israel-avihail
commited on
Commit
•
30f2b63
1
Parent(s):
b08b572
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.76 +/- 0.83
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd6e36c3addf89e9637092f07180e0e900a01b5e793eb521ed29bcf0a66661b2
|
3 |
+
size 108112
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f58f63d8550>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f58f63d6ec0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1680447056014351218,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA9LvDPn3zy7pNdRA/9LvDPn3zy7pNdRA/9LvDPn3zy7pNdRA/9LvDPn3zy7pNdRA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhf9Cvw+jPD8/1dm/fuFFPxtkeD7BqGs/NY2sP8Cmzr8Ha3e/IrBsP/08wD8aH8I/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD0u8M+ffPLuk11ED/1PcI7aDqBtzC9kDv0u8M+ffPLuk11ED/1PcI7aDqBtzC9kDv0u8M+ffPLuk11ED/1PcI7aDqBtzC9kDv0u8M+ffPLuk11ED/1PcI7aDqBtzC9kDuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.38229334 -0.00155602 0.56428987]\n [ 0.38229334 -0.00155602 0.56428987]\n [ 0.38229334 -0.00155602 0.56428987]\n [ 0.38229334 -0.00155602 0.56428987]]",
|
60 |
+
"desired_goal": "[[-0.7617114 0.7368631 -1.7018203 ]\n [ 0.772972 0.24256937 0.92054373]\n [ 1.3480593 -1.6144638 -0.96647686]\n [ 0.9245626 1.5018612 1.5165741 ]]",
|
61 |
+
"observation": "[[ 3.8229334e-01 -1.5560236e-03 5.6428987e-01 5.9277960e-03\n -1.5405196e-05 4.4170842e-03]\n [ 3.8229334e-01 -1.5560236e-03 5.6428987e-01 5.9277960e-03\n -1.5405196e-05 4.4170842e-03]\n [ 3.8229334e-01 -1.5560236e-03 5.6428987e-01 5.9277960e-03\n -1.5405196e-05 4.4170842e-03]\n [ 3.8229334e-01 -1.5560236e-03 5.6428987e-01 5.9277960e-03\n -1.5405196e-05 4.4170842e-03]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9Tn9vUOfkz03/NA8i7iEPRhMETy4dFA+jwLhveWsgD3365I92O9WPazEDj0Os889lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.1236457 0.07208111 0.02551089]\n [ 0.06480511 