Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -4.47 +/- 1.30
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:66c621bcc054a0edd8590005d3e2a7f2269357b09358636fa3a51845a617efcb
|
3 |
+
size 108116
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f258a617f40>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f258a61d540>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1683818677698853636,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYi9ob21lL2lzYWFjL0RvY3VtZW50cy9STENvdXJzZS92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxiL2hvbWUvaXNhYWMvRG9jdW1lbnRzL1JMQ291cnNlL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA46TWPnNuJr2/+Qs/46TWPnNuJr2/+Qs/46TWPnNuJr2/+Qs/46TWPnNuJr2/+Qs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAijglviZ5Ar8vVO8+Au39PZogpz8fxa2/IClkP30DTj/PLcu/xE2Ivx37lr8PVtO/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADjpNY+c24mvb/5Cz9f0YK7CsmNumsJhbzjpNY+c24mvb/5Cz9f0YK7CsmNumsJhbzjpNY+c24mvb/5Cz9f0YK7CsmNumsJhbzjpNY+c24mvb/5Cz9f0YK7CsmNumsJhbyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.41922674 -0.04063268 0.5467796 ]\n [ 0.41922674 -0.04063268 0.5467796 ]\n [ 0.41922674 -0.04063268 0.5467796 ]\n [ 0.41922674 -0.04063268 0.5467796 ]]",
|
38 |
+
"desired_goal": "[[-0.16134849 -0.5096611 0.46743914]\n [ 0.12398721 1.3056824 -1.3575782 ]\n [ 0.8912525 0.8047407 -1.5873355 ]\n [-1.0648732 -1.1795384 -1.6510638 ]]",
|
39 |
+
"observation": "[[ 0.41922674 -0.04063268 0.5467796 -0.00399224 -0.00108174 -0.01623984]\n [ 0.41922674 -0.04063268 0.5467796 -0.00399224 -0.00108174 -0.01623984]\n [ 0.41922674 -0.04063268 0.5467796 -0.00399224 -0.00108174 -0.01623984]\n [ 0.41922674 -0.04063268 0.5467796 -0.00399224 -0.00108174 -0.01623984]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAjLcLPpFEKj1l3r091pQPPnv+0T3BYks+i9njPcwdAr5dfIo+428dPV57Dj4obkQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.13644236 0.0415693 0.09270934]\n [ 0.1402162 0.10253616 0.1986189 ]\n [ 0.11125477 -0.12706679 0.27048007]\n [ 0.03843678 0.13914248 0.19182646]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9vBloggZEcCUhpRSlIwBbJRLMowBdJRHQJdHpR3u/lB1fZQoaAZoCWgPQwjncK32sFcDwJSGlFKUaBVLMmgWR0CXR1i3G4qgdX2UKGgGaAloD0MIZw+0AkP2DcCUhpRSlGgVSzJoFkdAl0cPRmbsnnV9lChoBmgJaA9DCJZZhGIrqBDAlIaUUpRoFUsyaBZHQJdGx+Vkc0d1fZQoaAZoCWgPQwhuTiUDQHUBwJSGlFKUaBVLMmgWR0CXSLhNucc3dX2UKGgGaAloD0MI1zGuuDjqFcCUhpRSlGgVSzJoFkdAl0hrjtG/e3V9lChoBmgJaA9DCB/WG7XC9AbAlIaUUpRoFUsyaBZHQJdIIhxHXmN1fZQoaAZoCWgPQwiCNjl80skHwJSGlFKUaBVLMmgWR0CXR9re67NCdX2UKGgGaAloD0MIb7ckB+waEMCUhpRSlGgVSzJoFkdAl0nQY+B6KXV9lChoBmgJaA9DCIhp39xfbRXAlIaUUpRoFUsyaBZHQJdJg5xR2r51fZQoaAZoCWgPQwgCui9nttsSwJSGlFKUaBVLMmgWR0CXSTonrpqzdX2UKGgGaAloD0MI9Bq7RPWGHMCUhpRSlGgVSzJoFkdAl0jzDTBqK3V9lChoBmgJaA9DCD1EozuIrRjAlIaUUpRoFUsyaBZHQJdK5y925hB1fZQoaAZoCWgPQwg9m1Wfq80SwJSGlFKUaBVLMmgWR0CXSpp6hQFcdX2UKGgGaAloD0MIjL6CNGORAMCUhpRSlGgVSzJoFkdAl0pRG2Cul3V9lChoBmgJaA9DCMOBkCxgogfAlIaUUpRoFUsyaBZHQJdKCb4Ju2t1fZQoaAZoCWgPQwjqzhPP2cIEwJSGlFKUaBVLMmgWR0CXTAIcinpCdX2UKGgGaAloD0MIiq2gaYnVBsCUhpRSlGgVSzJoFkdAl0u1aGHpKXV9lChoBmgJaA9DCK8l5IOeLRjAlIaUUpRoFUsyaBZHQJdLbHJcPe51fZQoaAZoCWgPQwinPSXnxN4ZwJSGlFKUaBVLMmgWR0CXSyUSIxgzdX2UKGgGaAloD0MIjnbc8LtpBcCUhpRSlGgVSzJoFkdAl00aHKwIMXV9lChoBmgJaA9DCAJJ2LeT6BHAlIaUUpRoFUsyaBZHQJdMzV2A5Jd1fZQoaAZoCWgPQwgkCi3r/tEDwJSGlFKUaBVLMmgWR0CXTIP1+RYBdX2UKGgGaAloD0MI1uB9VS60BMCUhpRSlGgVSzJoFkdAl0w8lLOAy3V9lChoBmgJaA9DCFxXzAhvrw7AlIaUUpRoFUsyaBZHQJdOK/Ho5gh1fZQoaAZoCWgPQwgfhetRuF4FwJSGlFKUaBVLMmgWR0CXTd8l5WzXdX2UKGgGaAloD0MIc7nBUIeVCcCUhpRSlGgVSzJoFkdAl02VuNxVAHV9lChoBmgJaA9DCKAVGLK6NRPAlIaUUpRoFUsyaBZHQJdNTlijL0V1fZQoaAZoCWgPQwinBS/6ChIIwJSGlFKUaBVLMmgWR0CXT0aUA1ejdX2UKGgGaAloD0MIINPaNLY3EMCUhpRSlGgVSzJoFkdAl0752MbWE3V9lChoBmgJaA9DCC5XPzbJ7wjAlIaUUpRoFUsyaBZHQJdOsGt6ol51fZQoaAZoCWgPQwh+NQcI5qgNwJSGlFKUaBVLMmgWR0CXTmkKu0TldX2UKGgGaAloD0MIGcqJdhXyDcCUhpRSlGgVSzJoFkdAl1BwB1cMVnV9lChoBmgJaA9DCEHWU6uvnhDAlIaUUpRoFUsyaBZHQJdQI0Mw1zh1fZQoaAZoCWgPQwhM+nspPIgGwJSGlFKUaBVLMmgWR0CXT9nf2saLdX2UKGgGaAloD0MIXtVZLbA3EcCUhpRSlGgVSzJoFkdAl0+SnHeaa3V9lChoBmgJaA9DCIwRiULL+g3AlIaUUpRoFUsyaBZHQJdRn37DVH51fZQoaAZoCWgPQwjhtOBFXyEJwJSGlFKUaBVLMmgWR0CXUVLFn7HidX2UKGgGaAloD0MIj+BGyhYpE8CUhpRSlGgVSzJoFkdAl1EJUPxx1nV9lChoBmgJaA9DCK9gG/FkNwLAlIaUUpRoFUsyaBZHQJdQwhPj4pN1fZQoaAZoCWgPQwhXsI14srsNwJSGlFKUaBVLMmgWR0CXUrkGA09AdX2UKGgGaAloD0MIjBNf7SiOB8CUhpRSlGgVSzJoFkdAl1JsQZn+Q3V9lChoBmgJaA9DCGDJVSx+gxLAlIaUUpRoFUsyaBZHQJdSIvZh8Y11fZQoaAZoCWgPQwgoui784LwFwJSGlFKUaBVLMmgWR0CXUduRLbpNdX2UKGgGaAloD0MIoIobt5iPEcCUhpRSlGgVSzJoFkdAl1POmrKeTXV9lChoBmgJaA9DCFdbsb/svhzAlIaUUpRoFUsyaBZHQJdTgdKdxyZ1fZQoaAZoCWgPQwh8RiI0gi0awJSGlFKUaBVLMmgWR0CXUzh2nsLOdX2UKGgGaAloD0MIrYbEPZa+AcCUhpRSlGgVSzJoFkdAl1LxXCCSR3V9lChoBmgJaA9DCP+Xa9ECVAXAlIaUUpRoFUsyaBZHQJdU6SlnAZd1fZQoaAZoCWgPQwi3e7lPjhIQwJSGlFKUaBVLMmgWR0CXVJxqfvnbdX2UKGgGaAloD0MIQdZTq6/+FcCUhpRSlGgVSzJoFkdAl1RS8jAzpHV9lChoBmgJaA9DCFipoKLqFwbAlIaUUpRoFUsyaBZHQJdUC4y44Id1fZQoaAZoCWgPQwgg0Jm0qZoPwJSGlFKUaBVLMmgWR0CXVfwYcebNdX2UKGgGaAloD0MIEeULWkiwEsCUhpRSlGgVSzJoFkdAl1WvUz9CNXV9lChoBmgJaA9DCEvkgjP4GwPAlIaUUpRoFUsyaBZHQJdVZe+mFal1fZQoaAZoCWgPQwgknYGRl5UJwJSGlFKUaBVLMmgWR0CXVR6TGHYZdX2UKGgGaAloD0MImgrxSLzsF8CUhpRSlGgVSzJoFkdAl1cQNCqp+HV9lChoBmgJaA9DCBGsqpffaQTAlIaUUpRoFUsyaBZHQJdWw3zcynF1fZQoaAZoCWgPQwiTUzvD1HYAwJSGlFKUaBVLMmgWR0CXVnoVEd/8dX2UKGgGaAloD0MIK01KQbd3EcCUhpRSlGgVSzJoFkdAl1YyuZCv5nV9lChoBmgJaA9DCF7b2y3J4QnAlIaUUpRoFUsyaBZHQJdYJkhA4XJ1fZQoaAZoCWgPQwhtGttrQU8NwJSGlFKUaBVLMmgWR0CXV9mLtNSJdX2UKGgGaAloD0MI26M33EfuDcCUhpRSlGgVSzJoFkdAl1eQK4QSSXV9lChoBmgJaA9DCA1VMZV+IgvAlIaUUpRoFUsyaBZHQJdXSMaS9uh1fZQoaAZoCWgPQwhM4xdeSVIFwJSGlFKUaBVLMmgWR0CXWTyZKFqSdX2UKGgGaAloD0MID2PS30vBBcCUhpRSlGgVSzJoFkdAl1jv0AcT8HV9lChoBmgJaA9DCJT5R9+k+RHAlIaUUpRoFUsyaBZHQJdYpnTRYzV1fZQoaAZoCWgPQwiHGK95VUcEwJSGlFKUaBVLMmgWR0CXWF8La24NdX2UKGgGaAloD0MI+dfyyvVWE8CUhpRSlGgVSzJoFkdAl1pgmiQDFXV9lChoBmgJaA9DCLEYda29LwLAlIaUUpRoFUsyaBZHQJdaE8+zMRp1fZQoaAZoCWgPQwjLLEKxFXQbwJSGlFKUaBVLMmgWR0CXWcqAz544dX2UKGgGaAloD0MIKHy2