkdAqVF4iA2AG3V9lChoBmgJaA9DCLIRiNf1SwLAlIaUUpRoFUsyaBZHQKlRHT4tYjl1fZQoaAZoCWgPQwit+IbCZ2vuv5SGlFKUaBVLMmgWR0CpVAqiO/+LdX2UKGgGaAloD0MIsMvwn26g/L+UhpRSlGgVSzJoFkdAqVOxbpu/DnV9lChoBmgJaA9DCHHl7J3RtgHAlIaUUpRoFUsyaBZHQKlTVbNbC791fZQoaAZoCWgPQwiWCFT/IFLxv5SGlFKUaBVLMmgWR0CpUvtRvWH2dX2UKGgGaAloD0MIfLjkuFN6AsCUhpRSlGgVSzJoFkdAqVYVgWrOq3V9lChoBmgJaA9DCLa93ZIcUAbAlIaUUpRoFUsyaBZHQKlVvLkjopx1fZQoaAZoCWgPQwhxj6UPXVDtv5SGlFKUaBVLMmgWR0CpVWEZaV2SdX2UKGgGaAloD0MI41C/C1sz6L+UhpRSlGgVSzJoFkdAqVUGzhP0qnV9lChoBmgJaA9DCIxqEVFM3tm/lIaUUpRoFUsyaBZHQKlYHcTJyQx1fZQoaAZoCWgPQwgkuJGyRbIEwJSGlFKUaBVLMmgWR0CpV8T850bMdX2UKGgGaAloD0MIsU0qGmv/7L+UhpRSlGgVSzJoFkdAqVdpAt4A0nV9lChoBmgJaA9DCKjHtgw4awXAlIaUUpRoFUsyaBZHQKlXDqWTouB1fZQoaAZoCWgPQwggzy7f+tAGwJSGlFKUaBVLMmgWR0CpWhlHjIaMdX2UKGgGaAloD0MIJQaBlUOL67+UhpRSlGgVSzJoFkdAqVnAQ+UyHnV9lChoBmgJaA9DCFj+fFuwVPG/lIaUUpRoFUsyaBZHQKlZZJXhfjV1fZQoaAZoCWgPQwhYqDXNO44CwJSGlFKUaBVLMmgWR0CpWQoG6f8NdX2UKGgGaAloD0MISS2UTE6t+7+UhpRSlGgVSzJoFkdAqVvygTRIBnV9lChoBmgJaA9DCP0tAfin1PS/lIaUUpRoFUsyaBZHQKlbmKArhBJ1fZQoaAZoCWgPQwjY8PRKWYb5v5SGlFKUaBVLMmgWR0CpWzvgFX7tdX2UKGgGaAloD0MIHQOy17u//r+UhpRSlGgVSzJoFkdAqVrggcLjP3V9lChoBmgJaA9DCO9xpgnbrwDAlIaUUpRoFUsyaBZHQKldJELpiZx1fZQoaAZoCWgPQwg6OxkcJS/0v5SGlFKUaBVLMmgWR0CpXMpHy3CsdX2UKGgGaAloD0MID7dDw2JUCsCUhpRSlGgVSzJoFkdAqVxtme18cHV9lChoBmgJaA9DCOwxkdJsnv2/lIaUUpRoFUsyaBZHQKlcEk5ZKWd1fZQoaAZoCWgPQwgYJegv9Ij2v5SGlFKUaBVLMmgWR0CpXlCr1dxAdX2UKGgGaAloD0MIcZAQ5Qua8L+UhpRSlGgVSzJoFkdAqV32vStvGnV9lChoBmgJaA9DCMsQx7q4rQTAlIaUUpRoFUsyaBZHQKldmhib2Dh1fZQoaAZoCWgPQwgsuYrFb4r4v5SGlFKUaBVLMmgWR0CpXT66STyKdX2UKGgGaAloD0MIc7wC0ZPSAMCUhpRSlGgVSzJoFkdAqV94LsrupnV9lChoBmgJaA9DCG0Dd6BO+fe/lIaUUpRoFUsyaBZHQKlfHjslb/x1fZQoaAZoCWgPQwgmVdtN8A0GwJSGlFKUaBVLMmgWR0CpXsFzMibEdX2UKGgGaAloD0MI/yH99nUg9L+UhpRSlGgVSzJoFkdAqV5mKqGUOnV9lChoBmgJaA9DCNpTck7sAQDAlIaUUpRoFUsyaBZHQKlgm3YL9dh1fZQoaAZoCWgPQwjKarqe6Dr4v5SGlFKUaBVLMmgWR0CpYEFr2xptdX2UKGgGaAloD0MII2WLpN3o4r+UhpRSlGgVSzJoFkdAqV/kzQ/oq3V9lChoBmgJaA9DCIrmASzyywnAlIaUUpRoFUsyaBZHQKlfia8YhuB1fZQoaAZoCWgPQwhjuDoA4m4CwJSGlFKUaBVLMmgWR0CpYcN3np0PdX2UKGgGaAloD0MIMsueBDYHDsCUhpRSlGgVSzJoFkdAqWFpl8PWhHV9lChoBmgJaA9DCN0jm6vm+QHAlIaUUpRoFUsyaBZHQKlhDO1OTJR1fZQoaAZoCWgPQwgFFVW/0jn1v5SGlFKUaBVLMmgWR0CpYLGuLaVVdX2UKGgGaAloD0MIVmZK62+J67+UhpRSlGgVSzJoFkdAqWLd9Wp6yHV9lChoBmgJaA9DCMO7XMR3QgjAlIaUUpRoFUsyaBZHQKlihBj4Hop1fZQoaAZoCWgPQwhhxhSscTYAwJSGlFKUaBVLMmgWR0CpYidpItlJdX2UKGgGaAloD0MI7dXHQ9/d8r+UhpRSlGgVSzJoFkdAqWHMFbFCLXV9lChoBmgJaA9DCJpd91YkJvG/lIaUUpRoFUsyaBZHQKlkDVoYekp1fZQoaAZoCWgPQwjsM2d9yvEEwJSGlFKUaBVLMmgWR0CpY7N0mtyQdX2UKGgGaAloD0MIyoy3lV6b77+UhpRSlGgVSzJoFkdAqWNW3lS0jXV9lChoBmgJaA9DCHV3nQ35hwDAlIaUUpRoFUsyaBZHQKli+5e7cwh1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a7928e5e67c6f806cb627180b9e7256b9be2f38aeed5a715125cc11629e0581
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b13a267faa11d643482c352d15709f2c96b5d1d044fa64960f61ad4ef811564c
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f58f63d8550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f58f63d6ec0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680447056014351218, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA9LvDPn3zy7pNdRA/9LvDPn3zy7pNdRA/9LvDPn3zy7pNdRA/9LvDPn3zy7pNdRA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhf9Cvw+jPD8/1dm/fuFFPxtkeD7BqGs/NY2sP8Cmzr8Ha3e/IrBsP/08wD8aH8I/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD0u8M+ffPLuk11ED/1PcI7aDqBtzC9kDv0u8M+ffPLuk11ED/1PcI7aDqBtzC9kDv0u8M+ffPLuk11ED/1PcI7aDqBtzC9kDv0u8M+ffPLuk11ED/1PcI7aDqBtzC9kDuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.38229334 -0.00155602 0.56428987]\n [ 0.38229334 -0.00155602 0.56428987]\n [ 0.38229334 -0.00155602 0.56428987]\n [ 0.38229334 -0.00155602 0.56428987]]", "desired_goal": "[[-0.7617114 0.7368631 -1.7018203 ]\n [ 0.772972 0.24256937 0.92054373]\n [ 1.3480593 -1.6144638 -0.96647686]\n [ 0.9245626 1.5018612 1.5165741 ]]", "observation": "[[ 3.8229334e-01 -1.5560236e-03 5.6428987e-01 5.9277960e-03\n -1.5405196e-05 4.4170842e-03]\n [ 3.8229334e-01 -1.5560236e-03 5.6428987e-01 5.9277960e-03\n -1.5405196e-05 4.4170842e-03]\n [ 3.8229334e-01 -1.5560236e-03 5.6428987e-01 5.9277960e-03\n -1.5405196e-05 4.4170842e-03]\n [ 3.8229334e-01 -1.5560236e-03 5.6428987e-01 5.9277960e-03\n -1.5405196e-05 4.4170842e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9Tn9vUOfkz03/NA8i7iEPRhMETy4dFA+jwLhveWsgD3365I92O9WPazEDj0Os889lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.1236457 0.07208111 0.02551089]\n [ 0.06480511 0.00886824 0.20357025]\n [-0.10986816 0.06282977 0.07173913]\n [ 0.05247483 0.03485553 0.10141574]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7KNTVz6L8L+UhpRSlIwBbJRLMowBdJRHQKlEYVSn+AF1fZQoaAZoCWgPQwiaP6a1aaz2v5SGlFKUaBVLMmgWR0CpRAguqWC3dX2UKGgGaAloD0MI0F59PPSdAsCUhpRSlGgVSzJoFkdAqUOsWXTmXHV9lChoBmgJaA9DCGHB/YAHxvO/lIaUUpRoFUsyaBZHQKlDUgElme11fZQoaAZoCWgPQwjuJCL8iyD2v5SGlFKUaBVLMmgWR0CpRYkpRXOodX2UKGgGaAloD0MILq2GxD3W9r+UhpRSlGgVSzJoFkdAqUUvSH/LknV9lChoBmgJaA9DCPG4qBYRhfK/lIaUUpRoFUsyaBZHQKlE0qioKlZ1fZQoaAZoCWgPQwhP6zao/dbzv5SGlFKUaBVLMmgWR0CpRHdyDIzWdX2UKGgGaAloD0MIYadYNQjz57+UhpRSlGgVSzJoFkdAqUax3cHnlnV9lChoBmgJaA9DCFVP5h99E+i/lIaUUpRoFUsyaBZHQKlGV+zdDY11fZQoaAZoCWgPQwgMlBRYAPMAwJSGlFKUaBVLMmgWR0CpRftIK+i8dX2UKGgGaAloD0MINstlo3N+CsCUhpRSlGgVSzJoFkdAqUWgFHJ9zHV9lChoBmgJaA9DCB+/t+nPfvm/lIaUUpRoFUsyaBZHQKlH2v/zasZ1fZQoaAZoCWgPQwg6svLLYAwKwJSGlFKUaBVLMmgWR0CpR4EVnEl3dX2UKGgGaAloD0MI98lRgChY+b+UhpRSlGgVSzJoFkdAqUckZtNzsHV9lChoBmgJaA9DCD1JumbyTeO/lIaUUpRoFUsyaBZHQKlGySmIj4Z1fZQoaAZoCWgPQwj11VWBWgz1v5SGlFKUaBVLMmgWR0CpSQQKjSG8dX2UKGgGaAloD0MIotReRNsx9r+UhpRSlGgVSzJoFkdAqUip+YtxuXV9lChoBmgJaA9DCBxEa0WbY/S/lIaUUpRoFUsyaBZHQKlITUPQOWl1fZQoaAZoCWgPQwiSIjKs4i0QwJSGlFKUaBVLMmgWR0CpR/HlXA/LdX2UKGgGaAloD0MI7ImuCz+48b+UhpRSlGgVSzJoFkdAqUoo9FF2FHV9lChoBmgJaA9DCOV620yFePW/lIaUUpRoFUsyaBZHQKlJzwLE1l51fZQoaAZoCWgPQwj21OqrqwL/v5SGlFKUaBVLMmgWR0CpSXJKraM8dX2UKGgGaAloD0MIxxNBnIczBcCUhpRSlGgVSzJoFkdAqUkW8h9srXV9lChoBmgJaA9DCAge3941aPm/lIaUUpRoFUsyaBZHQKlLU6EJ0GN1fZQoaAZoCWgPQwhkP4ulSI4QwJSGlFKUaBVLMmgWR0CpSvnM+u/2dX2UKGgGaAloD0MI14hgHFw6+L+UhpRSlGgVSzJoFkdAqUqdKCg9NnV9lChoBmgJaA9DCJoK8Ui8/PO/lIaUUpRoFUsyaBZHQKlKQbsniNt1fZQoaAZoCWgPQwiQTIdOz7v0v5SGlFKUaBVLMmgWR0CpTHOWa+ewdX2UKGgGaAloD0MIkbQbfcwH+b+UhpRSlGgVSzJoFkdAqUwZgeA/cHV9lChoBmgJaA9DCEeSIFwBJQXAlIaUUpRoFUsyaBZHQKlLvMpw0fp1fZQoaAZoCWgPQwii725liQ7wv5SGlFKUaBVLMmgWR0CpS2GATZg5dX2UKGgGaAloD0MIFLGIYYfx/7+UhpRSlGgVSzJoFkdAqU2Vz4k/r3V9lChoBmgJaA9DCNpVSPlJtfS/lIaUUpRoFUsyaBZHQKlNO90zTF51fZQoaAZoCWgPQwja5Vsf1tv1v5SGlFKUaBVLMmgWR0CpTN8kMTewdX2UKGgGaAloD0MI6lp7n6oCAMCUhpRSlGgVSzJoFkdAqUyDyz5XVHV9lChoBmgJaA9DCJULlX8trwXAlIaUUpRoFUsyaBZHQKlOyGjbi6x1fZQoaAZoCWgPQwiaQ1ILJZPqv5SGlFKUaBVLMmgWR0CpTm5tNzsAdX2UKGgGaAloD0MIcCL6tfUT87+UhpRSlGgVSzJoFkdAqU4RsoDxLHV9lChoBmgJaA9DCMFwrmGGxvu/lIaUUpRoFUsyaBZHQKlNtlDF6zF1fZQoaAZoCWgPQwge3J212+4CwJSGlFKUaBVLMmgWR0CpT96+36RAdX2UKGgGaAloD0MIfEW3XtODD8CUhpRSlGgVSzJoFkdAqU+EbHZK4HV9lChoBmgJaA9DCHEC02ndZgDAlIaUUpRoFUsyaBZHQKlPJ8ohIOJ1fZQoaAZoCWgPQwjiPnJr0q0BwJSGlFKUaBVLMmgWR0CpTsx+z+m4dX2UKGgGaAloD0MIH4SAfAlV+b+UhpRSlGgVSzJoFkdAqVED3Gn4wnV9lChoBmgJaA9DCNPbn4uGDAbAlIaUUpRoFUsyaBZHQKlQqhxo7FN1fZQoaAZoCWgPQwhsCfmgZzPzv5SGlFKUaBVLMmgWR0CpUE1Fpfx+dX2UKGgGaAloD0MI3+ALk6liBMCUhpRSlGgVSzJoFkdAqU/xtvXK83V9lChoBmgJaA9DCNkJL8GpD/y/lIaUUpRoFUsyaBZHQKlSLwx33Yd1fZQoaAZoCWgPQwhZGY18XnH4v5SGlFKUaBVLMmgWR0CpUdUhvBJqdX2UKGgGaAloD0MIPFCnPLrxAMCUhpRSlGgVSzJoFkdAqVF4iA2AG3V9lChoBmgJaA9DCLIRiNf1SwLAlIaUUpRoFUsyaBZHQKlRHT4tYjl1fZQoaAZoCWgPQwit+IbCZ2vuv5SGlFKUaBVLMmgWR0CpVAqiO/+LdX2UKGgGaAloD0MIsMvwn26g/L+UhpRSlGgVSzJoFkdAqVOxbpu/DnV9lChoBmgJaA9DCHHl7J3RtgHAlIaUUpRoFUsyaBZHQKlTVbNbC791fZQoaAZoCWgPQwiWCFT/IFLxv5SGlFKUaBVLMmgWR0CpUvtRvWH2dX2UKGgGaAloD0MIfLjkuFN6AsCUhpRSlGgVSzJoFkdAqVYVgWrOq3V9lChoBmgJaA9DCLa93ZIcUAbAlIaUUpRoFUsyaBZHQKlVvLkjopx1fZQoaAZoCWgPQwhxj6UPXVDtv5SGlFKUaBVLMmgWR0CpVWEZaV2SdX2UKGgGaAloD0MI41C/C1sz6L+UhpRSlGgVSzJoFkdAqVUGzhP0qnV9lChoBmgJaA9DCIxqEVFM3tm/lIaUUpRoFUsyaBZHQKlYHcTJyQx1fZQoaAZoCWgPQwgkuJGyRbIEwJSGlFKUaBVLMmgWR0CpV8T850bMdX2UKGgGaAloD0MIsU0qGmv/7L+UhpRSlGgVSzJoFkdAqVdpAt4A0nV9lChoBmgJaA9DCKjHtgw4awXAlIaUUpRoFUsyaBZHQKlXDqWTouB1fZQoaAZoCWgPQwggzy7f+tAGwJSGlFKUaBVLMmgWR0CpWhlHjIaMdX2UKGgGaAloD0MIJQaBlUOL67+UhpRSlGgVSzJoFkdAqVnAQ+UyHnV9lChoBmgJaA9DCFj+fFuwVPG/lIaUUpRoFUsyaBZHQKlZZJXhfjV1fZQoaAZoCWgPQwhYqDXNO44CwJSGlFKUaBVLMmgWR0CpWQoG6f8NdX2UKGgGaAloD0MISS2UTE6t+7+UhpRSlGgVSzJoFkdAqVvygTRIBnV9lChoBmgJaA9DCP0tAfin1PS/lIaUUpRoFUsyaBZHQKlbmKArhBJ1fZQoaAZoCWgPQwjY8PRKWYb5v5SGlFKUaBVLMmgWR0CpWzvgFX7tdX2UKGgGaAloD0MIHQOy17u//r+UhpRSlGgVSzJoFkdAqVrggcLjP3V9lChoBmgJaA9DCO9xpgnbrwDAlIaUUpRoFUsyaBZHQKldJELpiZx1fZQoaAZoCWgPQwg6OxkcJS/0v5SGlFKUaBVLMmgWR0CpXMpHy3CsdX2UKGgGaAloD0MID7dDw2JUCsCUhpRSlGgVSzJoFkdAqVxtme18cHV9lChoBmgJaA9DCOwxkdJsnv2/lIaUUpRoFUsyaBZHQKlcEk5ZKWd1fZQoaAZoCWgPQwgYJegv9Ij2v5SGlFKUaBVLMmgWR0CpXlCr1dxAdX2UKGgGaAloD0MIcZAQ5Qua8L+UhpRSlGgVSzJoFkdAqV32vStvGnV9lChoBmgJaA9DCMsQx7q4rQTAlIaUUpRoFUsyaBZHQKldmhib2Dh1fZQoaAZoCWgPQwgsuYrFb4r4v5SGlFKUaBVLMmgWR0CpXT66STyKdX2UKGgGaAloD0MIc7wC0ZPSAMCUhpRSlGgVSzJoFkdAqV94LsrupnV9lChoBmgJaA9DCG0Dd6BO+fe/lIaUUpRoFUsyaBZHQKlfHjslb/x1fZQoaAZoCWgPQwgmVdtN8A0GwJSGlFKUaBVLMmgWR0CpXsFzMibEdX2UKGgGaAloD0MI/yH99nUg9L+UhpRSlGgVSzJoFkdAqV5mKqGUOnV9lChoBmgJaA9DCNpTck7sAQDAlIaUUpRoFUsyaBZHQKlgm3YL9dh1fZQoaAZoCWgPQwjKarqe6Dr4v5SGlFKUaBVLMmgWR0CpYEFr2xptdX2UKGgGaAloD0MII2WLpN3o4r+UhpRSlGgVSzJoFkdAqV/kzQ/oq3V9lChoBmgJaA9DCIrmASzyywnAlIaUUpRoFUsyaBZHQKlfia8YhuB1fZQoaAZoCWgPQwhjuDoA4m4CwJSGlFKUaBVLMmgWR0CpYcN3np0PdX2UKGgGaAloD0MIMsueBDYHDsCUhpRSlGgVSzJoFkdAqWFpl8PWhHV9lChoBmgJaA9DCN0jm6vm+QHAlIaUUpRoFUsyaBZHQKlhDO1OTJR1fZQoaAZoCWgPQwgFFVW/0jn1v5SGlFKUaBVLMmgWR0CpYLGuLaVVdX2UKGgGaAloD0MIVmZK62+J67+UhpRSlGgVSzJoFkdAqWLd9Wp6yHV9lChoBmgJaA9DCMO7XMR3QgjAlIaUUpRoFUsyaBZHQKlihBj4Hop1fZQoaAZoCWgPQwhhxhSscTYAwJSGlFKUaBVLMmgWR0CpYidpItlJdX2UKGgGaAloD0MI7dXHQ9/d8r+UhpRSlGgVSzJoFkdAqWHMFbFCLXV9lChoBmgJaA9DCJpd91YkJvG/lIaUUpRoFUsyaBZHQKlkDVoYekp1fZQoaAZoCWgPQwjsM2d9yvEEwJSGlFKUaBVLMmgWR0CpY7N0mtyQdX2UKGgGaAloD0MIyoy3lV6b77+UhpRSlGgVSzJoFkdAqWNW3lS0jXV9lChoBmgJaA9DCHV3nQ35hwDAlIaUUpRoFUsyaBZHQKli+5e7cwh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (362 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.7588679526932538, "std_reward": 0.8327132240017512, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-02T15:45:15.175054"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c54e95f77eb32f5a03ffabcf6c96f4427d05d7ae09004cb94e83c5e1cca14a3
3
+ size 3056