0.00886824 0.20357025]\n [-0.10986816 0.06282977 0.07173913]\n [ 0.05247483 0.03485553 0.10141574]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7KNTVz6L8L+UhpRSlIwBbJRLMowBdJRHQKlEYVSn+AF1fZQoaAZoCWgPQwiaP6a1aaz2v5SGlFKUaBVLMmgWR0CpRAguqWC3dX2UKGgGaAloD0MI0F59PPSdAsCUhpRSlGgVSzJoFkdAqUOsWXTmXHV9lChoBmgJaA9DCGHB/YAHxvO/lIaUUpRoFUsyaBZHQKlDUgElme11fZQoaAZoCWgPQwjuJCL8iyD2v5SGlFKUaBVLMmgWR0CpRYkpRXOodX2UKGgGaAloD0MILq2GxD3W9r+UhpRSlGgVSzJoFkdAqUUvSH/LknV9lChoBmgJaA9DCPG4qBYRhfK/lIaUUpRoFUsyaBZHQKlE0qioKlZ1fZQoaAZoCWgPQwhP6zao/dbzv5SGlFKUaBVLMmgWR0CpRHdyDIzWdX2UKGgGaAloD0MIYadYNQjz57+UhpRSlGgVSzJoFkdAqUax3cHnlnV9lChoBmgJaA9DCFVP5h99E+i/lIaUUpRoFUsyaBZHQKlGV+zdDY11fZQoaAZoCWgPQwgMlBRYAPMAwJSGlFKUaBVLMmgWR0CpRftIK+i8dX2UKGgGaAloD0MINstlo3N+CsCUhpRSlGgVSzJoFkdAqUWgFHJ9zHV9lChoBmgJaA9DCB+/t+nPfvm/lIaUUpRoFUsyaBZHQKlH2v/zasZ1fZQoaAZoCWgPQwg6svLLYAwKwJSGlFKUaBVLMmgWR0CpR4EVnEl3dX2UKGgGaAloD0MI98lRgChY+b+UhpRSlGgVSzJoFkdAqUckZtNzsHV9lChoBmgJaA9DCD1JumbyTeO/lIaUUpRoFUsyaBZHQKlGySmIj4Z1fZQoaAZoCWgPQwj11VWBWgz1v5SGlFKUaBVLMmgWR0CpSQQKjSG8dX2UKGgGaAloD0MIotReRNsx9r+UhpRSlGgVSzJoFkdAqUip+YtxuXV9lChoBmgJaA9DCBxEa0WbY/S/lIaUUpRoFUsyaBZHQKlITUPQOWl1fZQoaAZoCWgPQwiSIjKs4i0QwJSGlFKUaBVLMmgWR0CpR/HlXA/LdX2UKGgGaAloD0MI7ImuCz+48b+UhpRSlGgVSzJoFkdAqUoo9FF2FHV9lChoBmgJaA9DCOV620yFePW/lIaUUpRoFUsyaBZHQKlJzwLE1l51fZQoaAZoCWgPQwj21OqrqwL/v5SGlFKUaBVLMmgWR0CpSXJKraM8dX2UKGgGaAloD0MIxxNBnIczBcCUhpRSlGgVSzJoFkdAqUkW8h9srXV9lChoBmgJaA9DCAge3941aPm/lIaUUpRoFUsyaBZHQKlLU6EJ0GN1fZQoaAZoCWgPQwhkP4ulSI4QwJSGlFKUaBVLMmgWR0CpSvnM+u/2dX2UKGgGaAloD0MI14hgHFw6+L+UhpRSlGgVSzJoFkdAqUqdKCg9NnV9lChoBmgJaA9DCJoK8Ui8/PO/lIaUUpRoFUsyaBZHQKlKQbsniNt1fZQoaAZoCWgPQwiQTIdOz7v0v5SGlFKUaBVLMmgWR0CpTHOWa+ewdX2UKGgGaAloD0MIkbQbfcwH+b+UhpRSlGgVSzJoFkdAqUwZgeA/cHV9lChoBmgJaA9DCEeSIFwBJQXAlIaUUpRoFUsyaBZHQKlLvMpw0fp1fZQoaAZoCWgPQwii725liQ7wv5SGlFKUaBVLMmgWR0CpS2GATZg5dX2UKGgGaAloD0MIFLGIYYfx/7+UhpRSlGgVSzJoFkdAqU2Vz4k/r3V9lChoBmgJaA9DCNpVSPlJtfS/lIaUUpRoFUsyaBZHQKlNO90zTF51fZQoaAZoCWgPQwja5Vsf1tv1v5SGlFKUaBVLMmgWR0CpTN8kMTewdX2UKGgGaAloD0MI6lp7n6oCAMCUhpRSlGgVSzJoFkdAqUyDyz5XVHV9lChoBmgJaA9DCJULlX8trwXAlIaUUpRoFUsyaBZHQKlOyGjbi6x1fZQoaAZoCWgPQwiaQ1ILJZPqv5SGlFKUaBVLMmgWR0CpTm5tNzsAdX2UKGgGaAloD0MIcCL6tfUT87+UhpRSlGgVSzJoFkdAqU4RsoDxLHV9lChoBmgJaA9DCMFwrmGGxvu/lIaUUpRoFUsyaBZHQKlNtlDF6zF1fZQoaAZoCWgPQwge3J212+4CwJSGlFKUaBVLMmgWR0CpT96+36RAdX2UKGgGaAloD0MIfEW3XtODD8CUhpRSlGgVSzJoFkdAqU+EbHZK4HV9lChoBmgJaA9DCHEC02ndZgDAlIaUUpRoFUsyaBZHQKlPJ8ohIOJ1fZQoaAZoCWgPQwjiPnJr0q0BwJSGlFKUaBVLMmgWR0CpTsx+z+m4dX2UKGgGaAloD0MIH4SAfAlV+b+UhpRSlGgVSzJoFkdAqVED3Gn4wnV9lChoBmgJaA9DCNPbn4uGDAbAlIaUUpRoFUsyaBZHQKlQqhxo7FN1fZQoaAZoCWgPQwhsCfmgZzPzv5SGlFKUaBVLMmgWR0CpUE1Fpfx+dX2UKGgGaAloD0MI3+ALk6liBMCUhpRSlGgVSzJoFkdAqU/xtvXK83V9lChoBmgJaA9DCNkJL8GpD/y/lIaUUpRoFUsyaBZHQKlSLwx33Yd1fZQoaAZoCWgPQwhZGY18XnH4v5SGlFKUaBVLMmgWR0CpUdUhvBJqdX2UKGgGaAloD0MIPFCnPLrxAMCUhpRSlGgVSzJoFkdAqVF4iA2AG3V9lChoBmgJaA9DCLIRiNf1SwLAlIaUUpRoFUsyaBZHQKlRHT4tYjl1fZQoaAZoCWgPQwit+IbCZ2vuv5SGlFKUaBVLMmgWR0CpVAqiO/+LdX2UKGgGaAloD0MIsMvwn26g/L+UhpRSlGgVSzJoFkdAqVOxbpu/DnV9lChoBmgJaA9DCHHl7J3RtgHAlIaUUpRoFUsyaBZHQKlTVbNbC791fZQoaAZoCWgPQwiWCFT/IFLxv5SGlFKUaBVLMmgWR0CpUvtRvWH2dX2UKGgGaAloD0MIfLjkuFN6AsCUhpRSlGgVSzJoFkdAqVYVgWrOq3V9lChoBmgJaA9DCLa93ZIcUAbAlIaUUpRoFUsyaBZHQKlVvLkjopx1fZQoaAZoCWgPQwhxj6UPXVDtv5SGlFKUaBVLMmgWR0CpVWEZaV2SdX2UKGgGaAloD0MI41C/C1sz6L+UhpRSlGgVSzJoFkdAqVUGzhP0qnV9lChoBmgJaA9DCIxqEVFM3tm/lIaUUpRoFUsyaBZHQKlYHcTJyQx1fZQoaAZoCWgPQwgkuJGyRbIEwJSGlFKUaBVLMmgWR0CpV8T850bMdX2UKGgGaAloD0MIsU0qGmv/7L+UhpRSlGgVSzJoFkdAqVdpAt4A0nV9lChoBmgJaA9DCKjHtgw4awXAlIaUUpRoFUsyaBZHQKlXDqWTouB1fZQoaAZoCWgPQwggzy7f+tAGwJSGlFKUaBVLMmgWR0CpWhlHjIaMdX2UKGgGaAloD0MIJQaBlUOL67+UhpRSlGgVSzJoFkdAqVnAQ+UyHnV9lChoBmgJaA9DCFj+fFuwVPG/lIaUUpRoFUsyaBZHQKlZZJXhfjV1fZQoaAZoCWgPQwhYqDXNO44CwJSGlFKUaBVLMmgWR0CpWQoG6f8NdX2UKGgGaAloD0MISS2UTE6t+7+UhpRSlGgVSzJoFkdAqVvygTRIBnV9lChoBmgJaA9DCP0tAfin1PS/lIaUUpRoFUsyaBZHQKlbmKArhBJ1fZQoaAZoCWgPQwjY8PRKWYb5v5SGlFKUaBVLMmgWR0CpWzvgFX7tdX2UKGgGaAloD0MIHQOy17u//r+UhpRSlGgVSzJoFkdAqVrggcLjP3V9lChoBmgJaA9DCO9xpgnbrwDAlIaUUpRoFUsyaBZHQKldJELpiZx1fZQoaAZoCWgPQwg6OxkcJS/0v5SGlFKUaBVLMmgWR0CpXMpHy3CsdX2UKGgGaAloD0MID7dDw2JUCsCUhpRSlGgVSzJoFkdAqVxtme18cHV9lChoBmgJaA9DCOwxkdJsnv2/lIaUUpRoFUsyaBZHQKlcEk5ZKWd1fZQoaAZoCWgPQwgYJegv9Ij2v5SGlFKUaBVLMmgWR0CpXlCr1dxAdX2UKGgGaAloD0MIcZAQ5Qua8L+UhpRSlGgVSzJoFkdAqV32vStvGnV9lChoBmgJaA9DCMsQx7q4rQTAlIaUUpRoFUsyaBZHQKldmhib2Dh1fZQoaAZoCWgPQwgsuYrFb4r4v5SGlFKUaBVLMmgWR0CpXT66STyKdX2UKGgGaAloD0MIc7wC0ZPSAMCUhpRSlGgVSzJoFkdAqV94LsrupnV9lChoBmgJaA9DCG0Dd6BO+fe/lIaUUpRoFUsyaBZHQKlfHjslb/x1fZQoaAZoCWgPQwgmVdtN8A0GwJSGlFKUaBVLMmgWR0CpXsFzMibEdX2UKGgGaAloD0MI/yH99nUg9L+UhpRSlGgVSzJoFkdAqV5mKqGUOnV9lChoBmgJaA9DCNpTck7sAQDAlIaUUpRoFUsyaBZHQKlgm3YL9dh1fZQoaAZoCWgPQwjKarqe6Dr4v5SGlFKUaBVLMmgWR0CpYEFr2xptdX2UKGgGaAloD0MII2WLpN3o4r+UhpRSlGgVSzJoFkdAqV/kzQ/oq3V9lChoBmgJaA9DCIrmASzyywnAlIaUUpRoFUsyaBZHQKlfia8YhuB1fZQoaAZoCWgPQwhjuDoA4m4CwJSGlFKUaBVLMmgWR0CpYcN3np0PdX2UKGgGaAloD0MIMsueBDYHDsCUhpRSlGgVSzJoFkdAqWFpl8PWhHV9lChoBmgJaA9DCN0jm6vm+QHAlIaUUpRoFUsyaBZHQKlhDO1OTJR1fZQoaAZoCWgPQwgFFVW/0jn1v5SGlFKUaBVLMmgWR0CpYLGuLaVVdX2UKGgGaAloD0MIVmZK62+J67+UhpRSlGgVSzJoFkdAqWLd9Wp6yHV9lChoBmgJaA9DCMO7XMR3QgjAlIaUUpRoFUsyaBZHQKlihBj4Hop1fZQoaAZoCWgPQwhhxhSscTYAwJSGlFKUaBVLMmgWR0CpYidpItlJdX2UKGgGaAloD0MI7dXHQ9/d8r+UhpRSlGgVSzJoFkdAqWHMFbFCLXV9lChoBmgJaA9DCJpd91YkJvG/lIaUUpRoFUsyaBZHQKlkDVoYekp1fZQoaAZoCWgPQwjsM2d9yvEEwJSGlFKUaBVLMmgWR0CpY7N0mtyQdX2UKGgGaAloD0MIyoy3lV6b77+UhpRSlGgVSzJoFkdAqWNW3lS0jXV9lChoBmgJaA9DCHV3nQ35hwDAlIaUUpRoFUsyaBZHQKli+5e7cwh1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a7928e5e67c6f806cb627180b9e7256b9be2f38aeed5a715125cc11629e0581
