isolation-forest commited on
Commit
024d995
·
verified ·
1 Parent(s): ed78b32

Add SetFit ABSA model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 312,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,456 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - absa
6
+ - sentence-transformers
7
+ - text-classification
8
+ - generated_from_setfit_trainer
9
+ base_model: cointegrated/rubert-tiny2
10
+ metrics:
11
+ - accuracy
12
+ widget:
13
+ - text: Шеф - повар:Шеф - повар тоже с самого открытия .
14
+ - text: 'ресторана:Сомнений по поводу выбора ресторана на свадьбу не возникло , надеюсь
15
+ , что в самый важный день нашей жизни мы тоже останемся довольны , на этой неделе
16
+ идем заказывать : ) .'
17
+ - text: гребешки:Затем были гребешки вроде ничего , но отдавали уксусом , пюре вместе
18
+ с ним было пересолено .
19
+ - text: кафе:По кухне можно сказать , что это кафе для тех , кто любит соотношение
20
+ цены и качества .
21
+ - text: то:Я не ходила в этот ресторан в детстве , не знаю , как всё было когда -
22
+ то , но сейчас это вполне симпатичное и уютное заведение с хорошей кухней .
23
+ pipeline_tag: text-classification
24
+ inference: false
25
+ ---
26
+
27
+ # SetFit Aspect Model with cointegrated/rubert-tiny2
28
+
29
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
30
+
31
+ The model has been trained using an efficient few-shot learning technique that involves:
32
+
33
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
34
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
35
+
36
+ This model was trained within the context of a larger system for ABSA, which looks like so:
37
+
38
+ 1. Use a spaCy model to select possible aspect span candidates.
39
+ 2. **Use this SetFit model to filter these possible aspect span candidates.**
40
+ 3. Use a SetFit model to classify the filtered aspect span candidates.
41
+
42
+ ## Model Details
43
+
44
+ ### Model Description
45
+ - **Model Type:** SetFit
46
+ - **Sentence Transformer body:** [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2)
47
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
48
+ - **spaCy Model:** en_core_web_lg
49
+ - **SetFitABSA Aspect Model:** [isolation-forest/setfit-absa-aspect](https://huggingface.co/isolation-forest/setfit-absa-aspect)
50
+ - **SetFitABSA Polarity Model:** [isolation-forest/setfit-absa-polarity](https://huggingface.co/isolation-forest/setfit-absa-polarity)
51
+ - **Maximum Sequence Length:** 2048 tokens
52
+ - **Number of Classes:** 2 classes
53
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
54
+ <!-- - **Language:** Unknown -->
55
+ <!-- - **License:** Unknown -->
56
+
57
+ ### Model Sources
58
+
59
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
60
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
61
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
62
+
63
+ ### Model Labels
64
+ | Label | Examples |
65
+ |:----------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
66
+ | aspect | <ul><li>'Обслуживание:Обслуживание хорошее нас встретил метрдотель и провёл до столика который отлично нам подашел .'</li><li>'метрдотель:Обслуживание хорошее нас встретил метрдотель и провёл до столика который отлично нам подашел .'</li><li>'уголке:Он был в уютном уголке в конце главного зала , приглушенный свет это основная часть этого ресторана там нет дневного освещения это было большим плюсом для нашего дня рожденья !'</li></ul> |
67
+ | no aspect | <ul><li>'провёл до столика который отлично нам подашел:Обслуживание хорошее нас встретил метрдотель и провёл до столика который отлично нам подашел .'</li><li>'конце главного:Он был в уютном уголке в конце главного зала , приглушенный свет это основная часть этого ресторана там нет дневного освещения это было большим плюсом для нашего дня рожденья !'</li><li>'часть этого ресторана:Он был в уютном уголке в конце главного зала , приглушенный свет это основная часть этого ресторана там нет дневного освещения это было большим плюсом для нашего дня рожденья !'</li></ul> |
68
+
69
+ ## Uses
70
+
71
+ ### Direct Use for Inference
72
+
73
+ First install the SetFit library:
74
+
75
+ ```bash
76
+ pip install setfit
77
+ ```
78
+
79
+ Then you can load this model and run inference.
80
+
81
+ ```python
82
+ from setfit import AbsaModel
83
+
84
+ # Download from the 🤗 Hub
85
+ model = AbsaModel.from_pretrained(
86
+ "isolation-forest/setfit-absa-aspect",
87
+ "isolation-forest/setfit-absa-polarity",
88
+ )
89
+ # Run inference
90
+ preds = model("The food was great, but the venue is just way too busy.")
