israel-avihail commited on
Commit
2837fbf
1 Parent(s): b3bbaa3

Push LunarLander-v2 model

Browse files
Bereshit-ppo-v2-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b8f0bb47c3e8745e51a7794ffa67e4a595c57f70acf47d14b1907d7450dbbd4
3
+ size 147393
Bereshit-ppo-v2-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
Bereshit-ppo-v2-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd1c0072940>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd1c00729d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd1c0072a60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd1c0072af0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd1c0072b80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd1c0072c10>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd1c0072ca0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd1c0072d30>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd1c0072dc0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd1c0072e50>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd1c0072ee0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd1c0072f70>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fd1c006e6f0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1677770408615843787,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHPkpj1cTUg9R5FGPRLcn76mLCw9JZTcPAAAAAAAAAAAzTyUu4/+erpzKO+4N7QsM/SyPruaxQg4AACAPwAAgD8AiCG7w0U4uhH5MjTrLY6veNgOOyu3obMAAIA/AACAP2YYNzy4U4+7DtAkPCm9jTwIJse8mB5yPQAAgD8AAIA/2hSUvVx3W7pKwXI5oR6PNKeNMDtKto64AACAPwAAgD+ADIc9aOHzPspsV70Ts76+CREWPU0dP70AAAAAAAAAABrSiT32uFy6C1JMPM5sczw8txK7VepWPQAAgD8AAIA/M/MQOs+leLy2pGY9h4HzvTi6FL1ZgYK+AACAPwAAgD+z0Zk9moynP2a7cz4kzdW+UDHyPf84Aj4AAAAAAAAAAABw6L2PTgs+ivpkPuGfir4Z64E840bpOwAAAAAAAAAARkELvkg2kD8EBx6/n3IQv6rsA76mY5O+AAAAAAAAAABmr5m8SO2Tuohx1Dnf9dY1hYEwO9Da8bgAAIA/AACAPwBY071A7Zw/gAbGvs0XEL9zYj6+MeRDvgAAAAAAAAAAQIlAviTNMz/NiOM9OaG0vrERPr61C3E9AAAAAAAAAABm97q8yxe1P5+Nm75NzGW9/iIlvIPD5b0AAAAAAAAAAM1yPr1z2pI/Jf/PvYP/yL64adO99nIGvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVaRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsFWCxWGNZUCUhpRSlIwBbJRN6AOMAXSUR0DCUVF9Dx9YdX2UKGgGaAloD0MIldOekjPBcUCUhpRSlGgVTfQCaBZHQMJRVuby6MB1fZQoaAZoCWgPQwjhuIybmh9xQJSGlFKUaBVN/wFoFkdAwlGafqX4TXV9lChoBmgJaA9DCL+7lSU6G3JAlIaUUpRoFU1mAWgWR0DCUaXYFqzrdX2UKGgGaAloD0MIjup0IGv9cUCUhpRSlGgVS+ZoFkdAwlHCVNYbKnV9lChoBmgJaA9DCKPIWkMpbHJAlIaUUpRoFU3qAWgWR0DCUeEwco6TdX2UKGgGaAloD0MI6lp7n2phckCUhpRSlGgVTSoBaBZHQMJaZu8Cgbp1fZQoaAZoCWgPQwjgE+tUOa9yQJSGlFKUaBVNMwFoFkdAwlqPncL0BnV9lChoBmgJaA9DCELqdvZVYHNAlIaUUpRoFU0qA2gWR0DCWqi8jAzpdX2UKGgGaAloD0MIuvQvSeU0cECUhpRSlGgVTawBaBZHQMJa8gNXo1V1fZQoaAZoCWgPQwi14EVfgTpzQJSGlFKUaBVL+mgWR0DCWwiiItUXdX2UKGgGaAloD0MI0/nwLEFuZECUhpRSlGgVTegDaBZHQMJbW70e2eB1fZQoaAZoCWgPQwjIQQkzLTxyQJSGlFKUaBVNuQJoFkdAwlupkOI683V9lChoBmgJaA9DCCB+/ntwhHFAlIaUUpRoFUvraBZHQMJcC7zkIX11fZQoaAZoCWgPQwgSaRt/Yp5zQJSGlFKUaBVN2AFoFkdAwlwp2ovSMXV9lChoBmgJaA9DCK9bBMY6KnJAlIaUUpRoFU01AWgWR0DCXC1snAqNdX2UKGgGaAloD0MIJCnpYegLbUCUhpRSlGgVTRkBaBZHQMJcMo91U2l1fZQoaAZoCWgPQwjwoq8gzbVuQJSGlFKUaBVL42gWR0DCXGxVIZqEdX2UKGgGaAloD0MIR40JMReAZ0CUhpRSlGgVTegDaBZHQMJcltIkJKJ1fZQoaAZoCWgPQwgTmiSWlJBxQJSGlFKUaBVL+GgWR0DCXKd3W4EwdX2UKGgGaAloD0MIbm5MT1hjb0CUhpRSlGgVTXMDaBZHQMJc0brcCYF1fZQoaAZoCWgPQwg3+wPltjJtQJSGlFKUaBVNJQJoFkdAwlz5f/FR53V9lChoBmgJaA9DCL3jFB3JjHBAlIaUUpRoFU2DAWgWR0DCXQ8CPp6hdX2UKGgGaAloD0MIrKksCnvscUCUhpRSlGgVS9loFkdAwl1CemvW6XV9lChoBmgJaA9DCO7sKw/SCmVAlIaUUpRoFU3oA2gWR0DCXV5vvSc9dX2UKGgGaAloD0MISSwpd59gckCUhpRSlGgVTQ4BaBZHQMJdkzEBKcx1fZQoaAZoCWgPQwhDHsGNFKhyQJSGlFKUaBVL9WgWR0DCXcnDWK/EdX2UKGgGaAloD0MIVmEzwIVWckCUhpRSlGgVTbICaBZHQMJdzms3hn91fZQoaAZoCWgPQwgvT+eK0iFxQJSGlFKUaBVNOAFoFkdAwl3u1Gb1AnV9lChoBmgJaA9DCN4AM9+BYXFAlIaUUpRoFU2qAWgWR0DCXfS9ytFKdX2UKGgGaAloD0MI81oJ3aWWcECUhpRSlGgVTXMBaBZHQMJeBm96C191fZQoaAZoCWgPQwgFNXwL64pwQJSGlFKUaBVL5WgWR0DCXg9Vmz0IdX2UKGgGaAloD0MIchqiCj/scUCUhpRSlGgVTRsBaBZHQMJeFWeYlY51fZQoaAZoCWgPQwhStd0Enz9yQJSGlFKUaBVN+QFoFkdAwl4Wxlg+hXV9lChoBmgJaA9DCHqnAu65eHNAlIaUUpRoFU1hAWgWR0DCXjJPM0P6dX2UKGgGaAloD0MIJSGRtjEacUCUhpRSlGgVTQADaBZHQMJeQjCpFTh1fZQoaAZoCWgPQwho7Es2HnZwQJSGlFKUaBVNHwNoFkdAwl5JU2kzoHV9lChoBmgJaA9DCKFNDp80l3BAlIaUUpRoFU3PAWgWR0DCXlu/FirldX2UKGgGaAloD0MI9WiqJzNzcECUhpRSlGgVTSoBaBZHQMJezHhS9/V1fZQoaAZoCWgPQwiWlLvPcdxyQJSGlFKUaBVNgAFoFkdAwl772TPjXHV9lChoBmgJaA9DCG5MT1hii29AlIaUUpRoFU0HAWgWR0DCXwXhddE9dX2UKGgGaAloD0MIgzC3ezkYcECUhpRSlGgVTXcBaBZHQMJfabMHKOl1fZQoaAZoCWgPQwhqMuNt5ehzQJSGlFKUaBVNFQFoFkdAwl+CJdB0IXV9lChoBmgJaA9DCMIzoUmiH3FAlIaUUpRoFU0IAWgWR0DCX5fC66J7dX2UKGgGaAloD0MI5nlwdxZHckCUhpRSlGgVTYIBaBZHQMJn3UpuuRt1fZQoaAZoCWgPQwhVFoVdlARwQJSGlFKUaBVNLwJoFkdAwmfehePaMHV9lChoBmgJaA9DCOuM74tLTHBAlIaUUpRoFU2HAWgWR0DCZ+zV2A5JdX2UKGgGaAloD0MIQSlauRd9cUCUhpRSlGgVTaYBaBZHQMJn70MXrMV1fZQoaAZoCWgPQwhnRj8aTuByQJSGlFKUaBVNhgJoFkdAwmfyyEcsDnV9lChoBmgJaA9DCOjYQSWusG5AlIaUUpRoFU1vAWgWR0DCaBTjaPCEdX2UKGgGaAloD0MIPdNLjGVoV0CUhpRSlGgVS89oFkdAwmgmkYXO4XV9lChoBmgJaA9DCJKyRdLusXJAlIaUUpRoFU2lAWgWR0DCaDMwFkhBdX2UKGgGaAloD0MItVAyOfUYcECUhpRSlGgVTRMCaBZHQMJoQvwNLDh1fZQoaAZoCWgPQwjajNMQVW5xQJSGlFKUaBVN+wFoFkdAwmhroB7u2XV9lChoBmgJaA9DCNsUj4vqUXJAlIaUUpRoFU0rAWgWR0DCaHsBuGbkdX2UKGgGaAloD0MIbRyxFp/Hb0CUhpRSlGgVTRgCaBZHQMJoh24d6s11fZQoaAZoCWgPQwg6kPXUakhwQJSGlFKUaBVNcQFoFkdAwmiZb212JXV9lChoBmgJaA9DCOkN95Ebf3FAlIaUUpRoFUv2aBZHQMJotNqxkd51fZQoaAZoCWgPQwhsXWqEfuRwQJSGlFKUaBVL6mgWR0DCaMgexOcldX2UKGgGaAloD0MIxeQNMLOackCUhpRSlGgVS/BoFkdAwmjdTLns9nV9lChoBmgJaA9DCNlCkINSq3JAlIaUUpRoFU0/AWgWR0DCaN5sZYPodX2UKGgGaAloD0MIc9anHJN5bkCUhpRSlGgVS/loFkdAwmjjjXFtK3V9lChoBmgJaA9DCF6iemvgAHNAlIaUUpRoFU1JAWgWR0DCaPSdrftQdX2UKGgGaAloD0MIldV0PdFEbkCUhpRSlGgVS/NoFkdAwmkbFZxJd3V9lChoBmgJaA9DCEax3NJqGW5AlIaUUpRoFU1NAWgWR0DCaSPqC6H1dX2UKGgGaAloD0MIwtmtZTJlc0CUhpRSlGgVTQkBaBZHQMJpP0IkZ751fZQoaAZoCWgPQwhV203wjYFwQJSGlFKUaBVL82gWR0DCaVB9gF5fdX2UKGgGaAloD0MIiZl9HqPjcECUhpRSlGgVTQ0BaBZHQMJperWiDdx1fZQoaAZoCWgPQwjs+Zrl8vlxQJSGlFKUaBVL8GgWR0DCaX023rledX2UKGgGaAloD0MIveXqx6Yoc0CUhpRSlGgVTQQBaBZHQMJpfdu5z5p1fZQoaAZoCWgPQwiE9BQ5RD9tQJSGlFKUaBVNEgFoFkdAwmnbaA4GU3V9lChoBmgJaA9DCMTouYXuV3FAlIaUUpRoFU0JAWgWR0DCae8POIIodX2UKGgGaAloD0MIfERMieTVckCUhpRSlGgVTf4BaBZHQMJp+gpSaVl1fZQoaAZoCWgPQwiA8nfvaOtwQJSGlFKUaBVN0wFoFkdAwmoEa+evp3V9lChoBmgJaA9DCBLds64R0nFAlIaUUpRoFU0YAWgWR0DCagRUT+NtdX2UKGgGaAloD0MImMPuO8ZOcECUhpRSlGgVS9RoFkdAwmoRbJwKjXV9lChoBmgJaA9DCAA8okI1DXBAlIaUUpRoFU0MAWgWR0DCahflCCz1dX2UKGgGaAloD0MIe90iMFavcECUhpRSlGgVTWcBaBZHQMJqNBJZnth1fZQoaAZoCWgPQwjg88MI4V9yQJSGlFKUaBVNDgJoFkdAwmo4oMKCx3V9lChoBmgJaA9DCKuX32lybHNAlIaUUpRoFU0HAWgWR0DCanP1HvtudX2UKGgGaAloD0MI0F59PDSncUCUhpRSlGgVTW0BaBZHQMJqd3QD3dt1fZQoaAZoCWgPQwghkEscefhxQJSGlFKUaBVNUgFoFkdAwmql/5LytnV9lChoBmgJaA9DCJOoF3yaem9AlIaUUpRoFUv3aBZHQMJqsV2q1gJ1fZQoaAZoCWgPQwgbLJykOQpzQJSGlFKUaBVNOAFoFkdAwmsG+6Ae73V9lChoBmgJaA9DCHmsGRnk2E5AlIaUUpRoFUusaBZHQMJrHqQ7tAt1fZQoaAZoCWgPQwgF24gnu4pSQJSGlFKUaBVLx2gWR0DCax7F4s3AdX2UKGgGaAloD0MIMxXikXjwb0CUhpRSlGgVS+doFkdAwmsst5D7ZXV9lChoBmgJaA9DCKpIhbEF5m5AlIaUUpRoFUvsaBZHQMJrS3+l0o11fZQoaAZoCWgPQwiqYir9hNtzQJSGlFKUaBVNdgFoFkdAwmtjiYsunXV9lChoBmgJaA9DCFMJT+j1UXJAlIaUUpRoFU0WAWgWR0DCa2abvw3HdX2UKGgGaAloD0MIZePBFvvncUCUhpRSlGgVTQQBaBZHQMJrlsz/IbR1fZQoaAZoCWgPQwjoacAgKQ1zQJSGlFKUaBVNLAFoFkdAwmuZezD4xnV9lChoBmgJaA9DCILix5h7/nJAlIaUUpRoFUvyaBZHQMJryaXrt3R1fZQoaAZoCWgPQwg4MSQn02BxQJSGlFKUaBVN9AFoFkdAwmvcFsYVI3V9lChoBmgJaA9DCHjvqDHhvHFAlIaUUpRoFU2cAWgWR0DCbBsUZeiSdX2UKGgGaAloD0MIJQfsavLWc0CUhpRSlGgVTTkBaBZHQMJscoKlYU51fZQoaAZoCWgPQwiG4/kMaHhxQJSGlFKUaBVNMQFoFkdAwmx0lxffGnV9lChoBmgJaA9DCEFHq1rSom5AlIaUUpRoFU1gAWgWR0DCbHlRrJr+dX2UKGgGaAloD0MIrfawFwo8cUCUhpRSlGgVS+hoFkdAwmx8UX531XV9lChoBmgJaA9DCDwyVps/lnJAlIaUUpRoFU0GAWgWR0DCbI+oLofTdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 744,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 12,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
Bereshit-ppo-v2-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9bc1822dad9f07420378dacfec33b125d8a8c07ebcde48028a07cbbc795c97c3
3
+ size 87929
Bereshit-ppo-v2-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82d5d0ee2a880819a665d93870e8078182460d75a036df8a1ba9639a067ba222
3
+ size 43393
Bereshit-ppo-v2-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
Bereshit-ppo-v2-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 242.38 +/- 15.25
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 273.89 +/- 15.96