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b13a267faa11d643482c352d15709f2c96b5d1d044fa64960f61ad4ef811564c
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f58f63d8550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f58f63d6ec0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680447056014351218, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA9LvDPn3zy7pNdRA/9LvDPn3zy7pNdRA/9LvDPn3zy7pNdRA/9LvDPn3zy7pNdRA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhf9Cvw+jPD8/1dm/fuFFPxtkeD7BqGs/NY2sP8Cmzr8Ha3e/IrBsP/08wD8aH8I/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD0u8M+ffPLuk11ED/1PcI7aDqBtzC9kDv0u8M+ffPLuk11ED/1PcI7aDqBtzC9kDv0u8M+ffPLuk11ED/1PcI7aDqBtzC9kDv0u8M+ffPLuk11ED/1PcI7aDqBtzC9kDuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.38229334 -0.00155602 0.56428987]\n [ 0.38229334 -0.00155602 0.56428987]\n [ 0.38229334 -0.00155602 0.56428987]\n [ 0.38229334 -0.00155602 0.56428987]]", "desired_goal": "[[-0.7617114 0.7368631 -1.7018203 ]\n [ 0.772972 0.24256937 0.92054373]\n [ 1.3480593 -1.6144638 -0.96647686]\n [ 0.9245626 1.5018612 1.5165741 ]]", "observation": "[[ 3.8229334e-01 -1.5560236e-03 5.6428987e-01 5.9277960e-03\n -1.5405196e-05 4.4170842e-03]\n [ 3.8229334e-01 -1.5560236e-03 5.6428987e-01 5.9277960e-03\n -1.5405196e-05 4.4170842e-03]\n [ 3.8229334e-01 -1.5560236e-03 5.6428987e-01 5.9277960e-03\n -1.5405196e-05 4.4170842e-03]\n [ 3.8229334e-01 -1.5560236e-03 5.6428987e-01 5.9277960e-03\n -1.5405196e-05 4.4170842e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9Tn9vUOfkz03/NA8i7iEPRhMETy4dFA+jwLhveWsgD3365I92O9WPazEDj0Os889lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.1236457 0.07208111 0.02551089]\n [ 0.06480511 0.00886824 0.20357025]\n [-0.10986816 0.06282977 0.07173913]\n [ 0.05247483 0.03485553 