91
+ ```
92
+
93
+ <!--
94
+ ### Downstream Use
95
+
96
+ *List how someone could finetune this model on their own dataset.*
97
+ -->
98
+
99
+ <!--
100
+ ### Out-of-Scope Use
101
+
102
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
103
+ -->
104
+
105
+ <!--
106
+ ## Bias, Risks and Limitations
107
+
108
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
109
+ -->
110
+
111
+ <!--
112
+ ### Recommendations
113
+
114
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
115
+ -->
116
+
117
+ ## Training Details
118
+
119
+ ### Training Set Metrics
120
+ | Training set | Min | Median | Max |
121
+ |:-------------|:----|:--------|:----|
122
+ | Word count | 3 | 32.2987 | 171 |
123
+
124
+ | Label | Training Sample Count |
125
+ |:----------|:----------------------|
126
+ | no aspect | 380 |
127
+ | aspect | 256 |
128
+
129
+ ### Training Hyperparameters
130
+ - batch_size: (16, 2)
131
+ - num_epochs: (1, 16)
132
+ - max_steps: -1
133
+ - sampling_strategy: oversampling
134
+ - body_learning_rate: (2e-05, 1e-05)
135
+ - head_learning_rate: 0.01
136
+ - loss: CosineSimilarityLoss
137
+ - distance_metric: cosine_distance
138
+ - margin: 0.25
139
+ - end_to_end: False
140
+ - use_amp: False
141
+ - warmup_proportion: 0.1
142
+ - seed: 42
143
+ - eval_max_steps: -1
144
+ - load_best_model_at_end: False
145
+
146
+ ### Training Results
147
+ | Epoch | Step | Training Loss | Validation Loss |
148
+ |:------:|:-----:|:-------------:|:---------------:|
149
+ | 0.0001 | 1 | 0.2618 | - |
150
+ | 0.0038 | 50 | 0.2144 | - |
151
+ | 0.0076 | 100 | 0.2504 | - |
152
+ | 0.0114 | 150 | 0.2392 | - |
153
+ | 0.0152 | 200 | 0.2717 | - |
154
+ | 0.0190 | 250 | 0.2488 | - |
155
+ | 0.0228 | 300 | 0.2256 | - |
156
+ | 0.0266 | 350 | 0.2266 | - |
157
+ | 0.0304 | 400 | 0.2203 | - |
158
+ | 0.0342 | 450 | 0.2439 | - |
159
+ | 0.0380 | 500 | 0.2463 | - |
160
+ | 0.0418 | 550 | 0.3144 | - |
161
+ | 0.0456 | 600 | 0.1814 | - |
162
+ | 0.0494 | 650 | 0.1585 | - |
163
+ | 0.0532 | 700 | 0.0941 | - |
164
+ | 0.0570 | 750 | 0.1534 | - |
165
+ | 0.0608 | 800 | 0.0915 | - |
166
+ | 0.0646 | 850 | 0.1498 | - |
167
+ | 0.0684 | 900 | 0.0862 | - |
168
+ | 0.0722 | 950 | 0.0919 | - |
169
+ | 0.0760 | 1000 | 0.0252 | - |
170
+ | 0.0798 | 1050 | 0.0441 | - |
171
+ | 0.0836 | 1100 | 0.0808 | - |
172
+ | 0.0874 | 1150 | 0.1103 | - |
173
+ | 0.0912 | 1200 | 0.0138 | - |
174
+ | 0.0950 | 1250 | 0.052 | - |
175
+ | 0.0988 | 1300 | 0.0564 | - |
176
+ | 0.1026 | 1350 | 0.0058 | - |
177
+ | 0.1064 | 1400 | 0.0177 | - |
178
+ | 0.1102 | 1450 | 0.0651 | - |
179
+ | 0.1140 | 1500 | 0.0046 | - |
180
+ | 0.1178 | 1550 | 0.0046 | - |
181
+ | 0.1216 | 1600 | 0.0053 | - |
182
+ | 0.1254 | 1650 | 0.0464 | - |
183
+ | 0.1292 | 1700 | 0.0043 | - |
184