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd1c0072940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd1c00729d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd1c0072a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd1c0072af0>", "_build": "<function ActorCriticPolicy._build at 0x7fd1c0072b80>", "forward": "<function ActorCriticPolicy.forward at 0x7fd1c0072c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd1c0072ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd1c0072d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd1c0072dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd1c0072e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd1c0072ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd1c0072f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd1c006e6f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677762831830691842, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADqIST4xwn0+oRoxvmEUgb6c/6q8Nk8IvQAAAAAAAAAAANKaPF/rtD5ABU++5iCEvnYeeTz/DSm9AAAAAAAAAADNS249w4FZuv5jFbpRVAq5z1U+Ohe7NzkAAIA/AACAP808MjuuxYG6XYnytl5X6DBYB9O6XUkMNgAAgD8AAIA/+vYSvtxq3D4OeUM+So5qvgD+kjzcj5a9AAAAAAAAAAAzi+u7KeRrup6eQbpAKDK5kc3uul6mdTkAAIA/AACAP2ZURT04kq+7UkH6uqpVkjwL4RK91gB4PQAAgD8AAIA/AKDCO/ZMHboFemy6hLAgtoCFCTnLFYc5AACAPwAAgD/N+qg9FLzMuv0TBrxyOUO8T8XKu54aK70AAIA/AACAP4BaYj3D0Q+6TvOuuuB1iLXcoz+4ihTIOQAAgD8AAIA/gG7bPY/2AbqR9bK6BoYluc538zmqVNs5AACAPwAAgD/zpQG+iHwjP93r2D2HS2m+zzelu639JT4AAAAAAAAAADMzIrt0uls+KWmIvVSbIr6VP329prlwvQAAAAAAAAAAGsW5vR0IlD9K08m+TaPsviiZ/7w+Lyi+AAAAAAAAAAAAhYQ9t5+hP1L2Oj5TNaK+t+X1PYK8n7wAAAAAAAAAAOZeNL0zYLw/9/GgvrcZRT0wvzM6K6fGvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInxwFiIILb0CUhpRSlIwBbJRNMQGMAXSUR0CS+hlMRHwxdX2UKGgGaAloD0MITpgwmtVZcUCUhpRSlGgVTWEBaBZHQJL7EHIIWxh1fZQoaAZoCWgPQwg+CWzOgWtwQJSGlFKUaBVNRQFoFkdAkvuAmVqveXV9lChoBmgJaA9DCIguqG+Ze2xAlIaUUpRoFU00AWgWR0CS+4xDLKV6dX2UKGgGaAloD0MIi6pf6Xy5bUCUhpRSlGgVTUEBaBZHQJL7vQSi/PB1fZQoaAZoCWgPQwh9sIwN3WxuQJSGlFKUaBVNawFoFkdAkv5prgwXZXV9lChoBmgJaA9DCHhflQuV+XBAlIaUUpRoFU0ZAWgWR0CS/rwM6RyPdX2UKGgGaAloD0MIVu9wO3S2cECUhpRSlGgVTR8BaBZHQJL/JGI9C/p1fZQoaAZoCWgPQwia7nVSXx9vQJSGlFKUaBVNRQFoFkdAkv+DTa0x/XV9lChoBmgJaA9DCBZQqKfP+HFAlIaUUpRoFU0dAWgWR0CS/5xNIsiCdX2UKGgGaAloD0MIeAjjp/GaaECUhpRSlGgVTZUCaBZHQJMAW5lOGj91fZQoaAZoCWgPQwjOOXgmNNFrQJSGlFKUaBVNWAFoFkdAkwBxIatLc3V9lChoBmgJaA9DCCFcAYX6nG9AlIaUUpRoFU0ZAWgWR0CTAJwFC9h7dX2UKGgGaAloD0MIKqio+lVgcECUhpRSlGgVTZQBaBZHQJMC+MBIWgx1fZQoaAZoCWgPQwj9EYYBS6JJQJSGlFKUaBVL5mgWR0CTA7aCL/CJdX2UKGgGaAloD0MIIQIOoYpwckCUhpRSlGgVTUkBaBZHQJMD0cdYGMZ1fZQoaAZoCWgPQwjECrd8JEduQJSGlFKUaBVNOwFoFkdAkwZg5/9YOnV9lChoBmgJaA9DCGZpp+ayGXJAlIaUUpRoFU0WAWgWR0CTBtYa5wwTdX2UKGgGaAloD0MIRzgteNHYcECUhpRSlGgVTREBaBZHQJMHG8f3evZ1fZQoaAZoCWgPQwjDu1zE9w5wQJSGlFKUaBVNZAFoFkdAkyG/a11GLHV9lChoBmgJaA9DCKYr2EZ8G3FAlIaUUpRoFU0UAWgWR0CTIiw0fozOdX2UKGgGaAloD0MI5bZ9jzo9cECUhpRSlGgVTScBaBZHQJMi5YwIt191fZQoaAZoCWgPQwhyNh0BXOFuQJSGlFKUaBVNeQFoFkdAkyLnHWBjF3V9lChoBmgJaA9DCF6EKcqlCHFAlIaUUpRoFU08AWgWR0CTIudJJ5E/dX2UKGgGaAloD0MIknnkD4bzcECUhpRSlGgVTTkBaBZHQJMjBrGipNt1fZQoaAZoCWgPQwiB0Hr4MjRsQJSGlFKUaBVNJgFoFkdAkyZNrwe/6HV9lChoBmgJaA9DCAAbECHum3JAlIaUUpRoFU1vAWgWR0CTJo3QD3dsdX2UKGgGaAloD0MIq1s9Jz05cECUhpRSlGgVTWoBaBZHQJMmj0pVjqh1fZQoaAZoCWgPQwiSBre1hS5uQJSGlFKUaBVNcwFoFkdAkyamAskIHHV9lChoBmgJaA9DCLafjPHhC3NAlIaUUpRoFU0IAWgWR0CTKK69kBjndX2UKGgGaAloD0MIzvxqDtASckCUhpRSlGgVTRoBaBZHQJMoxchTwUh1fZQoaAZoCWgPQwh1PdF1YcptQJSGlFKUaBVN2AFoFkdAkykzi0fHP3V9lChoBmgJaA9DCIT1fw7zdXBAlIaUUpRoFU0nAWgWR0CTKYUNKAavdX2UKGgGaAloD0MIKxiV1Ikeb0CUhpRSlGgVTZ8BaBZHQJMrOa8YhuB1fZQoaAZoCWgPQwjvkGKABE9wQJSGlFKUaBVNpQFoFkdAkyuErwvxpnV9lChoBmgJaA9DCF8KD5odaHFAlIaUUpRoFU08AWgWR0CTLot3fQ8fdX2UKGgGaAloD0MINIRjlr2QckCUhpRSlGgVTVUBaBZHQJMu3XXiBGx1fZQoaAZoCWgPQwgE5bZ9j/VuQJSGlFKUaBVNfwFoFkdAkzAjn7pFC3V9lChoBmgJaA9DCIe/JmsU4XFAlIaUUpRoFU1nAWgWR0CTMETI/7iydX2UKGgGaAloD0MImiZsPxlOcUCUhpRSlGgVTXQBaBZHQJMw3863iJh1fZQoaAZoCWgPQwholC79y1xtQJSGlFKUaBVNIgFoFkdAkzEuWBz3iHV9lChoBmgJaA9DCB8UlKIVt2tAlIaUUpRoFU0xAWgWR0CTMX5rxiG4dX2UKGgGaAloD0MI83NDU/bLcECUhpRSlGgVTaEBaBZHQJMyTHggow51fZQoaAZoCWgPQwj9wcBzb/RyQJSGlFKUaBVNUwFoFkdAkzLR/ZuhsnV9lChoBmgJaA9DCMPUljrIMXFAlIaUUpRoFU1pAWgWR0CTM5bAk9lmdX2UKGgGaAloD0MIiIOEKF8Ob0CUhpRSlGgVTTwBaBZHQJM0gzEaVD91fZQoaAZoCWgPQwhz2eicHwNxQJSGlFKUaBVNaQFoFkdAkzWEmx+rl3V9lChoBmgJaA9DCN/A5EbRo3FAlIaUUpRoFU1eAWgWR0CTNfdhy8zzdX2UKGgGaAloD0MILq2GxL1jcUCUhpRSlGgVTS8BaBZHQJM2RtxdY4h1fZQoaAZoCWgPQwhgsBu27Y9xQJSGlFKUaBVNkwFoFkdAkzbiT+vQnnV9lChoBmgJaA9DCOW36GSpJW5AlIaUUpRoFU1dAWgWR0CTN10/W1+idX2UKGgGaAloD0MINe7Nbxh9cUCUhpRSlGgVTS8BaBZHQJM4ll7MPjJ1fZQoaAZoCWgPQwi7uI0GcA5yQJSGlFKUaBVNUwFoFkdAkzoWG/N7jXV9lChoBmgJaA9DCAw9YvScdnJAlIaUUpRoFU1QAWgWR0CTO2aFmFrVdX2UKGgGaAloD0MI3XwjumficUCUhpRSlGgVTVQBaBZHQJM9IKD01651fZQoaAZoCWgPQwgC1NSytaxtQJSGlFKUaBVNTQFoFkdAkz0+AVfu1HV9lChoBmgJaA9DCEVI3c6+wm5AlIaUUpRoFU05AWgWR0CTPlBt1p0wdX2UKGgGaAloD0MItHVwsLe1cECUhpRSlGgVTXQBaBZHQJM+YLUkOZt1fZQoaAZoCWgPQwjJWkOpfeZwQJSGlFKUaBVNUAFoFkdAkz6sZtNzsHV9lChoBmgJaA9DCHV4COMn1G1AlIaUUpRoFU1FAWgWR0CTQcPNFBppdX2UKGgGaAloD0MIiVxwBn8sa0CUhpRSlGgVTXIBaBZHQJNCrQZ4wAV1fZQoaAZoCWgPQwh4exACMn1xQJSGlFKUaBVNNQFoFkdAk0PawpvxY3V9lChoBmgJaA9DCLQh/8yg629AlIaUUpRoFU1WAWgWR0CTRFCMglnidX2UKGgGaAloD0MIW+m12VjHcECUhpRSlGgVTY4BaBZHQJNfrRMN+b51fZQoaAZoCWgPQwiqm4u/rQVyQJSGlFKUaBVN1wFoFkdAk2Sy+pOvdXV9lChoBmgJaA9DCAZHyaszNHBAlIaUUpRoFU1CAWgWR0CTZLMUh3aBdX2UKGgGaAloD0MIjpWYZ+X7cECUhpRSlGgVTTABaBZHQJNk0KQaJhx1fZQoaAZoCWgPQwg3GsBbIDFwQJSGlFKUaBVNOQFoFkdAk2VUdeY2KnV9lChoBmgJaA9DCACPqFBd/m5AlIaUUpRoFU3aAmgWR0CTZp/5+H8CdX2UKGgGaAloD0MIlMFR8uqzckCUhpRSlGgVTQIBaBZHQJNnrhUBGQV1fZQoaAZoCWgPQwjZlCu8y3JwQJSGlFKUaBVNsAFoFkdAk2ilLFn7HnV9lChoBmgJaA9DCDpBmxx+D3BAlIaUUpRoFU3VAWgWR0CTaOFOO802dX2UKGgGaAloD0MIs1w2OmcSbkCUhpRSlGgVTQECaBZHQJNo4oTfzjF1fZQoaAZoCWgPQwj44ov2uJFxQJSGlFKUaBVN0QFoFkdAk2xHgccU/XV9lChoBmgJaA9DCNjYJao3iW5AlIaUUpRoFU3MAWgWR0CTby6Rhc7hdX2UKGgGaAloD0MI6pYd4h87b0CUhpRSlGgVTS8BaBZHQJNyTKdQO4J1fZQoaAZoCWgPQwjhtUsbToZxQJSGlFKUaBVNIAJoFkdAk3JpTuOS4nV9lChoBmgJaA9DCOW4UzqYk3BAlIaUUpRoFU07AWgWR0CTcsX9R77bdX2UKGgGaAloD0MIgLdAguLbb0CUhpRSlGgVTQECaBZHQJNzGNvOyFB1fZQoaAZoCWgPQwjkafmBKw5wQJSGlFKUaBVNXgFoFkdAk3TNIPK+z3V9lChoBmgJaA9DCC81Qj9T43BAlIaUUpRoFU0fAWgWR0CTdPZha1TjdX2UKGgGaAloD0MIAcEcPf7ObUCUhpRSlGgVTTUBaBZHQJN1Ci48U211fZQoaAZoCWgPQwgyO4veqSZtQJSGlFKUaBVNxQJoFkdAk3WuH31zyXV9lChoBmgJaA9DCLsPQGqTNG9AlIaUUpRoFU1FAWgWR0CTdorMC9ytdX2UKGgGaAloD0MIaY6s/LKycUCUhpRSlGgVTQICaBZHQJN3A5Qxesx1fZQoaAZoCWgPQwhW1cvvtMByQJSGlFKUaBVNoQFoFkdAk3f80cfeUXV9lChoBmgJaA9DCHS2gNB6xF9AlIaUUpRoFU3oA2gWR0CTeQuSfUWmdX2UKGgGaAloD0MIdzBinwBkcUCUhpRSlGgVTUYBaBZHQJN5skfLcKx1fZQoaAZoCWgPQwhFLc2tEMpuQJSGlFKUaBVN/AFoFkdAk3o51A7gbnV9lChoBmgJaA9DCKaAtP8BlXBAlIaUUpRoFU02AWgWR0CTfBU+LWI5dX2UKGgGaAloD0MIzok9tE/CcECUhpRSlGgVTfoBaBZHQJN+Gu7pV0d1fZQoaAZoCWgPQwhxVG6i1r9xQJSGlFKUaBVNMAFoFkdAk4Aa9GqgiHV9lChoBmgJaA9DCLhYUYPpv3BAlIaUUpRoFU02AWgWR0CThLC7btZ3dX2UKGgGaAloD0MIyuGTTuSccECUhpRSlGgVTW8BaBZHQJOHQMBp5/t1fZQoaAZoCWgPQwhM4UGz6wpuQJSGlFKUaBVNnwFoFkdAk4dVKwpvxnV9lChoBmgJaA9DCPDd5o3TI3BAlIaUUpRoFU17AWgWR0CTiFD9wWFfdX2UKGgGaAloD0MI5ueGpuzcb0CUhpRSlGgVTd0BaBZHQJOK1EqlP8B1fZQoaAZoCWgPQwjmkNRCyWpuQJSGlFKUaBVNgAFoFkdAk4/KOYIBzXV9lChoBmgJaA9DCAJhp1g1unFAlIaUUpRoFU2gAWgWR0CTkA3qRlpXdX2UKGgGaAloD0MIHAqfrcN6cUCUhpRSlGgVTQACaBZHQJOQeP3i7051ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd1c0072940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd1c00729d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd1c0072a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd1c0072af0>", "_build": "<function ActorCriticPolicy._build at 0x7fd1c0072b80>", "forward": "<function ActorCriticPolicy.forward at 0x7fd1c0072c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd1c0072ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd1c0072d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd1c0072dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd1c0072e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd1c0072ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd1c0072f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd1c006e6f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677770408615843787, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHPkpj1cTUg9R5FGPRLcn76mLCw9JZTcPAAAAAAAAAAAzTyUu4/+erpzKO+4N7QsM/SyPruaxQg4AACAPwAAgD8AiCG7w0U4uhH5MjTrLY6veNgOOyu3obMAAIA/AACAP2YYNzy4U4+7DtAkPCm9jTwIJse8mB5yPQAAgD8AAIA/2hSUvVx3W7pKwXI5oR6PNKeNMDtKto64AACAPwAAgD+ADIc9aOHzPspsV70Ts76+CREWPU0dP70AAAAAAAAAABrSiT32uFy6C1JMPM5sczw8txK7VepWPQAAgD8AAIA/M/MQOs+leLy2pGY9h4HzvTi6FL1ZgYK+AACAPwAAgD+z0Zk9moynP2a7cz4kzdW+UDHyPf84Aj4AAAAAAAAAAABw6L2PTgs+ivpkPuGfir4Z64E840bpOwAAAAAAAAAARkELvkg2kD8EBx6/n3IQv6rsA76mY5O+AAAAAAAAAABmr5m8SO2Tuohx1Dnf9dY1hYEwO9Da8bgAAIA/AACAPwBY071A7Zw/gAbGvs0XEL9zYj6+MeRDvgAAAAAAAAAAQIlAviTNMz/NiOM9OaG0vrERPr61C3E9AAAAAAAAAABm97q8yxe1P5+Nm75NzGW9/iIlvIPD5b0AAAAAAAAAAM1yPr1z2pI/Jf/PvYP/yL64adO99nIGvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVaRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsFWCxWGNZUCUhpRSlIwBbJRN6AOMAXSUR0DCUVF9Dx9YdX2UKGgGaAloD0MIldOekjPBcUCUhpRSlGgVTfQCaBZHQMJRVuby6MB1fZQoaAZoCWgPQwjhuIybmh9xQJSGlFKUaBVN/wFoFkdAwlGafqX4TXV9lChoBmgJaA9DCL+7lSU6G3JAlIaUUpRoFU1mAWgWR0DCUaXYFqzrdX2UKGgGaAloD0MIjup0IGv9cUCUhpRSlGgVS+ZoFkdAwlHCVNYbKnV9lChoBmgJaA9DCKPIWkMpbHJAlIaUUpRoFU3qAWgWR0DCUeEwco6TdX2UKGgGaAloD0MI6lp7n2phckCUhpRSlGgVTSoBaBZHQMJaZu8Cgbp1fZQoaAZoCWgPQwjgE+tUOa9yQJSGlFKUaBVNMwFoFkdAwlqPncL0BnV9lChoBmgJaA9DCELqdvZVYHNAlIaUUpRoFU0qA2gWR0DCWqi8jAzpdX2UKGgGaAloD0MIuvQvSeU0cECUhpRSlGgVTawBaBZHQMJa8gNXo1V1fZQoaAZoCWgPQwi14EVfgTpzQJSGlFKUaBVL+mgWR0DCWwiiItUXdX2UKGgGaAloD0MI0/nwLEFuZECUhpRSlGgVTegDaBZHQMJbW70e2eB1fZQoaAZoCWgPQwjIQQkzLTxyQJSGlFKUaBVNuQJoFkdAwlupkOI683V9lChoBmgJaA9DCCB+/ntwhHFAlIaUUpRoFUvraBZHQMJcC7zkIX11fZQoaAZoCWgPQwgSaRt/Yp5zQJSGlFKUaBVN2AFoFkdAwlwp2ovSMXV9lChoBmgJaA9DCK9bBMY6KnJAlIaUUpRoFU01AWgWR0DCXC1snAqNdX2UKGgGaAloD0MIJCnpYegLbUCUhpRSlGgVTRkBaBZHQMJcMo91U2l1fZQoaAZoCWgPQwjwoq8gzbVuQJSGlFKUaBVL42gWR0DCXGxVIZqEdX2UKGgGaAloD0MIR40JMReAZ0CUhpRSlGgVTegDaBZHQMJcltIkJKJ1fZQoaAZoCWgPQwgTmiSWlJBxQJSGlFKUaBVL+GgWR0DCXKd3W4EwdX2UKGgGaAloD0MIbm5MT1hjb0CUhpRSlGgVTXMDaBZHQMJc0brcCYF1fZQoaAZoCWgPQwg3+wPltjJtQJSGlFKUaBVNJQJoFkdAwlz5f/FR53V9lChoBmgJaA9DCL3jFB3JjHBAlIaUUpRoFU2DAWgWR0DCXQ8CPp6hdX2UKGgGaAloD0MIrKksCnvscUCUhpRSlGgVS9loFkdAwl1CemvW6XV9lChoBmgJaA9DCO7sKw/SCmVAlIaUUpRoFU3oA2gWR0DCXV5vvSc9dX2UKGgGaAloD0MISSwpd59gckCUhpRSlGgVTQ4BaBZHQMJdkzEBKcx1fZQoaAZoCWgPQwhDHsGNFKhyQJSGlFKUaBVL9WgWR0DCXcnDWK/EdX2UKGgGaAloD0MIVmEzwIVWckCUhpRSlGgVTbICaBZHQMJdzms3hn91fZQoaAZoCWgPQwgvT+eK0iFxQJSGlFKUaBVNOAFoFkdAwl3u1Gb1AnV9lChoBmgJaA9DCN4AM9+BYXFAlIaUUpRoFU2qAWgWR0DCXfS9ytFKdX2UKGgGaAloD0MI81oJ3aWWcECUhpRSlGgVTXMBaBZHQMJeBm96C191fZQoaAZoCWgPQwgFNXwL64pwQJSGlFKUaBVL5WgWR0DCXg9Vmz0IdX2UKGgGaAloD0MIchqiCj/scUCUhpRSlGgVTRsBaBZHQMJeFWeYlY51fZQoaAZoCWgPQwhStd0Enz9yQJSGlFKUaBVN+QFoFkdAwl4Wxlg+hXV9lChoBmgJaA9DCHqnAu65eHNAlIaUUpRoFU1hAWgWR0DCXjJPM0P6dX2UKGgGaAloD0MIJSGRtjEacUCUhpRSlGgVTQADaBZHQMJeQjCpFTh1fZQoaAZoCWgPQwho7Es2HnZwQJSGlFKUaBVNHwNoFkdAwl5JU2kzoHV9lChoBmgJaA9DCKFNDp80l3BAlIaUUpRoFU3PAWgWR0DCXlu/FirldX2UKGgGaAloD0MI9WiqJzNzcECUhpRSlGgVTSoBaBZHQMJezHhS9/V1fZQoaAZoCWgPQwiWlLvPcdxyQJSGlFKUaBVNgAFoFkdAwl772TPjXHV9lChoBmgJaA9DCG5MT1hii29AlIaUUpRoFU0HAWgWR0DCXwXhddE9dX2UKGgGaAloD0MIgzC3ezkYcECUhpRSlGgVTXcBaBZHQMJfabMHKOl1fZQoaAZoCWgPQwhqMuNt5ehzQJSGlFKUaBVNFQFoFkdAwl+CJdB0IXV9lChoBmgJaA9DCMIzoUmiH3FAlIaUUpRoFU0IAWgWR0DCX5fC66J7dX2UKGgGaAloD0MI5nlwdxZHckCUhpRSlGgVTYIBaBZHQMJn3UpuuRt1fZQoaAZoCWgPQwhVFoVdlARwQJSGlFKUaBVNLwJoFkdAwmfehePaMHV9lChoBmgJaA9DCOuM74tLTHBAlIaUUpRoFU2HAWgWR0DCZ+zV2A5JdX2UKGgGaAloD0MIQSlauRd9cUCUhpRSlGgVTaYBaBZHQMJn70MXrMV1fZQoaAZoCWgPQwhnRj8aTuByQJSGlFKUaBVNhgJoFkdAwmfyyEcsDnV9lChoBmgJaA9DCOjYQSWusG5AlIaUUpRoFU1vAWgWR0DCaBTjaPCEdX2UKGgGaAloD0MIPdNLjGVoV0CUhpRSlGgVS89oFkdAwmgmkYXO4XV9lChoBmgJaA9DCJKyRdLusXJAlIaUUpRoFU2lAWgWR0DCaDMwFkhBdX2UKGgGaAloD0MItVAyOfUYcECUhpRSlGgVTRMCaBZHQMJoQvwNLDh1fZQoaAZoCWgPQwjajNMQVW5xQJSGlFKUaBVN+wFoFkdAwmhroB7u2XV9lChoBmgJaA9DCNsUj4vqUXJAlIaUUpRoFU0rAWgWR0DCaHsBuGbkdX2UKGgGaAloD0MIbRyxFp/Hb0CUhpRSlGgVTRgCaBZHQMJoh24d6s11fZQoaAZoCWgPQwg6kPXUakhwQJSGlFKUaBVNcQFoFkdAwmiZb212JXV9lChoBmgJaA9DCOkN95Ebf3FAlIaUUpRoFUv2aBZHQMJotNqxkd51fZQoaAZoCWgPQwhsXWqEfuRwQJSGlFKUaBVL6mgWR0DCaMgexOcldX2UKGgGaAloD0MIxeQNMLOackCUhpRSlGgVS/BoFkdAwmjdTLns9nV9lChoBmgJaA9DCNlCkINSq3JAlIaUUpRoFU0/AWgWR0DCaN5sZYPodX2UKGgGaAloD0MIc9anHJN5bkCUhpRSlGgVS/loFkdAwmjjjXFtK3V9lChoBmgJaA9DCF6iemvgAHNAlIaUUpRoFU1JAWgWR0DCaPSdrftQdX2UKGgGaAloD0MIldV0PdFEbkCUhpRSlGgVS/NoFkdAwmkbFZxJd3V9lChoBmgJaA9DCEax3NJqGW5AlIaUUpRoFU1NAWgWR0DCaSPqC6H1dX2UKGgGaAloD0MIwtmtZTJlc0CUhpRSlGgVTQkBaBZHQMJpP0IkZ751fZQoaAZoCWgPQwhV203wjYFwQJSGlFKUaBVL82gWR0DCaVB9gF5fdX2UKGgGaAloD0MIiZl9HqPjcECUhpRSlGgVTQ0BaBZHQMJperWiDdx1fZQoaAZoCWgPQwjs+Zrl8vlxQJSGlFKUaBVL8GgWR0DCaX023rledX2UKGgGaAloD0MIveXqx6Yoc0CUhpRSlGgVTQQBaBZHQMJpfdu5z5p1fZQoaAZoCWgPQwiE9BQ5RD9tQJSGlFKUaBVNEgFoFkdAwmnbaA4GU3V9lChoBmgJaA9DCMTouYXuV3FAlIaUUpRoFU0JAWgWR0DCae8POIIodX2UKGgGaAloD0MIfERMieTVckCUhpRSlGgVTf4BaBZHQMJp+gpSaVl1fZQoaAZoCWgPQwiA8nfvaOtwQJSGlFKUaBVN0wFoFkdAwmoEa+evp3V9lChoBmgJaA9DCBLds64R0nFAlIaUUpRoFU0YAWgWR0DCagRUT+NtdX2UKGgGaAloD0MImMPuO8ZOcECUhpRSlGgVS9RoFkdAwmoRbJwKjXV9lChoBmgJaA9DCAA8okI1DXBAlIaUUpRoFU0MAWgWR0DCahflCCz1dX2UKGgGaAloD0MIe90iMFavcECUhpRSlGgVTWcBaBZHQMJqNBJZnth1fZQoaAZoCWgPQwjg88MI4V9yQJSGlFKUaBVNDgJoFkdAwmo4oMKCx3V9lChoBmgJaA9DCKuX32lybHNAlIaUUpRoFU0HAWgWR0DCanP1HvtudX2UKGgGaAloD0MI0F59PDSncUCUhpRSlGgVTW0BaBZHQMJqd3QD3dt1fZQoaAZoCWgPQwghkEscefhxQJSGlFKUaBVNUgFoFkdAwmql/5LytnV9lChoBmgJaA9DCJOoF3yaem9AlIaUUpRoFUv3aBZHQMJqsV2q1gJ1fZQoaAZoCWgPQwgbLJykOQpzQJSGlFKUaBVNOAFoFkdAwmsG+6Ae73V9lChoBmgJaA9DCHmsGRnk2E5AlIaUUpRoFUusaBZHQMJrHqQ7tAt1fZQoaAZoCWgPQwgF24gnu4pSQJSGlFKUaBVLx2gWR0DCax7F4s3AdX2UKGgGaAloD0MIMxXikXjwb0CUhpRSlGgVS+doFkdAwmsst5D7ZXV9lChoBmgJaA9DCKpIhbEF5m5AlIaUUpRoFUvsaBZHQMJrS3+l0o11fZQoaAZoCWgPQwiqYir9hNtzQJSGlFKUaBVNdgFoFkdAwmtjiYsunXV9lChoBmgJaA9DCFMJT+j1UXJAlIaUUpRoFU0WAWgWR0DCa2abvw3HdX2UKGgGaAloD0MIZePBFvvncUCUhpRSlGgVTQQBaBZHQMJrlsz/IbR1fZQoaAZoCWgPQwjoacAgKQ1zQJSGlFKUaBVNLAFoFkdAwmuZezD4xnV9lChoBmgJaA9DCILix5h7/nJAlIaUUpRoFUvyaBZHQMJryaXrt3R1fZQoaAZoCWgPQwg4MSQn02BxQJSGlFKUaBVN9AFoFkdAwmvcFsYVI3V9lChoBmgJaA9DCHjvqDHhvHFAlIaUUpRoFU2cAWgWR0DCbBsUZeiSdX2UKGgGaAloD0MIJQfsavLWc0CUhpRSlGgVTTkBaBZHQMJscoKlYU51fZQoaAZoCWgPQwiG4/kMaHhxQJSGlFKUaBVNMQFoFkdAwmx0lxffGnV9lChoBmgJaA9DCEFHq1rSom5AlIaUUpRoFU1gAWgWR0DCbHlRrJr+dX2UKGgGaAloD0MIrfawFwo8cUCUhpRSlGgVS+hoFkdAwmx8UX531XV9lChoBmgJaA9DCDwyVps/lnJAlIaUUpRoFU0GAWgWR0DCbI+oLofTdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 744, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 12, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 242.3781786462599, "std_reward": 15.24857026298772, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-02T15:03:38.292023"}
 
1
+ {"mean_reward": 273.88768102370267, "std_reward": 15.959766746147425, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-02T16:06:25.858299"}