training a model on local pc
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +110 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 302.71 +/- 7.68
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f756d7c3520>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f756d7c35b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f756d7c3640>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f756d7c36d0>", "_build": "<function ActorCriticPolicy._build at 0x7f756d7c3760>", "forward": "<function ActorCriticPolicy.forward at 0x7f756d7c37f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f756d7c3880>", "_predict": "<function ActorCriticPolicy._predict at 0x7f756d7c3910>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f756d7c39a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f756d7c3a30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f756d7c3ac0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f756d8f0600>"}, "verbose": false, "policy_kwargs": {"net_arch": [{"pi": [128, 128], "vf": [128, 128]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "num_timesteps": 10027008, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652122871.5083306, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWVyQEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwJLQ0MIZAF8ABQAUwCUTkc/aJN0vGp++oaUKYwBeJSFlIwiL3RtcC9pcHlrZXJuZWxfMTQxNjEvMzgxMTMwMzA5Mi5weZSMCDxsYW1iZGE+lEsGQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBd9lH2UKGgUaA6MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "tensorboard_log": "logs/06_model_size/model_size_128", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVyQEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwJLQ0MIZAF8ABQAUwCUTkc/aJN0vGp++oaUKYwBeJSFlIwiL3RtcC9pcHlrZXJuZWxfMTQxNjEvMzgxMTMwMzA5Mi5weZSMCDxsYW1iZGE+lEsGQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBd9lH2UKGgUaA6MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAJra67wEJoc/dgnLvZCTZr+mK7+9hwqbvQAAAAAAAAAAJj2APjXqwz5jEtK+JQ84v0zsPz56d4O+AAAAAAAAAAAaXXW9sfW9PyPhPb/bR6A+QY5UPcBSmD0AAAAAAAAAAICfPL2FbFk+YiDXPC9bIb+emG+9yJrrPAAAAAAAAAAAM8uxPPn0uj80Oj0+D12JPSUn1zxjf7Q9AAAAAAAAAADW5pG+XNSTPxqrzb6QIze/M9EIvwj6sL0AAAAAAAAAAKDYcz4fABw/AOiDPZyzJ79u1sY+Hr7NvQAAAAAAAAAAk3sPvlJl2LuIMO67q+hIusyiKz1Cqyk7AACAPwAAgD9z08m9jiCTPWukhz6AruS+0ctvvBTGOj4AAAAAAAAAAADUmryu2bu6VIkBPqUmvzY6H5k5qk2vNQAAAAAAAAAAmltAvGsksT8JMEG+O2+IvqoBqjrAksu8AAAAAAAAAAAGxwK+rOYMPtD4OT4RGBC/T+kVvSsTPj4AAAAAAAAAABN5Db72wgG8bnzqujzNlriLuV89ogbiOQAAgD8AAIA/moSSPfYsc7rOxMK8eYsyMyzRmLtuL22zAACAPwAAgD/N/KO78LSfP12aI71l8zC/aAIovMpZqzsAAAAAAAAAAM0Pijw290q86QImvuzrrTwiUqM8Ui+UPQAAgD8AAIA/TT6KPbj+yLkiFWI2DTTEMeueDbt/XYS1AACAPwAAgD+asSs9j7JRurZKKrmiPfSz9MLyul7dRjgAAIA/AACAP60vEL7tAnM/RW1zvmMRYL8Thpq+O0zRvQAAAAAAAAAAZhIdPHvGkbp57jmyo7cwsT07tDnegz8zAACAPwAAgD+Aj1q99uQ5uk72jDwsPI08vhONOWqCdr0AAIA/AACAP6Z9jD3UqPQ+meeQvZrDbL/lpcg9jCY0vQAAAAAAAAAAM9T2PH5WBj84p2o7XcRtv830iT3h0ZI6AAAAAAAAAADmjO69T4gYPRVorj4sqaG+wNvKvGhDaj4AAAAAAAAAAK0WUz51+8k+G1pnviTJN78Qu20+Fo1lvgAAAAAAAAAAM/GrPYmypD7yUWS9tCpBv7+u+T2UVQi9AAAAAAAAAABaZeC9CghLu9aX9T2AEee7emIWPKb3Lb0AAIA/AAAAAIDYXj3nvWc/K3wPPr9ki7/A7AQ++GdivQAAAAAAAAAAAEDiuiJTsT+eE6e9EcoUvy2MGzku6pO8AAAAAAAAAACaq9C9Lnu2PT/ysT7XbdK+Shj/PKOihT4AAAAAAAAAAICmSD32NE269RucM3GJ/i4QKog7x++pswAAgD8AAIA/miEMPTYdB7wte/q9/lYpPbPzY72+uwg+AACAPwAAgD/zfAi+Uh+4u5spNrvZu825L9YmPRVfpToAAIA/AACAP5prZT2sVbQ8Nq1wvskk7r6v7RM+696HvAAAAAAAAAAAjY2MvSm4E7qy2So0t36SLvoos7rmsKuzAACAPwAAgD8zmc48UgG+u82MTr2Lqis9r0r1uyipZrwAAIA/AACAP6Zq5T2V1yA//hjnPWQpcb8fbkE+chCkOgAAAAAAAAAAzR7APTvB3T0hE8u+0gQCvyplU70hbIK+AAAAAAAAAAAziRW8hQuDOHPoOThELtczNumvO7oLYLcAAIA/AACAP5pN9DspUC26BmgCPfPRqb2PN826PgsMPQAAAAAAAAAAAOT/O46/v7wuCri91A9uviyonbwradi+AACAPwAAgD9AI3A+rQIgP4cBGj4Nuiy/Rd3PPhQJOj0AAAAAAAAAAJphVrvJIsM/z12pvKeHk7pncSm8PtgVPAAAAAAAAAAAc6CXvXCtoz/X1oS+L+MNv10PLL5ay52+AAAAAAAAAADNwUw+P2MoPi7u6r4PQAm/NaSfO10UWL4AAAAAAAAAAM2scTzDRSm6n323PZF+PzmUD3c7CjA2OAAAAAAAAAAAdoFxvopVjz+SKqC+CqZRv7LK3b4S1DK+AAAAAAAAAACN0J29Ad3KPY0r+z0+Avy+mBoKviLftj0AAAAAAAAAAGDoOT7Qiq0+AN8Jvn6UHb+tX3w+UPckvgAAAAAAAAAA5gjRPVyPSbzExbG+ztD+vcqDlDwXiyo/AAAAAAAAgD+z/IO94SSQuousSD05UwmzRNDRugo3fbMAAIA/AACAP1ocIb4GLdM+KaaHvSKkRr8fDX++t4qWPQAAAAAAAAAAzdCCO/x2mD8WlZA7F6RLvyXXuzxFCdw8AAAAAAAAAADNGNQ7vD0rPWaKjL2jsYi+bbhmvEr5nr0AAAAAAAAAALNeCT3SZ867ylihvdWDVzzqaxw9D4U4vQAAgD8AAIA/AN0/PsBOnT9mZfw+Ghcwv6N6ij4645Y+AAAAAAAAAAAjjm2+801TP96sVr7CJyS/DA3bvn2caT0AAAAAAAAAAO3OBj4ugLs+bnCcva0TO78qhSs+vGGTvQAAAAAAAAAAM3MiuiNpaD1NmG+9t/XEvikHm7w6vDu9AAAAAAAAAACthy4+k/xEP+gKWj4O80O/5PyTPhKlJD0AAAAAAAAAAGaUGjw/RF0/7/4FPMHxgr/xLi494wv9vAAAAAAAAAAAM7wmvhAVtT59B8Y9ueUiv33OR77YVhw+AAAAAAAAAABL0qK+WWSgP3rkGL+rTCa/2w4XvxPjar4AAAAAAAAAAMDXoT0WYhY/5Xe2PXArZb+Ss/k9ihRpvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXtcv2I28ckCUhpRSlIwBbJRLnowBdJRHQLHLuq2jO9p1fZQoaAZoCWgPQwhlpx/URedzQJSGlFKUaBVLumgWR0Cxy8J6MR6GdX2UKGgGaAloD0MICvfKvJUqcECUhpRSlGgVS5hoFkdAscvdh9b5dnV9lChoBmgJaA9DCLjn+dMGg3NAlIaUUpRoFUu4aBZHQLHL6F/hESd1fZQoaAZoCWgPQwgPQ6uTc9NzQJSGlFKUaBVLqmgWR0Cxy/ARoRI0dX2UKGgGaAloD0MIT3l0I+z7cECUhpRSlGgVS6FoFkdAscvzkFOfunV9lChoBmgJaA9DCNzVq8ioOXBAlIaUUpRoFUuUaBZHQLHMEILPUrl1fZQoaAZoCWgPQwgKaY1BZytyQJSGlFKUaBVLiWgWR0CxzB8sQNCrdX2UKGgGaAloD0MICKpGrwaGc0CUhpRSlGgVS75oFkdAscwulUIcBHV9lChoBmgJaA9DCN2zrtFyRXNAlIaUUpRoFUu+aBZHQLHMMw9q1w51fZQoaAZoCWgPQwhKz/QSI9lyQJSGlFKUaBVLsmgWR0CxzDLxAjY7dX2UKGgGaAloD0MIBDqTNhUPcECUhpRSlGgVS7FoFkdAscw2KAJ9iXV9lChoBmgJaA9DCJXzxd6LXUpAlIaUUpRoFUtPaBZHQLHMQT3qRlp1fZQoaAZoCWgPQwh2qKYkK+JyQJSGlFKUaBVLrWgWR0CxzEljurp8dX2UKGgGaAloD0MIuCIxQc2AcUCUhpRSlGgVS51oFkdAscxXxx1gY3V9lChoBmgJaA9DCPn2rkHf3XFAlIaUUpRoFUuiaBZHQLHMXD9fkWB1fZQoaAZoCWgPQwjhDP5+cYRyQJSGlFKUaBVLnWgWR0CxzF6+i8FqdX2UKGgGaAloD0MIy73ArNDBc0CUhpRSlGgVS6toFkdAscxiYsunM3V9lChoBmgJaA9DCAn6Cz1iTHFAlIaUUpRoFUu9aBZHQLHMZm3fAKx1fZQoaAZoCWgPQwi3DDhLSRtxQJSGlFKUaBVLjGgWR0CxzHQZflZHdX2UKGgGaAloD0MIeTwtPzC+c0CUhpRSlGgVS89oFkdAscyOFfzBh3V9lChoBmgJaA9DCGGJB5QNsXJAlIaUUpRoFUupaBZHQLHMmbMotth1fZQoaAZoCWgPQwjuluSA3cxyQJSGlFKUaBVLs2gWR0CxzJy4z7/GdX2UKGgGaAloD0MInL8JhYihcUCUhpRSlGgVS7JoFkdAscyc3++/QHV9lChoBmgJaA9DCBwHXi03VnBAlIaUUpRoFUufaBZHQLHMquZCv5h1fZQoaAZoCWgPQwjkZU0ssNxxQJSGlFKUaBVLpmgWR0CxzK65byH3dX2UKGgGaAloD0MIYcYUrDFac0CUhpRSlGgVS7loFkdAscyuyiVSoHV9lChoBmgJaA9DCKiOVUqPzHBAlIaUUpRoFUuiaBZHQLHMw752yLR1fZQoaAZoCWgPQwgAxciSOV5wQJSGlFKUaBVLkGgWR0CxzMtSydFwdX2UKGgGaAloD0MISnzuBDvNcECUhpRSlGgVS5VoFkdAsczLR1HOKXV9lChoBmgJaA9DCFga+FENZUVAlIaUUpRoFUtoaBZHQLHM7DgqEvl1fZQoaAZoCWgPQwg1071OartxQJSGlFKUaBVLnmgWR0CxzPeIEbHZdX2UKGgGaAloD0MIDmd+NYf2b0CUhpRSlGgVS5VoFkdAsc0DcpLEk3V9lChoBmgJaA9DCN3PKcgPAnNAlIaUUpRoFUu9aBZHQLHNDuJDVpd1fZQoaAZoCWgPQwj20hQBTiRRQJSGlFKUaBVLU2gWR0CxzQ3bypaSdX2UKGgGaAloD0MI7Ggc6nfgcECUhpRSlGgVS4FoFkdAsc0lQvYe1nV9lChoBmgJaA9DCM8u3/owP3FAlIaUUpRoFUt+aBZHQLHNK63AmAt1fZQoaAZoCWgPQwiP/SyWovFwQJSGlFKUaBVLjGgWR0CxzTOH8CPqdX2UKGgGaAloD0MIDd/CujF4cECUhpRSlGgVS5RoFkdAsc1C/7BO6HV9lChoBmgJaA9DCAVSYtc2e3JAlIaUUpRoFUvAaBZHQLHNUi8Fpwl1fZQoaAZoCWgPQwhBKsWOhvRxQJSGlFKUaBVLvGgWR0CxzWzvRZ2ZdX2UKGgGaAloD0MImZzaGaZXckCUhpRSlGgVS6VoFkdAsc1xEnb7CXV9lChoBmgJaA9DCJ3y6EbY63JAlIaUUpRoFUuZaBZHQLHNfBIWgvl1fZQoaAZoCWgPQwjUtfY+1eRxQJSGlFKUaBVLuGgWR0CxzYetGNJfdX2UKGgGaAloD0MIbJbLRuf7cECUhpRSlGgVS51oFkdAsc2Wn2qT83V9lChoBmgJaA9DCKNzfoqjWXNAlIaUUpRoFUvEaBZHQLHNm3nIQvp1fZQoaAZoCWgPQwjQ1VbsL7JxQJSGlFKUaBVLtGgWR0CxzZrUwztUdX2UKGgGaAloD0MIglX18rtcc0CUhpRSlGgVS79oFkdAsc2mH58BuHV9lChoBmgJaA9DCHgJTn2gJ3JAlIaUUpRoFUuSaBZHQLHNtglnh891fZQoaAZoCWgPQwjtgywL5qhyQJSGlFKUaBVLrGgWR0Cxzbkbo8p1dX2UKGgGaAloD0MIPnlYqLXzcUCUhpRSlGgVS6poFkdAsc29VPva13V9lChoBmgJaA9DCJj5Dn7i73JAlIaUUpRoFUueaBZHQLHNvRVp9JB1fZQoaAZoCWgPQwhwJNBgExBwQJSGlFKUaBVLkmgWR0CxzdcJMQEqdX2UKGgGaAloD0MI1c3F3zZydECUhpRSlGgVS8ZoFkdAsc3bNJOFg3V9lChoBmgJaA9DCEGC4seYTnRAlIaUUpRoFUvOaBZHQLHN7PQv6CV1fZQoaAZoCWgPQwijc36KI/9wQJSGlFKUaBVLo2gWR0CxzgO5z5oHdX2UKGgGaAloD0MIfc7drte7cUCUhpRSlGgVS6loFkdAsc4D2h7E53V9lChoBmgJaA9DCCxmhLcHZHBAlIaUUpRoFUunaBZHQLHOFnh86WB1fZQoaAZoCWgPQwjBq+XOTAxyQJSGlFKUaBVLi2gWR0CxzhZvkzXSdX2UKGgGaAloD0MIud42UyH/cECUhpRSlGgVS6toFkdAsc4xrJr+HnV9lChoBmgJaA9DCG10zk9x9m9AlIaUUpRoFUuJaBZHQLHOMYigTRJ1fZQoaAZoCWgPQwhRacTMPpVxQJSGlFKUaBVLq2gWR0Cxzj0YO2AodX2UKGgGaAloD0MIjIS2nIsAc0CUhpRSlGgVS7doFkdAsc48YBNmDnV9lChoBmgJaA9DCAqeQq7U1HBAlIaUUpRoFUugaBZHQLHOPFRpDeF1fZQoaAZoCWgPQwhNamgDcJZyQJSGlFKUaBVLu2gWR0Cxzk8Iu5BkdX2UKGgGaAloD0MIu3uA7svUc0CUhpRSlGgVS75oFkdAsc5r8R+SbHV9lChoBmgJaA9DCIQPJVoyU3JAlIaUUpRoFUvraBZHQLHOcOp84Px1fZQoaAZoCWgPQwguymyQCa5zQJSGlFKUaBVLrmgWR0CxznsmWt2cdX2UKGgGaAloD0MI0lRP5l/ocECUhpRSlGgVS5JoFkdAsc6CTdLxqnV9lChoBmgJaA9DCE2giEWM3nFAlIaUUpRoFUuyaBZHQLHOhnKW9lF1fZQoaAZoCWgPQwi9/48TpgxyQJSGlFKUaBVLoWgWR0CxzoouoP07dX2UKGgGaAloD0MIYXDNHb0RdECUhpRSlGgVS6NoFkdAsc6NkI5YHXV9lChoBmgJaA9DCObJNQXy73BAlIaUUpRoFUuZaBZHQLHOkTJyQxN1fZQoaAZoCWgPQwiN7bWgt1pyQJSGlFKUaBVLo2gWR0CxzpQVoHs1dX2UKGgGaAloD0MILpJ2o0/BckCUhpRSlGgVS5ZoFkdAsc6h+NLlFXV9lChoBmgJaA9DCBlZMseyfXBAlIaUUpRoFUuIaBZHQLHOpb7TDwZ1fZQoaAZoCWgPQwjwF7Ml6+dyQJSGlFKUaBVLk2gWR0CxzrC2lVLjdX2UKGgGaAloD0MIU3dlF0yHckCUhpRSlGgVS7NoFkdAsc63C/GlynV9lChoBmgJaA9DCB3pDIy8w3BAlIaUUpRoFUuZaBZHQLHO0MLncL11fZQoaAZoCWgPQwj8+4wLR3ZwQJSGlFKUaBVLmGgWR0CxztAEpy6udX2UKGgGaAloD0MITFKZYg5SckCUhpRSlGgVS3poFkdAsc7TZ5AyEnV9lChoBmgJaA9DCLX5f9VRlHJAlIaUUpRoFUuraBZHQLHO1wdbPhR1fZQoaAZoCWgPQwjRdeEHJ/RyQJSGlFKUaBVLrmgWR0Cxzt9XDFZQdX2UKGgGaAloD0MIxa7t7VZec0CUhpRSlGgVS5xoFkdAsc7yTbFju3V9lChoBmgJaA9DCLvwg/Np+HJAlIaUUpRoFUu5aBZHQLHO9nJ1aGJ1fZQoaAZoCWgPQwit+lxthfBzQJSGlFKUaBVLsWgWR0CxzvZNfw7UdX2UKGgGaAloD0MIXqJ6a+B9cUCUhpRSlGgVS6JoFkdAsc72Ss8xK3V9lChoBmgJaA9DCGr7V1YafXBAlIaUUpRoFUuVaBZHQLHO9hqj8DV1fZQoaAZoCWgPQwiUFcPVAdNvQJSGlFKUaBVLl2gWR0CxzvY0uUUxdX2UKGgGaAloD0MIEXAIVaoIcECUhpRSlGgVS5hoFkdAsc8AnWrfcnV9lChoBmgJaA9DCL0aoDSUe3JAlIaUUpRoFUvDaBZHQLHPEdj5Kvp1fZQoaAZoCWgPQwg+6q9XGC9xQJSGlFKUaBVLh2gWR0Cxzx/mPo3adX2UKGgGaAloD0MIwW7YtuiMcECUhpRSlGgVS5doFkdAsc89UOuq3nV9lChoBmgJaA9DCL1yvW0minNAlIaUUpRoFUu0aBZHQLHPRuSwGGF1fZQoaAZoCWgPQwhNSdbh6OZKQJSGlFKUaBVLcGgWR0Cxz1WDHwPRdX2UKGgGaAloD0MIPgPqzahTb0CUhpRSlGgVS5ZoFkdAsc9sNnXd03V9lChoBmgJaA9DCFERp5PsznJAlIaUUpRoFUuqaBZHQLHPd717IDJ1fZQoaAZoCWgPQwit30xMF85xQJSGlFKUaBVLpGgWR0Cxz4NH+ZPVdX2UKGgGaAloD0MIilbuBSaHcECUhpRSlGgVS4doFkdAsc+Kr3j+73V9lChoBmgJaA9DCGvwviqXXnFAlIaUUpRoFUu2aBZHQLHPmW+oLoh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 612, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.02, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVAwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGkvaG9tZS9nYmFyYmFkaWxsby9taW5pY29uZGEzL2VudnMvcmwtY2xhc3MvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAvJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGkvaG9tZS9nYmFyYmFkaWxsby9taW5pY29uZGEzL2VudnMvcmwtY2xhc3MvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.13.0-40-generic-x86_64-with-glibc2.31 #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022", "Python": "3.10.4", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0", "GPU Enabled": "False", "Numpy": "1.21.5", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f39ac288fec5a421002bdcbbfdc1d833601ba4818ac126af93c705983c57cac4
|
3 |
+
size 460594