+ | 0.1330 | 1750 | 0.0403 | - |
185
+ | 0.1368 | 1800 | 0.0609 | - |
186
+ | 0.1406 | 1850 | 0.0093 | - |
187
+ | 0.1444 | 1900 | 0.0027 | - |
188
+ | 0.1482 | 1950 | 0.0041 | - |
189
+ | 0.1520 | 2000 | 0.0028 | - |
190
+ | 0.1558 | 2050 | 0.0072 | - |
191
+ | 0.1596 | 2100 | 0.0033 | - |
192
+ | 0.1634 | 2150 | 0.0029 | - |
193
+ | 0.1672 | 2200 | 0.0036 | - |
194
+ | 0.1710 | 2250 | 0.0019 | - |
195
+ | 0.1748 | 2300 | 0.0026 | - |
196
+ | 0.1786 | 2350 | 0.0544 | - |
197
+ | 0.1824 | 2400 | 0.0024 | - |
198
+ | 0.1862 | 2450 | 0.0028 | - |
199
+ | 0.1900 | 2500 | 0.0025 | - |
200
+ | 0.1938 | 2550 | 0.0018 | - |
201
+ | 0.1976 | 2600 | 0.0021 | - |
202
+ | 0.2014 | 2650 | 0.0023 | - |
203
+ | 0.2052 | 2700 | 0.0021 | - |
204
+ | 0.2090 | 2750 | 0.0026 | - |
205
+ | 0.2127 | 2800 | 0.0016 | - |
206
+ | 0.2165 | 2850 | 0.0023 | - |
207
+ | 0.2203 | 2900 | 0.0032 | - |
208
+ | 0.2241 | 2950 | 0.0019 | - |
209
+ | 0.2279 | 3000 | 0.0027 | - |
210
+ | 0.2317 | 3050 | 0.0035 | - |
211
+ | 0.2355 | 3100 | 0.0022 | - |
212
+ | 0.2393 | 3150 | 0.0019 | - |
213
+ | 0.2431 | 3200 | 0.0017 | - |
214
+ | 0.2469 | 3250 | 0.0016 | - |
215
+ | 0.2507 | 3300 | 0.0016 | - |
216
+ | 0.2545 | 3350 | 0.0017 | - |
217
+ | 0.2583 | 3400 | 0.0029 | - |
218
+ | 0.2621 | 3450 | 0.0017 | - |
219
+ | 0.2659 | 3500 | 0.0016 | - |
220
+ | 0.2697 | 3550 | 0.0019 | - |
221
+ | 0.2735 | 3600 | 0.0093 | - |
222
+ | 0.2773 | 3650 | 0.0023 | - |
223
+ | 0.2811 | 3700 | 0.0012 | - |
224
+ | 0.2849 | 3750 | 0.0016 | - |
225
+ | 0.2887 | 3800 | 0.0016 | - |
226
+ | 0.2925 | 3850 | 0.0021 | - |
227
+ | 0.2963 | 3900 | 0.0016 | - |
228
+ | 0.3001 | 3950 | 0.0017 | - |
229
+ | 0.3039 | 4000 | 0.0013 | - |
230
+ | 0.3077 | 4050 | 0.0017 | - |
231
+ | 0.3115 | 4100 | 0.0011 | - |
232
+ | 0.3153 | 4150 | 0.002 | - |
233
+ | 0.3191 | 4200 | 0.0015 | - |
234
+ | 0.3229 | 4250 | 0.001 | - |
235
+ | 0.3267 | 4300 | 0.0017 | - |
236
+ | 0.3305 | 4350 | 0.0011 | - |
237
+ | 0.3343 | 4400 | 0.0061 | - |
238
+ | 0.3381 | 4450 | 0.0057 | - |
239
+ | 0.3419 | 4500 | 0.0465 | - |
240
+ | 0.3457 | 4550 | 0.0016 | - |
241
+ | 0.3495 | 4600 | 0.0014 | - |
242
+ | 0.3533 | 4650 | 0.0013 | - |
243
+ | 0.3571 | 4700 | 0.0014 | - |
244
+ | 0.3609 | 4750 | 0.0018 | - |
245
+ | 0.3647 | 4800 | 0.0014 | - |
246
+ | 0.3685 | 4850 | 0.0013 | - |
247
+ | 0.3723 | 4900 | 0.0009 | - |
248
+ | 0.3761 | 4950 | 0.0008 | - |
249
+ | 0.3799 | 5000 | 0.0011 | - |
250
+ | 0.3837 | 5050 | 0.002 | - |
251
+ | 0.3875 | 5100 | 0.0014 | - |
252
+ | 0.3913 | 5150 | 0.001 | - |
253
+ | 0.3951 | 5200 | 0.0012 | - |
254
+ | 0.3989 | 5250 | 0.0017 | - |
255
+ | 0.4027 | 5300 | 0.0011 | - |
256
+ | 0.4065 | 5350 | 0.0012 | - |
257
+ | 0.4103 | 5400 | 0.0009 | - |
258
+ | 0.4141 | 5450 | 0.0015 | - |