0.10141574]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7KNTVz6L8L+UhpRSlIwBbJRLMowBdJRHQKlEYVSn+AF1fZQoaAZoCWgPQwiaP6a1aaz2v5SGlFKUaBVLMmgWR0CpRAguqWC3dX2UKGgGaAloD0MI0F59PPSdAsCUhpRSlGgVSzJoFkdAqUOsWXTmXHV9lChoBmgJaA9DCGHB/YAHxvO/lIaUUpRoFUsyaBZHQKlDUgElme11fZQoaAZoCWgPQwjuJCL8iyD2v5SGlFKUaBVLMmgWR0CpRYkpRXOodX2UKGgGaAloD0MILq2GxD3W9r+UhpRSlGgVSzJoFkdAqUUvSH/LknV9lChoBmgJaA9DCPG4qBYRhfK/lIaUUpRoFUsyaBZHQKlE0qioKlZ1fZQoaAZoCWgPQwhP6zao/dbzv5SGlFKUaBVLMmgWR0CpRHdyDIzWdX2UKGgGaAloD0MIYadYNQjz57+UhpRSlGgVSzJoFkdAqUax3cHnlnV9lChoBmgJaA9DCFVP5h99E+i/lIaUUpRoFUsyaBZHQKlGV+zdDY11fZQoaAZoCWgPQwgMlBRYAPMAwJSGlFKUaBVLMmgWR0CpRftIK+i8dX2UKGgGaAloD0MINstlo3N+CsCUhpRSlGgVSzJoFkdAqUWgFHJ9zHV9lChoBmgJaA9DCB+/t+nPfvm/lIaUUpRoFUsyaBZHQKlH2v/zasZ1fZQoaAZoCWgPQwg6svLLYAwKwJSGlFKUaBVLMmgWR0CpR4EVnEl3dX2UKGgGaAloD0MI98lRgChY+b+UhpRSlGgVSzJoFkdAqUckZtNzsHV9lChoBmgJaA9DCD1JumbyTeO/lIaUUpRoFUsyaBZHQKlGySmIj4Z1fZQoaAZoCWgPQwj11VWBWgz1v5SGlFKUaBVLMmgWR0CpSQQKjSG8dX2UKGgGaAloD0MIotReRNsx9r+UhpRSlGgVSzJoFkdAqUip+YtxuXV9lChoBmgJaA9DCBxEa0WbY/S/lIaUUpRoFUsyaBZHQKlITUPQOWl1fZQoaAZoCWgPQwiSIjKs4i0QwJSGlFKUaBVLMmgWR0CpR/HlXA/LdX2UKGgGaAloD0MI7ImuCz+48b+UhpRSlGgVSzJoFkdAqUoo9FF2FHV9lChoBmgJaA9DCOV620yFePW/lIaUUpRoFUsyaBZHQKlJzwLE1l51fZQoaAZoCWgPQwj21OqrqwL/v5SGlFKUaBVLMmgWR0CpSXJKraM8dX2UKGgGaAloD0MIxxNBnIczBcCUhpRSlGgVSzJoFkdAqUkW8h9srXV9lChoBmgJaA9DCAge3941aPm/lIaUUpRoFUsyaBZHQKlLU6EJ0GN1fZQoaAZoCWgPQwhkP4ulSI4QwJSGlFKUaBVLMmgWR0CpSvnM+u/2dX2UKGgGaAloD0MI14hgHFw6+L+UhpRSlGgVSzJoFkdAqUqdKCg9NnV9lChoBmgJaA9DCJoK8Ui8/PO/lIaUUpRoFUsyaBZHQKlKQbsniNt1fZQoaAZoCWgPQwiQTIdOz7v0v5SGlFKUaBVLMmgWR0CpTHOWa+ewdX2UKGgGaAloD0MIkbQbfcwH+b+UhpRSlGgVSzJoFkdAqUwZgeA/cHV9lChoBmgJaA9DCEeSIFwBJQXAlIaUUpRoFUsyaBZHQKlLvMpw0fp1fZQoaAZoCWgPQwii725liQ7wv5SGlFKUaBVLMmgWR0CpS2GATZg5dX2UKGgGaAloD0MIFLGIYYfx/7+UhpRSlGgVSzJoFkdAqU2Vz4k/r3V9lChoBmgJaA9DCNpVSPlJtfS/lIaUUpRoFUsyaBZHQKlNO90zTF51fZQoaAZoCWgPQwja5Vsf1tv1v5SGlFKUaBVLMmgWR0CpTN8kMTewdX2UKGgGaAloD0MI6lp7n6oCAMCUhpRSlGgVSzJoFkdAqUyDyz5XVHV9lChoBmgJaA9DCJULlX8trwXAlIaUUpRoFUsyaBZHQKlOyGjbi6x1fZQoaAZoCWgPQwiaQ1ILJZPqv5SGlFKUaBVLMmgWR0CpTm5tNzsAdX2UKGgGaAloD0MIcCL6tfUT87+UhpRSlGgVSzJoFkdAqU4RsoDxLHV9lChoBmgJaA9DCMFwrmGGxvu/lIaUUpRoFUsyaBZHQKlNtlDF6zF1fZQoaAZoCWgPQwge3J212+4CwJSGlFKUaBVLMmgWR0CpT96+36RAdX2UKGgGaAloD0MIfEW3XtODD8CUhpRSlGgVSzJoFkdAqU+EbHZK4HV9lChoBmgJaA9DCHEC02ndZgDAlIaUUpRoFUsyaBZHQKlPJ8ohIOJ1fZQoaAZoCWgPQwjiPnJr0q0BwJSGlFKUaBVLMmgWR0CpTsx+z+m4dX2UKGgGaAloD0MIH4SAfAlV+b+UhpRSlGgVSzJoFkdAqVED3Gn4wnV9lChoBmgJaA9DCNPbn4uGDAbAlIaUUpRoFUsyaBZHQKlQqhxo7FN1fZQoaAZoCWgPQwhsCfmgZzPzv5SGlFKUaBVLMmgWR0CpUE1Fpfx+dX2UKGgGaAloD0MI3+ALk6liBMCUhpRSlGgVSzJoFkdAqU/xtvXK83V9lChoBmgJaA9DCNkJL8GpD/y/lIaUUpRoFUsyaBZHQKlSLwx33Yd1fZQoaAZoCWgPQwhZGY18XnH4v5SGlFKUaBVLMmgWR0CpUdUhvBJqdX2UKGgGaAloD0MIPFCnPLrxAMCUhpRSlGgVSzJoFkdAqVF4iA2AG3V9lChoBmgJaA9DCLIRiNf1SwLAlIaUUpRoFUsyaBZHQKlRHT4tYjl1fZQoaAZoCWgPQwit+IbCZ2vuv5SGlFKUaBVLMmgWR0CpVAqiO/+LdX2UKGgGaAloD0MIsMvwn26g/L+UhpRSlGgVSzJoFkdAqVOxbpu/DnV9lChoBmgJaA9DCHHl7J3RtgHAlIaUUpRoFUsyaBZHQKlTVbNbC791fZQoaAZoCWgPQwiWCFT/IFLxv5SGlFKUaBVLMmgWR0CpUvtRvWH2dX2UKGgGaAloD0MIfLjkuFN6AsCUhpRSlGgVSzJoFkdAqVYVgWrOq3V9lChoBmgJaA9DCLa93ZIcUAbAlIaUUpRoFUsyaBZHQKlVvLkjopx1fZQoaAZoCWgPQwhxj6UPXVDtv5SGlFKUaBVLMmgWR0CpVWEZaV2SdX2UKGgGaAloD0MI41C/C1sz6L+UhpRSlGgVSzJoFkdAqVUGzhP0qnV9lChoBmgJaA9DCIxqEVFM3tm/lIaUUpRoFUsyaBZHQKlYHcTJyQx1fZQoaAZoCWgPQwgkuJGyRbIEwJSGlFKUaBVLMmgWR0CpV8T850bMdX2UKGgGaAloD0MIsU0qGmv/7L+UhpRSlGgVSzJoFkdAqVdpAt4A0nV9lChoBmgJaA9DCKjHtgw4awXAlIaUUpRoFUsyaBZHQKlXDqWTouB1fZQoaAZoCWgPQwggzy7f+tAGwJSGlFKUaBVLMmgWR0CpWhlHjIaMdX2UKGgGaAloD0MIJQaBlUOL67+UhpRSlGgVSzJoFkdAqVnAQ+UyHnV9lChoBmgJaA9DCFj+fFuwVPG/lIaUUpRoFUsyaBZHQKlZZJXhfjV1fZQoaAZoCWgPQwhYqDXNO44CwJSGlFKUaBVLMmgWR0CpWQoG6f8NdX2UKGgGaAloD0MISS2UTE6t+7+UhpRSlGgVSzJoFkdAqVvygTRIBnV9lChoBmgJaA9DCP0tAfin1PS/lIaUUpRoFUsyaBZHQKlbmKArhBJ1fZQoaAZoCWgPQwjY8PRKWYb5v5SGlFKUaBVLMmgWR0CpWzvgFX7tdX2UKGgGaAloD0MIHQOy17u//r+UhpRSlGgVSzJoFkdAqVrggcLjP3V9lChoBmgJaA9DCO9xpgnbrwDAlIaUUpRoFUsyaBZHQKldJELpiZx1fZQoaAZoCWgPQwg6OxkcJS/0v5SGlFKUaBVLMmgWR0CpXMpHy3CsdX2UKGgGaAloD0MID7dDw2JUCsCUhpRSlGgVSzJoFkdAqVxtme18cHV9lChoBmgJaA9DCOwxkdJsnv2/lIaUUpRoFUsyaBZHQKlcEk5ZKWd1fZQoaAZoCWgPQwgYJegv9Ij2v5SGlFKUaBVLMmgWR0CpXlCr1dxAdX2UKGgGaAloD0MIcZAQ5Qua8L+UhpRSlGgVSzJoFkdAqV32vStvGnV9lChoBmgJaA9DCMsQx7q4rQTAlIaUUpRoFUsyaBZHQKldmhib2Dh1fZQoaAZoCWgPQwgsuYrFb4r4v5SGlFKUaBVLMmgWR0CpXT66STyKdX2UKGgGaAloD0MIc7wC0ZPSAMCUhpRSlGgVSzJoFkdAqV94LsrupnV9lChoBmgJaA9DCG0Dd6BO+fe/lIaUUpRoFUsyaBZHQKlfHjslb/x1fZQoaAZoCWgPQwgmVdtN8A0GwJSGlFKUaBVLMmgWR0CpXsFzMibEdX2UKGgGaAloD0MI/yH99nUg9L+UhpRSlGgVSzJoFkdAqV5mKqGUOnV9lChoBmgJaA9DCNpTck7sAQDAlIaUUpRoFUsyaBZHQKlgm3YL9dh1fZQoaAZoCWgPQwjKarqe6Dr4v5SGlFKUaBVLMmgWR0CpYEFr2xptdX2UKGgGaAloD0MII2WLpN3o4r+UhpRSlGgVSzJoFkdAqV/kzQ/oq3V9lChoBmgJaA9DCIrmASzyywnAlIaUUpRoFUsyaBZHQKlfia8YhuB1fZQoaAZoCWgPQwhjuDoA4m4CwJSGlFKUaBVLMmgWR0CpYcN3np0PdX2UKGgGaAloD0MIMsueBDYHDsCUhpRSlGgVSzJoFkdAqWFpl8PWhHV9lChoBmgJaA9DCN0jm6vm+QHAlIaUUpRoFUsyaBZHQKlhDO1OTJR1fZQoaAZoCWgPQwgFFVW/0jn1v5SGlFKUaBVLMmgWR0CpYLGuLaVVdX2UKGgGaAloD0MIVmZK62+J67+UhpRSlGgVSzJoFkdAqWLd9Wp6yHV9lChoBmgJaA9DCMO7XMR3QgjAlIaUUpRoFUsyaBZHQKlihBj4Hop1fZQoaAZoCWgPQwhhxhSscTYAwJSGlFKUaBVLMmgWR0CpYidpItlJdX2UKGgGaAloD0MI7dXHQ9/d8r+UhpRSlGgVSzJoFkdAqWHMFbFCLXV9lChoBmgJaA9DCJpd91YkJvG/lIaUUpRoFUsyaBZHQKlkDVoYekp1fZQoaAZoCWgPQwjsM2d9yvEEwJSGlFKUaBVLMmgWR0CpY7N0mtyQdX2UKGgGaAloD0MIyoy3lV6b77+UhpRSlGgVSzJoFkdAqWNW3lS0jXV9lChoBmgJaA9DCHV3nQ35hwDAlIaUUpRoFUsyaBZHQKli+5e7cwh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (362 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.7588679526932538, "std_reward": 0.8327132240017512, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-02T15:45:15.175054"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c54e95f77eb32f5a03ffabcf6c96f4427d05d7ae09004cb94e83c5e1cca14a3
|
3 |
+
size 3056
|