Dg52C8CUhpRSlGgVSzJoFkdAl1mDWTX8O3V9lChoBmgJaA9DCOsfRDLkuA/AlIaUUpRoFUsyaBZHQJdbei35N491fZQoaAZoCWgPQwjCbW3heVkSwJSGlFKUaBVLMmgWR0CXWy1pTMq0dX2UKGgGaAloD0MIXMZNDTRvEsCUhpRSlGgVSzJoFkdAl1rkCNjslnV9lChoBmgJaA9DCDp5kQn4FRHAlIaUUpRoFUsyaBZHQJdanKq4pc51fZQoaAZoCWgPQwj18jtNZjwPwJSGlFKUaBVLMmgWR0CXXIxR2r4ndX2UKGgGaAloD0MIup9TkJ/NC8CUhpRSlGgVSzJoFkdAl1w/jGT9sXV9lChoBmgJaA9DCBBZpIl3ABjAlIaUUpRoFUsyaBZHQJdb9hc7heh1fZQoaAZoCWgPQwgMsfojDDMbwJSGlFKUaBVLMmgWR0CXW66wdKdydX2UKGgGaAloD0MI4q/JGvXAEsCUhpRSlGgVSzJoFkdAl12kqc3ERHV9lChoBmgJaA9DCDiie9Y16hDAlIaUUpRoFUsyaBZHQJddV+kP+XJ1fZQoaAZoCWgPQwieYWpLHQQDwJSGlFKUaBVLMmgWR0CXXQ6Hj6vadX2UKGgGaAloD0MIlialoNsrBMCUhpRSlGgVSzJoFkdAl1zHryDqW3V9lChoBmgJaA9DCNO+ub963ATAlIaUUpRoFUsyaBZHQJdeu1RceKd1fZQoaAZoCWgPQwgptKz7x+IZwJSGlFKUaBVLMmgWR0CXXm6K+BYndX2UKGgGaAloD0MI4e8XsyWTJMCUhpRSlGgVSzJoFkdAl14laB7NS3V9lChoBmgJaA9DCJEJ+DWStB/AlIaUUpRoFUsyaBZHQJdd3gLqlgt1fZQoaAZoCWgPQwggRZ25h1QewJSGlFKUaBVLMmgWR0CXX9Qq7ROUdX2UKGgGaAloD0MI/3dEherGDMCUhpRSlGgVSzJoFkdAl1+HdsSCe3V9lChoBmgJaA9DCD8cJET5IhHAlIaUUpRoFUsyaBZHQJdfPhESdvt1fZQoaAZoCWgPQwhRvMrapkgUwJSGlFKUaBVLMmgWR0CXXvavA44qdX2UKGgGaAloD0MI+PpalxoRE8CUhpRSlGgVSzJoFkdAl2DnLeQ+2XV9lChoBmgJaA9DCITTghd9pQjAlIaUUpRoFUsyaBZHQJdgmm3vx6R1fZQoaAZoCWgPQwjGpL+XwgMXwJSGlFKUaBVLMmgWR0CXYFD9wWFfdX2UKGgGaAloD0MINlmjHqIhH8CUhpRSlGgVSzJoFkdAl2AJlz2ex3V9lChoBmgJaA9DCNdoOdBDnRHAlIaUUpRoFUsyaBZHQJdh+oXKr7x1fZQoaAZoCWgPQwi/Khcq/9oHwJSGlFKUaBVLMmgWR0CXYa3CsOoYdX2UKGgGaAloD0MINo/DYP7qDMCUhpRSlGgVSzJoFkdAl2FkVJtix3V9lChoBmgJaA9DCAspP6n2iRbAlIaUUpRoFUsyaBZHQJdhHPHDJlt1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2eaece984bbf61bfd8aef66a5290d12d8db593ce122907b422c99108ce0f7978
|
3 |
+
size 44670
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c5ff3a2df010e5536ae39dc2a91c8e8ed6ffe7249d95a0434c4ba236c16e48f
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-41-generic-x86_64-with-glibc2.35 # 42~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Tue Apr 18 17:40:00 UTC 2