259
+ | 0.4179 | 5500 | 0.0009 | - |
260
+ | 0.4217 | 5550 | 0.0012 | - |
261
+ | 0.4255 | 5600 | 0.0013 | - |
262
+ | 0.4293 | 5650 | 0.0465 | - |
263
+ | 0.4331 | 5700 | 0.0011 | - |
264
+ | 0.4369 | 5750 | 0.0008 | - |
265
+ | 0.4407 | 5800 | 0.0012 | - |
266
+ | 0.4445 | 5850 | 0.0008 | - |
267
+ | 0.4483 | 5900 | 0.0013 | - |
268
+ | 0.4521 | 5950 | 0.0011 | - |
269
+ | 0.4559 | 6000 | 0.0229 | - |
270
+ | 0.4597 | 6050 | 0.0012 | - |
271
+ | 0.4635 | 6100 | 0.0009 | - |
272
+ | 0.4673 | 6150 | 0.0011 | - |
273
+ | 0.4711 | 6200 | 0.0011 | - |
274
+ | 0.4749 | 6250 | 0.001 | - |
275
+ | 0.4787 | 6300 | 0.0008 | - |
276
+ | 0.4825 | 6350 | 0.0011 | - |
277
+ | 0.4863 | 6400 | 0.0012 | - |
278
+ | 0.4901 | 6450 | 0.0008 | - |
279
+ | 0.4939 | 6500 | 0.0014 | - |
280
+ | 0.4977 | 6550 | 0.001 | - |
281
+ | 0.5015 | 6600 | 0.0014 | - |
282
+ | 0.5053 | 6650 | 0.001 | - |
283
+ | 0.5091 | 6700 | 0.0008 | - |
284
+ | 0.5129 | 6750 | 0.0013 | - |
285
+ | 0.5167 | 6800 | 0.0012 | - |
286
+ | 0.5205 | 6850 | 0.0009 | - |
287
+ | 0.5243 | 6900 | 0.0008 | - |
288
+ | 0.5281 | 6950 | 0.001 | - |
289
+ | 0.5319 | 7000 | 0.0012 | - |
290
+ | 0.5357 | 7050 | 0.0009 | - |
291
+ | 0.5395 | 7100 | 0.0007 | - |
292
+ | 0.5433 | 7150 | 0.0008 | - |
293
+ | 0.5471 | 7200 | 0.001 | - |
294
+ | 0.5509 | 7250 | 0.0006 | - |
295
+ | 0.5547 | 7300 | 0.0007 | - |
296
+ | 0.5585 | 7350 | 0.0012 | - |
297
+ | 0.5623 | 7400 | 0.0159 | - |
298
+ | 0.5661 | 7450 | 0.0008 | - |
299
+ | 0.5699 | 7500 | 0.0012 | - |
300
+ | 0.5737 | 7550 | 0.0011 | - |
301
+ | 0.5775 | 7600 | 0.0008 | - |
302
+ | 0.5813 | 7650 | 0.0009 | - |
303
+ | 0.5851 | 7700 | 0.0005 | - |
304
+ | 0.5889 | 7750 | 0.0017 | - |
305
+ | 0.5927 | 7800 | 0.0009 | - |
306
+ | 0.5965 | 7850 | 0.0007 | - |
307
+ | 0.6003 | 7900 | 0.0065 | - |
308
+ | 0.6041 | 7950 | 0.0007 | - |
309
+ | 0.6079 | 8000 | 0.0041 | - |
310
+ | 0.6117 | 8050 | 0.0009 | - |
311
+ | 0.6155 | 8100 | 0.038 | - |
312
+ | 0.6193 | 8150 | 0.0005 | - |
313
+ | 0.6231 | 8200 | 0.0356 | - |
314
+ | 0.6269 | 8250 | 0.0007 | - |
315
+ | 0.6307 | 8300 | 0.0008 | - |
316
+ | 0.6345 | 8350 | 0.0009 | - |
317
+ | 0.6382 | 8400 | 0.001 | - |
318
+ | 0.6420 | 8450 | 0.0009 | - |
319
+ | 0.6458 | 8500 | 0.0008 | - |
320
+ | 0.6496 | 8550 | 0.0009 | - |
321
+ | 0.6534 | 8600 | 0.0009 | - |
322
+ | 0.6572 | 8650 | 0.0008 | - |
323
+ | 0.6610 | 8700 | 0.0006 | - |
324
+ | 0.6648 | 8750 | 0.0009 | - |
325
+ | 0.6686 | 8800 | 0.0006 | - |
326
+ | 0.6724 | 8850 | 0.0008 | - |
327
+ | 0.6762 | 8900 | 0.0008 | - |
328
+ | 0.6800 | 8950 | 0.0245 | - |
329
+ | 0.6838 | 9000 | 0.0007 | - |
330
+ | 0.6876 | 9050 | 0.0008 | - |
331
+ | 0.6914 | 9100 | 0.0007 | - |
332
+ | 0.6952 | 9150 | 0.0006 | - |
333
