|
import base64 |
|
import json |
|
import sys |
|
from collections import defaultdict |
|
from io import BytesIO |
|
from pprint import pprint |
|
from typing import Any, Dict, List |
|
import os |
|
import re |
|
from pathlib import Path |
|
from typing import Union |
|
from concurrent.futures import ThreadPoolExecutor |
|
import numpy as np |
|
from PIL import ImageFilter |
|
from transformers import CLIPImageProcessor, CLIPTokenizer, CLIPModel |
|
|
|
import torch |
|
from diffusers import ( |
|
DiffusionPipeline, |
|
DPMSolverMultistepScheduler, |
|
DPMSolverSinglestepScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
StableDiffusionPipeline, |
|
utils, |
|
) |
|
from safetensors.torch import load_file |
|
from torch import autocast, tensor |
|
import torchvision.transforms |
|
from PIL import Image |
|
|
|
REPO_DIR = Path(__file__).resolve().parent |
|
|
|
|
|
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
if device.type != "cuda": |
|
raise ValueError("need to run on GPU") |
|
|
|
|
|
class EndpointHandler: |
|
LORA_PATHS = { |
|
"hairdetailer": [str(REPO_DIR / "lora/hairdetailer.safetensors"), ""], |
|
"lora_leica": [str(REPO_DIR / "lora/lora_leica.safetensors"), "leica_style"], |
|
"epiNoiseoffset_v2": [str(REPO_DIR / "lora/epiNoiseoffset_v2.safetensors"), ""], |
|
"MBHU-TT2FRS": [ |
|
str(REPO_DIR / "lora/MBHU-TT2FRS.safetensors"), |
|
"flat breast, small breast, big breast, fake breast", |
|
], |
|
"polyhedron_new_skin_v1.1": [ |
|
str(REPO_DIR / "lora/polyhedron_new_skin_v1.1.safetensors"), |
|
"skin blemish, detailed skin ", |
|
], |
|
"ShinyOiledSkin_v20": [ |
|
str(REPO_DIR / "lora/ShinyOiledSkin_v20-LoRA.safetensors"), |
|
"shiny skin", |
|
], |
|
"detailed_eye-10": [str(REPO_DIR / "lora/detailed_eye-10.safetensors"), ""], |
|
"add_detail": [str(REPO_DIR / "lora/add_detail.safetensors"), ""], |
|
"MuscleGirl_v1": [str(REPO_DIR / "lora/MuscleGirl_v1.safetensors"), "abs"], |
|
"nurse_v11-05": [str(REPO_DIR / "lora/nurse_v11-05.safetensors"), "nurse"], |
|
"shibari_v20": [str(REPO_DIR / "lora/shibari_v20.safetensors"), "shibari,rope"], |
|
"tajnaclub_high_heelsv1.2": [ |
|
str(REPO_DIR / "lora/tajnaclub_high_heelsv1.2.safetensors"), |
|
"high heels", |
|
], |
|
"CyberPunkAI": [ |
|
str(REPO_DIR / "lora/CyberPunkAI.safetensors"), |
|
"neon CyberpunkAI", |
|
], |
|
"FutaCockCloseUp-v1": [ |
|
str(REPO_DIR / "lora/FutaCockCloseUp-v1.safetensors"), |
|
"huge penis", |
|
], |
|
"PovBlowjob-v3": [ |
|
str(REPO_DIR / "lora/PovBlowjob-v3.safetensors"), |
|
"blowjob, deepthroat, kneeling, runny makeup, creampie", |
|
], |
|
"dp_from_behind_v0.1b": [ |
|
str(REPO_DIR / "lora/dp_from_behind_v0.1b.safetensors"), |
|
"1girl, 2boys, double penetration, multiple penises", |
|
], |
|
"EkuneSideDoggy": [ |
|
str(REPO_DIR / "lora/EkuneSideDoggy.safetensors"), |
|
"sidedoggystyle, doggystyle", |
|
], |
|
"qqq-grabbing_from_behind-v2-000006": [ |
|
str(REPO_DIR / "lora/qqq-grabbing_from_behind-v2-000006.safetensors"), |
|
"grabbing from behind, breast grab", |
|
], |
|
"ftm-v0": [ |
|
str(REPO_DIR / "lora/ftm-v0.safetensors"), |
|
"big mouth, tongue, long tongue", |