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f756d7c3520>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f756d7c35b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f756d7c3640>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f756d7c36d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f756d7c3760>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f756d7c37f0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f756d7c3880>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f756d7c3910>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f756d7c39a0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f756d7c3a30>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f756d7c3ac0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f756d8f0600>"
|
20 |
+
},
|
21 |
+
"verbose": false,
|
22 |
+
"policy_kwargs": {
|
23 |
+
"net_arch": [
|
24 |
+
{
|
25 |
+
"pi": [
|
26 |
+
128,
|
27 |
+
128
|
28 |
+
],
|
29 |
+
"vf": [
|
30 |
+
128,
|
31 |
+
128
|
32 |
+
]
|
33 |
+
}
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"observation_space": {
|
37 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"dtype": "float32",
|
40 |
+
"_shape": [
|
41 |
+
8
|
42 |
+
],
|
43 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
44 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
45 |
+
"bounded_below": "[False False False False False False False False]",
|
46 |
+
"bounded_above": "[False False False False False False False False]",
|
47 |
+
"_np_random": null
|
48 |
+
},
|
49 |
+
"action_space": {
|
50 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
51 |
+
":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
52 |
+
"n": 4,
|
53 |
+
"_shape": [],
|
54 |
+
"dtype": "int64",
|
55 |
+
"_np_random": null
|
56 |
+
},
|
57 |
+
"n_envs": 64,
|
58 |
+
"num_timesteps": 10027008,
|
59 |
+
"_total_timesteps": 10000000,
|
60 |
+
"_num_timesteps_at_start": 0,
|
61 |
+
"seed": null,
|
62 |
+
"action_noise": null,
|
63 |
+
"start_time": 1652122871.5083306,
|
64 |
+
"learning_rate": {
|
65 |
+
":type:": "<class 'function'>",
|
66 |
+
":serialized:": "gAWVyQEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwJLQ0MIZAF8ABQAUwCUTkc/aJN0vGp++oaUKYwBeJSFlIwiL3RtcC9pcHlrZXJuZWxfMTQxNjEvMzgxMTMwMzA5Mi5weZSMCDxsYW1iZGE+lEsGQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBd9lH2UKGgUaA6MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
67 |
+
},
|
68 |
+
"tensorboard_log": "logs/06_model_size/model_size_128",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gAWVyQEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwJLQ0MIZAF8ABQAUwCUTkc/aJN0vGp++oaUKYwBeJSFlIwiL3RtcC9pcHlrZXJuZWxfMTQxNjEvMzgxMTMwMzA5Mi5weZSMCDxsYW1iZGE+lEsGQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBd9lH2UKGgUaA6MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAJra67wEJoc/dgnLvZCTZr+mK7+9hwqbvQAAAAAAAAAAJj2APjXqwz5jEtK+JQ84v0zsPz56d4O+AAAAAAAAAAAaXXW9sfW9PyPhPb/bR6A+QY5UPcBSmD0AAAAAAAAAAICfPL2FbFk+YiDXPC9bIb+emG+9yJrrPAAAAAAAAAAAM8uxPPn0uj80Oj0+D12JPSUn1zxjf7Q9AAAAAAAAAADW5pG+XNSTPxqrzb6QIze/M9EIvwj6sL0AAAAAAAAAAKDYcz4fABw/AOiDPZyzJ79u1sY+Hr7NvQAAAAAAAAAAk3sPvlJl2LuIMO67q+hIusyiKz1Cqyk7AACAPwAAgD9z08m9jiCTPWukhz6AruS+0ctvvBTGOj4AAAAAAAAAAADUmryu2bu6VIkBPqUmvzY6H5k5qk2vNQAAAAAAAAAAmltAvGsksT8JMEG+O2+IvqoBqjrAksu8AAAAAAAAAAAGxwK+rOYMPtD4OT4RGBC/T+kVvSsTPj4AAAAAAAAAABN5Db72wgG8bnzqujzNlriLuV89ogbiOQAAgD8AAIA/moSSPfYsc7rOxMK8eYsyMyzRmLtuL22zAACAPwAAgD/N/KO78LSfP12aI71l8zC/aAIovMpZqzsAAAAAAAAAAM0Pijw290q86QImvuzrrTwiUqM8Ui+UPQAAgD8AAIA/TT6KPbj+yLkiFWI2DTTEMeueDbt/XYS1AACAPwAAgD+asSs9j7JRurZKKrmiPfSz9MLyul7dRjgAAIA/AACAP60vEL7tAnM/RW1zvmMRYL8Thpq+O0zRvQAAAAAAAAAAZhIdPHvGkbp57jmyo7cwsT07tDnegz8zAACAPwAAgD+Aj1q99uQ5uk72jDwsPI08vhONOWqCdr0AAIA/AACAP6Z9jD3UqPQ+meeQvZrDbL/lpcg9jCY0vQAAAAAAAAAAM9T2PH5WBj84p2o7XcRtv830iT3h0ZI6AAAAAAAAAADmjO69T4gYPRVorj4sqaG+wNvKvGhDaj4AAAAAAAAAAK0WUz51+8k+G1pnviTJN78Qu20+Fo1lvgAAAAAAAAAAM/GrPYmypD7yUWS9tCpBv7+u+T2UVQi9AAAAAAAAAABaZeC9CghLu9aX9T2AEee7emIWPKb3Lb0AAIA/AAAAAIDYXj3nvWc/K3wPPr9ki7/A7AQ++GdivQAAAAAAAAAAAEDiuiJTsT+eE6e9EcoUvy2MGzku6pO8AAAAAAAAAACaq9C9Lnu2PT/ysT7XbdK+Shj/PKOihT4AAAAAAAAAAICmSD32NE269RucM3GJ/i4QKog7x++pswAAgD8AAIA/miEMPTYdB7wte/q9/lYpPbPzY72+uwg+AACAPwAAgD/zfAi+Uh+4u5spNrvZu825L9YmPRVfpToAAIA/AACAP5prZT2sVbQ8Nq1wvskk7r6v7RM+696HvAAAAAAAAAAAjY2MvSm4E7qy2So0t36SLvoos7rmsKuzAACAPwAAgD8zmc48UgG+u82MTr2Lqis9r0r1uyipZrwAAIA/AACAP6Zq5T2V1yA//hjnPWQpcb8fbkE+chCkOgAAAAAAAAAAzR7APTvB3T0hE8u+0gQCvyplU70hbIK+AAAAAAAAAAAziRW8hQuDOHPoOThELtczNumvO7oLYLcAAIA/AACAP5pN9DspUC26BmgCPfPRqb2PN826PgsMPQAAAAAAAAAAAOT/O46/v7wuCri91A9uviyonbwradi+AACAPwAAgD9AI3A+rQIgP4cBGj4Nuiy/Rd3PPhQJOj0AAAAAAAAAAJphVrvJIsM/z12pvKeHk7pncSm8PtgVPAAAAAAAAAAAc6CXvXCtoz/X1oS+L+MNv10PLL5ay52+AAAAAAAAAADNwUw+P2MoPi7u6r4PQAm/NaSfO10UWL4AAAAAAAAAAM2scTzDRSm6n323PZF+PzmUD3c7CjA2OAAAAAAAAAAAdoFxvopVjz+SKqC+CqZRv7LK3b4S1DK+AAAAAAAAAACN0J29Ad3KPY0r+z0+Avy+mBoKviLftj0AAAAAAAAAAGDoOT7Qiq0+AN8Jvn6UHb+tX3w+UPckvgAAAAAAAAAA5gjRPVyPSbzExbG+ztD+vcqDlDwXiyo/AAAAAAAAgD+z/IO94SSQuousSD05UwmzRNDRugo3fbMAAIA/AACAP1ocIb4GLdM+KaaHvSKkRr8fDX++t4qWPQAAAAAAAAAAzdCCO/x2mD8WlZA7F6RLvyXXuzxFCdw8AAAAAAAAAADNGNQ7vD0rPWaKjL2jsYi+bbhmvEr5nr0AAAAAAAAAALNeCT3SZ867ylihvdWDVzzqaxw9D4U4vQAAgD8AAIA/AN0/PsBOnT9mZfw+Ghcwv6N6ij4645Y+AAAAAAAAAAAjjm2+801TP96sVr7CJyS/DA3bvn2caT0AAAAAAAAAAO3OBj4ugLs+bnCcva0TO78qhSs+vGGTvQAAAAAAAAAAM3MiuiNpaD1NmG+9t/XEvikHm7w6vDu9AAAAAAAAAACthy4+k/xEP+gKWj4O80O/5PyTPhKlJD0AAAAAAAAAAGaUGjw/RF0/7/4FPMHxgr/xLi494wv9vAAAAAAAAAAAM7wmvhAVtT59B8Y9ueUiv33OR77YVhw+AAAAAAAAAABL0qK+WWSgP3rkGL+rTCa/2w4XvxPjar4AAAAAAAAAAMDXoT0WYhY/5Xe2PXArZb+Ss/k9ihRpvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": null,
|
82 |
+
"_episode_num": 0,
|
83 |
+
"use_sde": false,
|
84 |
+
"sde_sample_freq": -1,
|
85 |
+
"_current_progress_remaining": -0.0027007999999999477,
|
86 |
+
"ep_info_buffer": {
|
87 |
+
":type:": "<class 'collections.deque'>",
|
88 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXtcv2I28ckCUhpRSlIwBbJRLnowBdJRHQLHLuq2jO9p1fZQoaAZoCWgPQwhlpx/URedzQJSGlFKUaBVLumgWR0Cxy8J6MR6GdX2UKGgGaAloD0MICvfKvJUqcECUhpRSlGgVS5hoFkdAscvdh9b5dnV9lChoBmgJaA9DCLjn+dMGg3NAlIaUUpRoFUu4aBZHQLHL6F/hESd1fZQoaAZoCWgPQwgPQ6uTc9NzQJSGlFKUaBVLqmgWR0Cxy/ARoRI0dX2UKGgGaAloD0MIT3l0I+z7cECUhpRSlGgVS6FoFkdAscvzkFOfunV9lChoBmgJaA9DCNzVq8ioOXBAlIaUUpRoFUuUaBZHQLHMEILPUrl1fZQoaAZoCWgPQwgKaY1BZytyQJSGlFKUaBVLiWgWR0CxzB8sQNCrdX2UKGgGaAloD0MICKpGrwaGc0CUhpRSlGgVS75oFkdAscwulUIcBHV9lChoBmgJaA9DCN2zrtFyRXNAlIaUUpRoFUu+aBZHQLHMMw9q1w51fZQoaAZoCWgPQwhKz/QSI9lyQJSGlFKUaBVLsmgWR0CxzDLxAjY7dX2UKGgGaAloD0MIBDqTNhUPcECUhpRSlGgVS7FoFkdAscw2KAJ9iXV9lChoBmgJaA9DCJXzxd6LXUpAlIaUUpRoFUtPaBZHQLHMQT3qRlp1fZQoaAZoCWgPQwh2qKYkK+JyQJSGlFKUaBVLrWgWR0CxzEljurp8dX2UKGgGaAloD0MIuCIxQc2AcUCUhpRSlGgVS51oFkdAscxXxx1gY3V9lChoBmgJaA9DCPn2rkHf3XFAlIaUUpRoFUuiaBZHQLHMXD9fkWB1fZQoaAZoCWgPQwjhDP5+cYRyQJSGlFKUaBVLnWgWR0CxzF6+i8FqdX2UKGgGaAloD0MIy73ArNDBc0CUhpRSlGgVS6toFkdAscxiYsunM3V9lChoBmgJaA9DCAn6Cz1iTHFAlIaUUpRoFUu9aBZHQLHMZm3fAKx1fZQoaAZoCWgPQwi3DDhLSRtxQJSGlFKUaBVLjGgWR0CxzHQZflZHdX2UKGgGaAloD0MIeTwtPzC+c0CUhpRSlGgVS89oFkdAscyOFfzBh3V9lChoBmgJaA9DCGGJB5QNsXJAlIaUUpRoFUupaBZHQLHMmbMotth1fZQoaAZoCWgPQwjuluSA3cxyQJSGlFKUaBVLs2gWR0CxzJy4z7/GdX2UKGgGaAloD0MInL8JhYihcUCUhpRSlGgVS7JoFkdAscyc3++/QHV9lChoBmgJaA9DCBwHXi03VnBAlIaUUpRoFUufaBZHQLHMquZCv5h1fZQoaAZoCWgPQwjkZU0ssNxxQJSGlFKUaBVLpmgWR0CxzK65byH3dX2UKGgGaAloD0MIYcYUrDFac0CUhpRSlGgVS7loFkdAscyuyiVSoHV9lChoBmgJaA9DCKiOVUqPzHBAlIaUUpRoFUuiaBZHQLHMw752yLR1fZQoaAZoCWgPQwgAxciSOV5wQJSGlFKUaBVLkGgWR0CxzMtSydFwdX2UKGgGaAloD0MISnzuBDvNcECUhpRSlGgVS5VoFkdAsczLR1HOKXV9lChoBmgJaA9DCFga+FENZUVAlIaUUpRoFUtoaBZHQLHM7DgqEvl1fZQoaAZoCWgPQwg1071OartxQJSGlFKUaBVLnmgWR0CxzPeIEbHZdX2UKGgGaAloD0MIDmd+NYf2b0CUhpRSlGgVS5VoFkdAsc0DcpLEk3V9lChoBmgJaA9DCN3PKcgPAnNAlIaUUpRoFUu9aBZHQLHNDuJDVpd1fZQoaAZoCWgPQwj20hQBTiRRQJSGlFKUaBVLU2gWR0CxzQ3bypaSdX2UKGgGaAloD0MI7Ggc6nfgcECUhpRSlGgVS4FoFkdAsc0lQvYe1nV9lChoBmgJaA9DCM8u3/owP3FAlIaUUpRoFUt+aBZHQLHNK63AmAt1fZQoaAZoCWgPQwiP/SyWovFwQJSGlFKUaBVLjGgWR0CxzTOH8CPqdX2UKGgGaAloD0MIDd/CujF4cECUhpRSlGgVS5RoFkdAsc1C/7BO6HV9lChoBmgJaA9DCAVSYtc2e3JAlIaUUpRoFUvAaBZHQLHNUi8Fpwl1fZQoaAZoCWgPQwhBKsWOhvRxQJSGlFKUaBVLvGgWR0CxzWzvRZ2ZdX2UKGgGaAloD0MImZzaGaZXckCUhpRSlGgVS6VoFkdAsc1xEnb7CXV9lChoBmgJaA9DCJ3y6EbY63JAlIaUUpRoFUuZaBZHQLHNfBIWgvl1fZQoaAZoCWgPQwjUtfY+1eRxQJSGlFKUaBVLuGgWR0CxzYetGNJfdX2UKGgGaAloD0MIbJbLRuf7cECUhpRSlGgVS51oFkdAsc2Wn2qT83V9lChoBmgJaA9DCKNzfoqjWXNAlIaUUpRoFUvEaBZHQLHNm3nIQvp1fZQoaAZoCWgPQwjQ1VbsL7JxQJSGlFKUaBVLtGgWR0CxzZrUwztUdX2UKGgGaAloD0MIglX18rtcc0CUhpRSlGgVS79oFkdAsc2mH58BuHV9lChoBmgJaA9DCHgJTn2gJ3JAlIaUUpRoFUuSaBZHQLHNtglnh891fZQoaAZoCWgPQwjtgywL5qhyQJSGlFKUaBVLrGgWR0Cxzbkbo8