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 1.11.0+cu102
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.2
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f258a617f40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f258a61d540>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683818677698853636, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYi9ob21lL2lzYWFjL0RvY3VtZW50cy9STENvdXJzZS92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxiL2hvbWUvaXNhYWMvRG9jdW1lbnRzL1JMQ291cnNlL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA46TWPnNuJr2/+Qs/46TWPnNuJr2/+Qs/46TWPnNuJr2/+Qs/46TWPnNuJr2/+Qs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAijglviZ5Ar8vVO8+Au39PZogpz8fxa2/IClkP30DTj/PLcu/xE2Ivx37lr8PVtO/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADjpNY+c24mvb/5Cz9f0YK7CsmNumsJhbzjpNY+c24mvb/5Cz9f0YK7CsmNumsJhbzjpNY+c24mvb/5Cz9f0YK7CsmNumsJhbzjpNY+c24mvb/5Cz9f0YK7CsmNumsJhbyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.41922674 -0.04063268 0.5467796 ]\n [ 0.41922674 -0.04063268 0.5467796 ]\n [ 0.41922674 -0.04063268 0.5467796 ]\n [ 0.41922674 -0.04063268 0.5467796 ]]", "desired_goal": "[[-0.16134849 -0.5096611 0.46743914]\n [ 0.12398721 1.3056824 -1.3575782 ]\n [ 0.8912525 0.8047407 -1.5873355 ]\n [-1.0648732 -1.1795384 -1.6510638 ]]", "observation": "[[ 0.41922674 -0.04063268 0.5467796 -0.00399224 -0.00108174 -0.01623984]\n [ 0.41922674 -0.04063268 0.5467796 -0.00399224 -0.00108174 -0.01623984]\n [ 0.41922674 -0.04063268 0.5467796 -0.00399224 -0.00108174 -0.01623984]\n [ 0.41922674 -0.04063268 0.5467796 -0.00399224 -0.00108174 -0.01623984]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAjLcLPpFEKj1l3r091pQPPnv+0T3BYks+i9njPcwdAr5dfIo+428dPV57Dj4obkQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.13644236 0.0415693 0.09270934]\n [ 0.1402162 0.10253616 0.1986189 ]\n [ 0.11125477 -0.12706679 0.27048007]\n [ 0.03843678 0.13914248 