|
], |
|
"tgirls_V3_5": [ |
|
str(REPO_DIR / "lora/tgirls_V3_5.safetensors"), |
|
"large penis, penis, erect penis", |
|
], |
|
"fapp9": [ |
|
str(REPO_DIR / "lora/fapp9.safetensors"), |
|
"large penis, penis, erect penis", |
|
], |
|
"pov-doggy-graphos": [ |
|
str(REPO_DIR / "lora/pov-doggy-graphos.safetensors"), |
|
"penis in vagina, white man grabbing her ass", |
|
], |
|
"reelmech1v2": [ |
|
str(REPO_DIR / "lora/reelmech1v2.safetensors"), |
|
"reelmech", |
|
], |
|
} |
|
|
|
TEXTUAL_INVERSION = [ |
|
{ |
|
"weight_name": str(REPO_DIR / "embeddings/EasyNegative.safetensors"), |
|
"token": "easynegative", |
|
}, |
|
{ |
|
"weight_name": str(REPO_DIR / "embeddings/kkw-NativeAmerican.pt"), |
|
"token": "badhandv4", |
|
}, |
|
{ |
|
"weight_name": str(REPO_DIR / "embeddings/badhandv4.pt"), |
|
"token": "kkw-Afro, kkw-Asian, kkw-Euro ", |
|
}, |
|
{ |
|
"weight_name": str(REPO_DIR / "embeddings/bad-artist-anime.pt"), |
|
"token": "bad-artist-anime", |
|
}, |
|
{ |
|
"weight_name": str(REPO_DIR / "embeddings/NegfeetV2.pt"), |
|
"token": "negfeetv2", |
|
}, |
|
{ |
|
"weight_name": str(REPO_DIR / "embeddings/ng_deepnegative_v1_75t.pt"), |
|
"token": "ng_deepnegative_v1_75t", |
|
}, |
|
{ |
|
"weight_name": str(REPO_DIR / "embeddings/bad-hands-5.pt"), |
|
"token": "bad-hands-5", |
|
}, |
|
] |
|
|
|
def __init__(self, path="."): |
|
self.inference_progress = {} |
|
self.inference_images = {} |
|
self.total_steps = {} |
|
self.active_request_ids = list() |
|
self.inference_in_progress = False |
|
|
|
self.executor = ThreadPoolExecutor( |
|
max_workers=1 |
|
) |
|
|
|
realistic_path = str(REPO_DIR / "realistic/") |
|
self.pipe_realistic, self.safety_checker = self.load_realistic(realistic_path) |
|
|
|
anime_path = str(REPO_DIR / "anime/") |
|
self.pipe_anime, self.pipe_anime_safety_checker = self.load_anime(anime_path) |
|
|
|
|
|
self.image_processor = CLIPImageProcessor.from_pretrained( |
|
"openai/clip-vit-base-patch16" |
|
) |
|
|
|
def load_model_essentials(self, model_path): |
|
"""common to all models""" |
|
|
|
|
|
|
|
if "realistic" in model_path: |
|
pipe = DiffusionPipeline.from_pretrained( |
|
pretrained_model_name_or_path=model_path, |
|
custom_pipeline="lpw_stable_diffusion", |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
safety_checker = pipe.safety_checker.to(device).to(torch.float16) |
|
else: |
|
safety_checker = None |
|
|
|
pipe = DiffusionPipeline.from_pretrained( |
|
pretrained_model_name_or_path=model_path, |
|
custom_pipeline="lpw_stable_diffusion", |
|
torch_dtype=torch.float16, |
|
safety_checker=None, |
|
) |
|
|
|
pipe = pipe.to(device) |
|
|
|
|
|
pipe.set_progress_bar_config(disable=True) |
|
|
|
|
|
self.load_embeddings(pipe) |
|
|
|
|
|
pipe.enable_xformers_memory_efficient_attention() |
|
pipe.enable_attention_slicing() |
|
|
|
return pipe, safety_checker |
|
|
|
def load_anime(self, path): |
|
"""Load anime model""" |
|
|
|
|
|
pipe, safety_checker = self.load_model_essentials(path) |
|
|
|
|
|
|
|
|
|
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config( |
|
pipe.scheduler.config, |
|
) |
|
|
|
|
|
|
|
|
|
self.load_selected_loras( |
|
pipe, |
|
[ |
|
|
|
|
|
["MuscleGirl_v1", 0.05], |
|
|
|
|
|
|
|
|
|
], |
|
) |
|
|
|
return pipe, safety_checker |
|
|
|
def load_realistic(self, path): |
|
"""Load realistic model""" |
|
|
|
|
|
pipe, safety_checker = self.load_model_essentials(path) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config( |
|
pipe.scheduler.config, |
|
algorithm_type="sde-dpmsolver++", |
|
use_karras_sigmas=True, |
|
) |
|
|
|
|
|
|
|
|
|
self.load_selected_loras( |
|
pipe, |
|
[ |
|
["polyhedron_new_skin_v1.1", 0.15], |
|
["detailed_eye-10", 0.2], |
|
["add_detail", 0.1], |
|
["MuscleGirl_v1", 0.2], |
|
|
|
|
|
|
|
|
|
|
|
|
|
], |
|
) |
|
|
|
return pipe, safety_checker |
|
|
|
def load_lora(self, pipeline, lora_path, lora_weight=0.5): |
|
state_dict = load_file(lora_path) |
|
LORA_PREFIX_UNET = "lora_unet" |
|
LORA_PREFIX_TEXT_ENCODER = "lora_te" |
|
|
|
alpha = lora_weight |
|
visited = [] |
|
|
|
for key in state_dict: |
|
state_dict[key] = state_dict[key].to(device) |
|
|
|
|
|
for key in state_dict: |
|
|
|
if ".alpha" in key or key in visited: |
|
continue |
|
|
|
if "text" in key: |
|
layer_infos = ( |
|
key.split(".")[0] |
|
.split(LORA_PREFIX_TEXT_ENCODER + "_")[-1] |
|
.split("_") |
|
) |
|
curr_layer = pipeline.text_encoder |
|
else: |
|
layer_infos = ( |
|
key.split(".")[0].split(LORA_PREFIX_UNET + "_")[-1].split("_") |
|
) |
|
curr_layer = pipeline.unet |
|
|
|
|
|
temp_name = layer_infos.pop(0) |
|
while len(layer_infos) > -1: |
|
try: |
|
curr_layer = curr_layer.__getattr__(temp_name) |
|
if len(layer_infos) > 0: |
|
temp_name = layer_infos.pop(0) |
|
elif len(layer_infos) == 0: |
|
break |
|
except Exception: |
|
if len(temp_name) > 0: |
|
temp_name += "_" + layer_infos.pop(0) |
|
else: |
|
temp_name = layer_infos.pop(0) |
|
|
|
|
|
pair_keys = [] |
|
if "lora_down" in key: |
|
pair_keys.append(key.replace("lora_down", "lora_up")) |
|
pair_keys.append(key) |
|
else: |
|
pair_keys.append(key) |
|
pair_keys.append(key.replace("lora_up", "lora_down")) |
|
|
|
|
|
if len(state_dict[pair_keys[0]].shape) == 4: |
|
weight_up = ( |
|
state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32) |
|
) |
|
weight_down = ( |
|
state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32) |
|
) |
|
curr_layer.weight.data += alpha * torch.mm( |
|
weight_up, weight_down |
|
).unsqueeze(2).unsqueeze(3) |
|
else: |
|
weight_up = state_dict[pair_keys[0]].to(torch.float32) |
|
weight_down = state_dict[pair_keys[1]].to(torch.float32) |
|
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down) |
|
|
|
|
|
for item in pair_keys: |
|
visited.append(item) |
|
|
|
return pipeline |
|
|
|
def load_embeddings(self, pipeline): |
|
"""Load textual inversions, avoid bad prompts""" |
|
for model in EndpointHandler.TEXTUAL_INVERSION: |
|
pipeline.load_textual_inversion( |
|
".", weight_name=model["weight_name"], token=model["token"] |
|
) |
|
|
|
def load_selected_loras(self, pipeline, selections): |
|
"""Load Loras models, can lead to marvelous creations""" |
|
for model_name, weight in selections: |
|
lora_path = EndpointHandler.LORA_PATHS[model_name][0] |
|
|