+ | 0.6990 | 9200 | 0.0009 | - |
334
+ | 0.7028 | 9250 | 0.0011 | - |
335
+ | 0.7066 | 9300 | 0.0009 | - |
336
+ | 0.7104 | 9350 | 0.0008 | - |
337
+ | 0.7142 | 9400 | 0.0008 | - |
338
+ | 0.7180 | 9450 | 0.0007 | - |
339
+ | 0.7218 | 9500 | 0.0006 | - |
340
+ | 0.7256 | 9550 | 0.0233 | - |
341
+ | 0.7294 | 9600 | 0.0008 | - |
342
+ | 0.7332 | 9650 | 0.0173 | - |
343
+ | 0.7370 | 9700 | 0.0006 | - |
344
+ | 0.7408 | 9750 | 0.0007 | - |
345
+ | 0.7446 | 9800 | 0.0007 | - |
346
+ | 0.7484 | 9850 | 0.001 | - |
347
+ | 0.7522 | 9900 | 0.0007 | - |
348
+ | 0.7560 | 9950 | 0.0006 | - |
349
+ | 0.7598 | 10000 | 0.0006 | - |
350
+ | 0.7636 | 10050 | 0.0008 | - |
351
+ | 0.7674 | 10100 | 0.0005 | - |
352
+ | 0.7712 | 10150 | 0.0007 | - |
353
+ | 0.7750 | 10200 | 0.0007 | - |
354
+ | 0.7788 | 10250 | 0.0009 | - |
355
+ | 0.7826 | 10300 | 0.0008 | - |
356
+ | 0.7864 | 10350 | 0.0007 | - |
357
+ | 0.7902 | 10400 | 0.0009 | - |
358
+ | 0.7940 | 10450 | 0.0007 | - |
359
+ | 0.7978 | 10500 | 0.0007 | - |
360
+ | 0.8016 | 10550 | 0.0008 | - |
361
+ | 0.8054 | 10600 | 0.0007 | - |
362
+ | 0.8092 | 10650 | 0.0007 | - |
363
+ | 0.8130 | 10700 | 0.0007 | - |
364
+ | 0.8168 | 10750 | 0.0007 | - |
365
+ | 0.8206 | 10800 | 0.0005 | - |
366
+ | 0.8244 | 10850 | 0.0007 | - |
367
+ | 0.8282 | 10900 | 0.0005 | - |
368
+ | 0.8320 | 10950 | 0.0005 | - |
369
+ | 0.8358 | 11000 | 0.0006 | - |
370
+ | 0.8396 | 11050 | 0.0008 | - |
371
+ | 0.8434 | 11100 | 0.0008 | - |
372
+ | 0.8472 | 11150 | 0.0137 | - |
373
+ | 0.8510 | 11200 | 0.0008 | - |
374
+ | 0.8548 | 11250 | 0.012 | - |
375
+ | 0.8586 | 11300 | 0.0006 | - |
376
+ | 0.8624 | 11350 | 0.0007 | - |
377
+ | 0.8662 | 11400 | 0.0007 | - |
378
+ | 0.8700 | 11450 | 0.0009 | - |
379
+ | 0.8738 | 11500 | 0.0007 | - |
380
+ | 0.8776 | 11550 | 0.0008 | - |
381
+ | 0.8814 | 11600 | 0.0005 | - |
382
+ | 0.8852 | 11650 | 0.0008 | - |
383
+ | 0.8890 | 11700 | 0.0008 | - |
384
+ | 0.8928 | 11750 | 0.0007 | - |
385
+ | 0.8966 | 11800 | 0.0006 | - |
386
+ | 0.9004 | 11850 | 0.0006 | - |
387
+ | 0.9042 | 11900 | 0.0006 | - |
388
+ | 0.9080 | 11950 | 0.0007 | - |
389
+ | 0.9118 | 12000 | 0.0005 | - |
390
+ | 0.9156 | 12050 | 0.0007 | - |
391
+ | 0.9194 | 12100 | 0.0006 | - |
392
+ | 0.9232 | 12150 | 0.0008 | - |
393
+ | 0.9270 | 12200 | 0.0006 | - |
394
+ | 0.9308 | 12250 | 0.0005 | - |
395
+ | 0.9346 | 12300 | 0.0167 | - |
396
+ | 0.9384 | 12350 | 0.0008 | - |
397
+ | 0.9422 | 12400 | 0.0005 | - |
398
+ | 0.9460 | 12450 | 0.0233 | - |
399
+ | 0.9498 | 12500 | 0.001 | - |
400
+ | 0.9536 | 12550 | 0.0006 | - |
401
+ | 0.9574 | 12600 | 0.0007 | - |
402
+ | 0.9612 | 12650 | 0.0007 | - |
403
+ | 0.9650 | 12700 | 0.0006 | - |
404
+ | 0.9688 | 12750 | 0.0008 | - |
405
+ | 0.9726 | 12800 | 0.0006 | - |
406