0.19182646]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9vBloggZEcCUhpRSlIwBbJRLMowBdJRHQJdHpR3u/lB1fZQoaAZoCWgPQwjncK32sFcDwJSGlFKUaBVLMmgWR0CXR1i3G4qgdX2UKGgGaAloD0MIZw+0AkP2DcCUhpRSlGgVSzJoFkdAl0cPRmbsnnV9lChoBmgJaA9DCJZZhGIrqBDAlIaUUpRoFUsyaBZHQJdGx+Vkc0d1fZQoaAZoCWgPQwhuTiUDQHUBwJSGlFKUaBVLMmgWR0CXSLhNucc3dX2UKGgGaAloD0MI1zGuuDjqFcCUhpRSlGgVSzJoFkdAl0hrjtG/e3V9lChoBmgJaA9DCB/WG7XC9AbAlIaUUpRoFUsyaBZHQJdIIhxHXmN1fZQoaAZoCWgPQwiCNjl80skHwJSGlFKUaBVLMmgWR0CXR9re67NCdX2UKGgGaAloD0MIb7ckB+waEMCUhpRSlGgVSzJoFkdAl0nQY+B6KXV9lChoBmgJaA9DCIhp39xfbRXAlIaUUpRoFUsyaBZHQJdJg5xR2r51fZQoaAZoCWgPQwgCui9nttsSwJSGlFKUaBVLMmgWR0CXSTonrpqzdX2UKGgGaAloD0MI9Bq7RPWGHMCUhpRSlGgVSzJoFkdAl0jzDTBqK3V9lChoBmgJaA9DCD1EozuIrRjAlIaUUpRoFUsyaBZHQJdK5y925hB1fZQoaAZoCWgPQwg9m1Wfq80SwJSGlFKUaBVLMmgWR0CXSpp6hQFcdX2UKGgGaAloD0MIjL6CNGORAMCUhpRSlGgVSzJoFkdAl0pRG2Cul3V9lChoBmgJaA9DCMOBkCxgogfAlIaUUpRoFUsyaBZHQJdKCb4Ju2t1fZQoaAZoCWgPQwjqzhPP2cIEwJSGlFKUaBVLMmgWR0CXTAIcinpCdX2UKGgGaAloD0MIiq2gaYnVBsCUhpRSlGgVSzJoFkdAl0u1aGHpKXV9lChoBmgJaA9DCK8l5IOeLRjAlIaUUpRoFUsyaBZHQJdLbHJcPe51fZQoaAZoCWgPQwinPSXnxN4ZwJSGlFKUaBVLMmgWR0CXSyUSIxgzdX2UKGgGaAloD0MIjnbc8LtpBcCUhpRSlGgVSzJoFkdAl00aHKwIMXV9lChoBmgJaA9DCAJJ2LeT6BHAlIaUUpRoFUsyaBZHQJdMzV2A5Jd1fZQoaAZoCWgPQwgkCi3r/tEDwJSGlFKUaBVLMmgWR0CXTIP1+RYBdX2UKGgGaAloD0MI1uB9VS60BMCUhpRSlGgVSzJoFkdAl0w8lLOAy3V9lChoBmgJaA9DCFxXzAhvrw7AlIaUUpRoFUsyaBZHQJdOK/Ho5gh1fZQoaAZoCWgPQwgfhetRuF4FwJSGlFKUaBVLMmgWR0CXTd8l5WzXdX2UKGgGaAloD0MIc7nBUIeVCcCUhpRSlGgVSzJoFkdAl02VuNxVAHV9lChoBmgJaA9DCKAVGLK6NRPAlIaUUpRoFUsyaBZHQJdNTlijL0V1fZQoaAZoCWgPQwinBS/6ChIIwJSGlFKUaBVLMmgWR0CXT0aUA1ejdX2UKGgGaAloD0MIINPaNLY3EMCUhpRSlGgVSzJoFkdAl0752MbWE3V9lChoBmgJaA9DCC5XPzbJ7wjAlIaUUpRoFUsyaBZHQJdOsGt6ol51fZQoaAZoCWgPQwh+NQcI5qgNwJSGlFKUaBVLMmgWR0CXTmkKu0TldX2UKGgGaAloD0MIGcqJdhXyDcCUhpRSlGgVSzJoFkdAl1BwB1cMVnV9lChoBmgJaA9DCEHWU6uvnhDAlIaUUpRoFUsyaBZHQJdQI0Mw1zh1fZQoaAZoCWgPQwhM+nspPIgGwJSGlFKUaBVLMmgWR0CXT9nf2saLdX2UKGgGaAloD0MIXtVZLbA3EcCUhpRSlGgVSzJoFkdAl0+SnHeaa3V9lChoBmgJaA9DCIwRiULL+g3AlIaUUpRoFUsyaBZHQJdRn37DVH51fZQoaAZoCWgPQwjhtOBFXyEJwJSGlFKUaBVLMmgWR0CXUVLFn7HidX2UKGgGaAloD0MIj+BGyhYpE8CUhpRSlGgVSzJoFkdAl1EJUPxx1nV9lChoBmgJaA9DCK9gG/FkNwLAlIaUUpRoFUsyaBZHQJdQwhPj4pN1fZQoaAZoCWgPQwhXsI14srsNwJSGlFKUaBVLMmgWR0CXUrkGA09AdX2UKGgGaAloD0MIjBNf7SiOB8CUhpRSlGgVSzJoFkdAl1JsQZn+Q3V9lChoBmgJaA9DCGDJVSx+gxLAlIaUUpRoFUsyaBZHQJdSIvZh8Y11fZQoaAZoCWgPQwgoui784LwFwJSGlFKUaBVLMmgWR0CXUduRLbpNdX2UKGgGaAloD0MIoIobt5iPEcCUhpRSlGgVSzJoFkdAl1POmrKeTXV9lChoBmgJaA9DCFdbsb/svhzAlIaUUpRoFUsyaBZHQJdTgdKdxyZ1fZQoaAZoCWgPQwh8RiI0gi0awJSGlFKUaBVLMmgWR0CXUzh2nsLOdX2UKGgGaAloD0MIrYbEPZa+AcCUhpRSlGgVSzJoFkdAl1LxXCCSR3V9lChoBmgJaA9DCP+Xa9ECVAXAlIaUUpRoFUsyaBZHQJdU6SlnAZd1fZQoaAZoCWgPQwi3e7lPjhIQwJSGlFKUaBVLMmgWR0CXVJxqfvnbdX2UKGgGaAloD0MIQdZTq6/+FcCUhpRSlGgVSzJoFkdAl1RS8jAzpHV9lChoBmgJaA9DCFipoKLqFwbAlIaUUpRoFUsyaBZHQJdUC4y44Id1fZQoaAZoCWgPQwgg0Jm0qZoPwJSGlFKUaBVLMmgWR0CXVfwYcebNdX2UKGgGaAloD0MIEeULWkiwEsCUhpRSlGgVSzJoFkdAl1WvUz9CNXV9lChoBmgJaA9DCEvkgjP4GwPAlIaUUpRoFUsyaBZHQJdVZe+mFal1fZQoaAZoCWgPQwgknYGRl5UJwJSGlFKUaBVLMmgWR0CXVR6TGHYZdX2UKGgGaAloD0MImgrxSLzsF8CUhpRSlGgVSzJoFkdAl1cQNCqp+HV9lChoBmgJaA9DCBGsqpffaQTAlIaUUpRoFUsyaBZHQJdWw3zcynF1fZQoaAZoCWgPQwiTUzvD1HYAwJSGlFKUaBVLMmgWR0CXVnoVEd/8dX2UKGgGaAloD0MIK01KQbd3EcCUhpRSlGgVSzJoFkdAl1YyuZCv5nV9lChoBmgJaA9DCF7b2y3J4QnAlIaUUpRoFUsyaBZHQJdYJkhA4XJ1fZQoaAZoCWgPQwhtGttrQU8NwJSGlFKUaBVLMmgWR0CXV9mLtNSJdX2UKGgGaAloD0MI26M33EfuDcCUhpRSlGgVSzJoFkdAl1eQK4QSSXV9lChoBmgJaA9DCA1VMZV+IgvAlIaUUpRoFUsyaBZHQJdXSMaS9uh1fZQoaAZoCWgPQwhM4xdeSVIFwJSGlFKUaBVLMmgWR0CXWTyZKFqSdX2UKGgGaAloD0MID2PS30vBBcCUhpRSlGgVSzJoFkdAl1jv0AcT8HV9lChoBmgJaA9DCJT5R9+k+RHAlIaUUpRoFUsyaBZHQJdYpnTRYzV1fZQoaAZoCWgPQwiHGK95VUcEwJSGlFKUaBVLMmgWR0CXWF8La24NdX2UKGgGaAloD0MI+dfyyvVWE8CUhpRSlGgVSzJoFkdAl1pgmiQDFXV9lChoBmgJaA9DCLEYda29LwLAlIaUUpRoFUsyaBZHQJdaE8+zMRp1fZQoaAZoCWgPQwjLLEKxFXQbwJSGlFKUaBVLMmgWR0CXWcqAz544dX2UKGgGaAloD0MIKHy2Dg52C8CUhpRSlGgVSzJoFkdAl1mDWTX8O3V9lChoBmgJaA9DCOsfRDLkuA/AlIaUUpRoFUsyaBZHQJdbei35N491fZQoaAZoCWgPQwjCbW3heVkSwJSGlFKUaBVLMmgWR0CXWy1pTMq0dX2UKGgGaAloD0MIXMZNDTRvEsCUhpRSlGgVSzJoFkdAl1rkCNjslnV9lChoBmgJaA9DCDp5kQn4FRHAlIaUUpRoFUsyaBZHQJdanKq4pc51fZQoaAZoCWgPQwj18jtNZjwPwJSGlFKUaBVLMmgWR0CXXIxR2r4ndX2UKGgGaAloD0MIup9TkJ/NC8CUhpRSlGgVSzJoFkdAl1w/jGT9sXV9lChoBmgJaA9DCBBZpIl3ABjAlIaUUpRoFUsyaBZHQJdb9hc7heh1fZQoaAZoCWgPQwgMsfojDDMbwJSGlFKUaBVLMmgWR0CXW66wdKdydX2UKGgGaAloD0MI4q/JGvXAEsCUhpRSlGgVSzJoFkdAl12kqc3ERHV9lChoBmgJaA9DCDiie9Y16hDAlIaUUpRoFUsyaBZHQJddV+kP+XJ1fZQoaAZoCWgPQwieYWpLHQQDwJSGlFKUaBVLMmgWR0CXXQ6Hj6vadX2UKGgGaAloD0MIlialoNsrBMCUhpRSlGgVSzJoFkdAl1zHryDqW3V9lChoBmgJaA9DCNO+ub963ATAlIaUUpRoFUsyaBZHQJdeu1RceKd1fZQoaAZoCWgPQwgptKz7x+IZwJSGlFKUaBVLMmgWR0CXXm6K+BYndX2UKGgGaAloD0MI4e8XsyWTJMCUhpRSlGgVSzJoFkdAl14laB7NS3V9lChoBmgJaA9DCJEJ+DWStB/AlIaUUpRoFUsyaBZHQJdd3gLqlgt1fZQoaAZoCWgPQwggRZ25h1QewJSGlFKUaBVLMmgWR0CXX9Qq7ROUdX2UKGgGaAloD0MI/3dEherGDMCUhpRSlGgVSzJoFkdAl1+HdsSCe3V9lChoBmgJaA9DCD8cJET5IhHAlIaUUpRoFUsyaBZHQJdfPhESdvt1fZQoaAZoCWgPQwhRvMrapkgUwJSGlFKUaBVLMmgWR0CXXvavA44qdX2UKGgGaAloD0MI+PpalxoRE8CUhpRSlGgVSzJoFkdAl2DnLeQ+2XV9lChoBmgJaA9DCITTghd9pQjAlIaUUpRoFUsyaBZHQJdgmm3vx6R1fZQoaAZoCWgPQwjGpL+XwgMXwJSGlFKUaBVLMmgWR0CXYFD9wWFfdX2UKGgGaAloD0MINlmjHqIhH8CUhpRSlGgVSzJoFkdAl2AJlz2ex3V9lChoBmgJaA9DCNdoOdBDnRHAlIaUUpRoFUsyaBZHQJdh+oXKr7x1fZQoaAZoCWgPQwi/Khcq/9oHwJSGlFKUaBVLMmgWR0CXYa3CsOoYdX2UKGgGaAloD0MINo/DYP7qDMCUhpRSlGgVSzJoFkdAl2FkVJtix3V9lChoBmgJaA9DCAspP6n2iRbAlIaUUpRoFUsyaBZHQJdhHPHDJlt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.19.0-41-generic-x86_64-with-glibc2.35 # 42~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Tue Apr 18 17:40:00 UTC 2", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (811 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -4.465337078087032, "std_reward": 1.296439463799374, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-11T11:32:03.514833"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f203c129bbb3cf3c03a3c4b16122a76547cbbaf4b3994a2a8e4bd4e7003c57c3
|
3 |
+
size 2387
|