|
self.load_lora(pipeline, lora_path, weight) |
|
|
|
def clean_negative_prompt(self, negative_prompt): |
|
"""Clean negative prompt to remove already used negative prompt handlers""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
tokens = [item["token"] for item in self.TEXTUAL_INVERSION] |
|
|
|
|
|
for token in tokens: |
|
|
|
negative_prompt = re.sub( |
|
r"\b" + re.escape(token) + r"\b", |
|
"", |
|
negative_prompt, |
|
flags=re.IGNORECASE, |
|
).strip() |
|
|
|
|
|
negative_prompt += " " + " ".join(tokens) |
|
|
|
return negative_prompt |
|
|
|
def check_fields(self, data): |
|
"""check for fields, if some missing return error""" |
|
|
|
|
|
required_fields = [ |
|
"prompt", |
|
"negative_prompt", |
|
"width", |
|
"num_inference_steps", |
|
"height", |
|
"guidance_scale", |
|
"request_id", |
|
] |
|
|
|
missing_fields = [field for field in required_fields if field not in data] |
|
|
|
if missing_fields: |
|
return { |
|
"flag": "error", |
|
"message": f"Missing fields: {', '.join(missing_fields)}", |
|
} |
|
|
|
return False |
|
|
|
def clean_request_data(self): |
|
"""Clean up the data related to a specific request ID.""" |
|
|
|
|
|
self.inference_progress.clear() |
|
|
|
|
|
self.inference_images.clear() |
|
|
|
|
|
self.total_steps.clear() |
|
|
|
|
|
self.active_request_ids.clear() |
|
|
|
|
|
self.inference_in_progress = False |
|
|
|
def progress_callback( |
|
self, |
|
step: int, |
|
timestep: int, |
|
latents: Any, |
|
request_id: str, |
|
status: str, |
|
pipeline: Any, |
|
): |
|
try: |
|
if status == "progress": |
|
|
|
img_data = pipeline.decode_latents(latents) |
|
img_data = (img_data.squeeze() * 255).astype(np.uint8) |
|
img = Image.fromarray(img_data, "RGB") |
|
|
|
|
|
|
|
if step < int(self.total_steps[self.active_request_ids[0]] / 1.5): |
|
img = img.filter(ImageFilter.GaussianBlur(radius=30)) |
|
else: |
|
img = img.filter(ImageFilter.GaussianBlur(radius=10)) |
|
|
|
|
|
else: |
|
|
|
|
|
|
|
img = latents |
|
|
|
buffered = BytesIO() |
|
img.save(buffered, format="PNG") |
|
|
|
|
|
|
|
|
|
|
|
|
|
img_str = base64.b64encode(buffered.getvalue()).decode() |
|
|
|
except Exception as e: |
|
print(f"Error: {e}") |
|
|
|
|
|
progress_percentage = ( |
|
step / self.total_steps[request_id] |
|
) * 100 |
|
|
|
self.inference_progress[request_id] = progress_percentage |
|
self.inference_images[request_id] = img_str |
|
|
|
def check_progress(self, request_id: str) -> Dict[str, Union[str, float]]: |
|
progress = self.inference_progress.get(request_id, 0) |
|
latest_image = self.inference_images.get(request_id, None) |
|
|
|
|
|
|
|
if progress >= 100: |
|
status = "complete" |
|
|
|
|
|
image_data = base64.b64decode(latest_image) |
|
image_io = BytesIO(image_data) |
|
is_nsfw = self.check_nsfw(Image.open(image_io))[0] |
|
|
|
else: |
|
status = "in-progress" |
|
is_nsfw = "" |
|
|
|
return { |
|
"flag": "success", |
|
"status": status, |
|
"progress": int(progress), |
|
"image": latest_image, |
|
"is_nsfw": is_nsfw, |
|
} |
|
|
|
def check_nsfw(self, image): |
|
"""Check if image is NSFW""" |
|
|
|
safety_checker_input = self.image_processor(image, return_tensors="pt").to( |
|
device |
|
) |
|
|
|
image, has_nsfw_concept = self.safety_checker( |
|
images=np.array(image), |
|
clip_input=safety_checker_input.pixel_values.to(torch.float16), |
|
) |
|
|
|
return has_nsfw_concept |
|
|
|
def start_inference(self, pipeline, data: Dict) -> Dict: |
|
"""Start a new inference.""" |
|
|
|
global device |
|
|
|
|
|
prompt = data["prompt"] |
|
negative_prompt = data["negative_prompt"] |
|
loras_model = data.get("loras_model", None) |
|
seed = data.get("seed", None) |
|
width = data["width"] |
|
num_inference_steps = data["num_inference_steps"] |
|
height = data["height"] |
|
guidance_scale = data["guidance_scale"] |
|
request_id = data["request_id"] |
|
|
|
|
|
self.total_steps[request_id] = num_inference_steps |
|
|
|
|
|
forced_negative = self.clean_negative_prompt(negative_prompt) |
|
|
|
|
|
generator = torch.Generator(device="cuda").manual_seed(seed) if seed else None |
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
|
with autocast(device.type): |
|
image = pipeline.text2img( |
|
prompt=prompt, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
height=height, |
|
width=width, |
|
negative_prompt=forced_negative, |
|
generator=generator, |
|
max_embeddings_multiples=5, |
|
callback=lambda step, timestep, latents: self.progress_callback( |
|
step, timestep, latents, request_id, "progress", pipeline |
|
), |
|
callback_steps=5, |
|
|
|
) |
|
|
|
|
|
self.progress_callback( |
|
num_inference_steps, |
|
0, |
|
image.images[0], |
|
request_id, |
|
"complete", |
|
pipeline, |
|
) |
|
|
|
self.inference_in_progress = False |
|
|
|
|
|
|
|
|
|
except Exception as e: |
|
|
|
return {"flag": "error", "message": str(e)} |
|
|
|
def __call__(self, data: Any) -> Dict: |
|
"""Handle incoming requests.""" |
|
|
|
action = data.get("action", None) |
|
request_id = data.get("request_id") |
|
genre = data.get("genre") |
|
|
|
|
|
if not request_id: |
|
return {"flag": "error", "message": "Missing request_id."} |
|
|
|
if action == "check_progress": |
|
if request_id not in self.active_request_ids: |
|
return { |
|
"flag": "error", |
|
"message": "Request id doesn't match any active request.", |
|
} |
|
return self.check_progress(request_id) |
|
|
|
elif action == "inference": |
|
|
|
check_fields = self.check_fields(data) |
|
if check_fields: |
|
return check_fields |
|
|
|
|
|
if self.inference_in_progress: |
|
return { |
|
"flag": "error", |
|
"message": "Another inference is already in progress. Please wait.", |
|
} |
|
|
|
|
|
self.clean_request_data() |
|
self.inference_in_progress = True |
|
self.inference_progress[request_id] = 0 |
|
self.inference_images[request_id] = None |
|
self.active_request_ids.append(request_id) |
|
|
|
|
|
if genre == "anime": |
|
pipe = self.pipe_anime |
|
else: |
|
pipe = self.pipe_realistic |
|
|
|
self.executor.submit(self.start_inference, pipe, data) |
|
|
|
|
|
return { |
|
"flag": "success", |
|
"status": "started", |
|
"message": "Inference started", |
|
"request_id": request_id, |
|
} |
|
|
|
else: |
|
return {"flag": "error", "message": f"Unsupported action: {action}"} |
|
|