+ | 0.9764 | 12850 | 0.0177 | - |
407
+ | 0.9802 | 12900 | 0.0008 | - |
408
+ | 0.9840 | 12950 | 0.0007 | - |
409
+ | 0.9878 | 13000 | 0.0131 | - |
410
+ | 0.9916 | 13050 | 0.0007 | - |
411
+ | 0.9954 | 13100 | 0.0006 | - |
412
+ | 0.9992 | 13150 | 0.0004 | - |
413
+
414
+ ### Framework Versions
415
+ - Python: 3.10.13
416
+ - SetFit: 1.0.3
417
+ - Sentence Transformers: 2.6.1
418
+ - spaCy: 3.7.2
419
+ - Transformers: 4.39.3
420
+ - PyTorch: 2.1.2
421
+ - Datasets: 2.18.0
422
+ - Tokenizers: 0.15.2
423
+
424
+ ## Citation
425
+
426
+ ### BibTeX
427
+ ```bibtex
428
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
429
+ doi = {10.48550/ARXIV.2209.11055},
430
+ url = {https://arxiv.org/abs/2209.11055},
431
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
432
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
433
+ title = {Efficient Few-Shot Learning Without Prompts},
434
+ publisher = {arXiv},
435
+ year = {2022},
436
+ copyright = {Creative Commons Attribution 4.0 International}
437
+ }
438
+ ```
439
+
440
+ <!--
441
+ ## Glossary
442
+
443
+ *Clearly define terms in order to be accessible across audiences.*
444
+ -->
445
+
446
+ <!--
447
+ ## Model Card Authors
448
+
449
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
450
+ -->
451
+
452
+ <!--
453
+ ## Model Card Contact
454
+
455
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
456
+ -->
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "cointegrated/rubert-tiny2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "emb_size": 312,
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 312,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 600,
15
+ "layer_norm_eps": 1e-12,
16
+ "max_position_embeddings": 2048,
17
+ "model_type": "bert",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 3,
20
+ "pad_token_id": 0,
21
+ "position_embedding_type": "absolute",
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.39.3",
24
+ "type_vocab_size": 2,
25
+ "use_cache": true,
26
+ "vocab_size": 83828
27
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.6.1",
4
+ "transformers": "4.39.3",
5
+ "pytorch": "2.1.2"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "spacy_model": "en_core_web_lg",
3
+ "span_context": 0,
4
+ "labels": [
5
+ "no aspect",
6
+ "aspect"
7
+ ],
8
+ "normalize_embeddings": false
9
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6223c0472681ed21cd2b6a9de90d0d809c9a71ae19be4a6e1ada0c48ef2dd10
3
+ size 116781184
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6bf516a15deca452a2c23a894bdbe1004be66ba2c807a92ce5714179a2db20c
3
+ size 3343
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 2048,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 2048,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff