small update to readme about downloading the image from remote
Browse files
README.md
CHANGED
@@ -9,11 +9,11 @@ datasets:
|
|
9 |
|
10 |
# DETR (End-to-End Object Detection) model with ResNet-50 backbone trained on SKU110K Dataset with 400 num_queries
|
11 |
|
12 |
-
DEtection TRansformer (DETR) model trained end-to-end on SKU110K object detection (8k annotated images). Main difference
|
13 |
|
14 |
### How to use
|
15 |
|
16 |
-
Here is how to use this model
|
17 |
|
18 |
```python
|
19 |
from transformers import DetrImageProcessor, DetrForObjectDetection
|
@@ -21,9 +21,9 @@ import torch
|
|
21 |
from PIL import Image, ImageOps
|
22 |
import requests
|
23 |
|
24 |
-
url = "IMG_3507.jpg"
|
25 |
-
image = Image.open(url)
|
26 |
-
ImageOps.exif_transpose(image)
|
27 |
|
28 |
# you can specify the revision tag if you don't want the timm dependency
|
29 |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
|
@@ -38,11 +38,11 @@ target_sizes = torch.tensor([image.size[::-1]])
|
|
38 |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.8)[0]
|
39 |
|
40 |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
```
|
47 |
This should output:
|
48 |
```
|
|
|
9 |
|
10 |
# DETR (End-to-End Object Detection) model with ResNet-50 backbone trained on SKU110K Dataset with 400 num_queries
|
11 |
|
12 |
+
DEtection TRansformer (DETR) model trained end-to-end on SKU110K object detection (8k annotated images). Main difference compared to the original model is it having **400** num_queries and it being pretrained on SKU110K dataset.
|
13 |
|
14 |
### How to use
|
15 |
|
16 |
+
Here is how to use this model:
|
17 |
|
18 |
```python
|
19 |
from transformers import DetrImageProcessor, DetrForObjectDetection
|
|
|
21 |
from PIL import Image, ImageOps
|
22 |
import requests
|
23 |
|
24 |
+
url = "https://github.com/Isalia20/DETR-finetune/blob/main/IMG_3507.jpg?raw=true"
|
25 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
26 |
+
image = ImageOps.exif_transpose(image)
|
27 |
|
28 |
# you can specify the revision tag if you don't want the timm dependency
|
29 |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
|
|
|
38 |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.8)[0]
|
39 |
|
40 |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
41 |
+
box = [round(i, 2) for i in box.tolist()]
|
42 |
+
print(
|
43 |
+
f"Detected {model.config.id2label[label.item()]} with confidence "
|
44 |
+
f"{round(score.item(), 3)} at location {box}"
|
45 |
+
)
|
46 |
```
|
47 |
This should output:
|
48 |
```
|