p1dX2UKGgGaAloD0MIPnlYqLXzcUCUhpRSlGgVS6poFkdAsc29VPva13V9lChoBmgJaA9DCJj5Dn7i73JAlIaUUpRoFUueaBZHQLHNvRVp9JB1fZQoaAZoCWgPQwhwJNBgExBwQJSGlFKUaBVLkmgWR0CxzdcJMQEqdX2UKGgGaAloD0MI1c3F3zZydECUhpRSlGgVS8ZoFkdAsc3bNJOFg3V9lChoBmgJaA9DCEGC4seYTnRAlIaUUpRoFUvOaBZHQLHN7PQv6CV1fZQoaAZoCWgPQwijc36KI/9wQJSGlFKUaBVLo2gWR0CxzgO5z5oHdX2UKGgGaAloD0MIfc7drte7cUCUhpRSlGgVS6loFkdAsc4D2h7E53V9lChoBmgJaA9DCCxmhLcHZHBAlIaUUpRoFUunaBZHQLHOFnh86WB1fZQoaAZoCWgPQwjBq+XOTAxyQJSGlFKUaBVLi2gWR0CxzhZvkzXSdX2UKGgGaAloD0MIud42UyH/cECUhpRSlGgVS6toFkdAsc4xrJr+HnV9lChoBmgJaA9DCG10zk9x9m9AlIaUUpRoFUuJaBZHQLHOMYigTRJ1fZQoaAZoCWgPQwhRacTMPpVxQJSGlFKUaBVLq2gWR0Cxzj0YO2AodX2UKGgGaAloD0MIjIS2nIsAc0CUhpRSlGgVS7doFkdAsc48YBNmDnV9lChoBmgJaA9DCAqeQq7U1HBAlIaUUpRoFUugaBZHQLHOPFRpDeF1fZQoaAZoCWgPQwhNamgDcJZyQJSGlFKUaBVLu2gWR0Cxzk8Iu5BkdX2UKGgGaAloD0MIu3uA7svUc0CUhpRSlGgVS75oFkdAsc5r8R+SbHV9lChoBmgJaA9DCIQPJVoyU3JAlIaUUpRoFUvraBZHQLHOcOp84Px1fZQoaAZoCWgPQwguymyQCa5zQJSGlFKUaBVLrmgWR0CxznsmWt2cdX2UKGgGaAloD0MI0lRP5l/ocECUhpRSlGgVS5JoFkdAsc6CTdLxqnV9lChoBmgJaA9DCE2giEWM3nFAlIaUUpRoFUuyaBZHQLHOhnKW9lF1fZQoaAZoCWgPQwi9/48TpgxyQJSGlFKUaBVLoWgWR0CxzoouoP07dX2UKGgGaAloD0MIYXDNHb0RdECUhpRSlGgVS6NoFkdAsc6NkI5YHXV9lChoBmgJaA9DCObJNQXy73BAlIaUUpRoFUuZaBZHQLHOkTJyQxN1fZQoaAZoCWgPQwiN7bWgt1pyQJSGlFKUaBVLo2gWR0CxzpQVoHs1dX2UKGgGaAloD0MILpJ2o0/BckCUhpRSlGgVS5ZoFkdAsc6h+NLlFXV9lChoBmgJaA9DCBlZMseyfXBAlIaUUpRoFUuIaBZHQLHOpb7TDwZ1fZQoaAZoCWgPQwjwF7Ml6+dyQJSGlFKUaBVLk2gWR0CxzrC2lVLjdX2UKGgGaAloD0MIU3dlF0yHckCUhpRSlGgVS7NoFkdAsc63C/GlynV9lChoBmgJaA9DCB3pDIy8w3BAlIaUUpRoFUuZaBZHQLHO0MLncL11fZQoaAZoCWgPQwj8+4wLR3ZwQJSGlFKUaBVLmGgWR0CxztAEpy6udX2UKGgGaAloD0MITFKZYg5SckCUhpRSlGgVS3poFkdAsc7TZ5AyEnV9lChoBmgJaA9DCLX5f9VRlHJAlIaUUpRoFUuraBZHQLHO1wdbPhR1fZQoaAZoCWgPQwjRdeEHJ/RyQJSGlFKUaBVLrmgWR0Cxzt9XDFZQdX2UKGgGaAloD0MIxa7t7VZec0CUhpRSlGgVS5xoFkdAsc7yTbFju3V9lChoBmgJaA9DCLvwg/Np+HJAlIaUUpRoFUu5aBZHQLHO9nJ1aGJ1fZQoaAZoCWgPQwit+lxthfBzQJSGlFKUaBVLsWgWR0CxzvZNfw7UdX2UKGgGaAloD0MIXqJ6a+B9cUCUhpRSlGgVS6JoFkdAsc72Ss8xK3V9lChoBmgJaA9DCGr7V1YafXBAlIaUUpRoFUuVaBZHQLHO9hqj8DV1fZQoaAZoCWgPQwiUFcPVAdNvQJSGlFKUaBVLl2gWR0CxzvY0uUUxdX2UKGgGaAloD0MIEXAIVaoIcECUhpRSlGgVS5hoFkdAsc8AnWrfcnV9lChoBmgJaA9DCL0aoDSUe3JAlIaUUpRoFUvDaBZHQLHPEdj5Kvp1fZQoaAZoCWgPQwg+6q9XGC9xQJSGlFKUaBVLh2gWR0Cxzx/mPo3adX2UKGgGaAloD0MIwW7YtuiMcECUhpRSlGgVS5doFkdAsc89UOuq3nV9lChoBmgJaA9DCL1yvW0minNAlIaUUpRoFUu0aBZHQLHPRuSwGGF1fZQoaAZoCWgPQwhNSdbh6OZKQJSGlFKUaBVLcGgWR0Cxz1WDHwPRdX2UKGgGaAloD0MIPgPqzahTb0CUhpRSlGgVS5ZoFkdAsc9sNnXd03V9lChoBmgJaA9DCFERp5PsznJAlIaUUpRoFUuqaBZHQLHPd717IDJ1fZQoaAZoCWgPQwit30xMF85xQJSGlFKUaBVLpGgWR0Cxz4NH+ZPVdX2UKGgGaAloD0MIilbuBSaHcECUhpRSlGgVS4doFkdAsc+Kr3j+73V9lChoBmgJaA9DCGvwviqXXnFAlIaUUpRoFUu2aBZHQLHPmW+oLoh1ZS4="
|
89 |
+
},
|
90 |
+
"ep_success_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
93 |
+
},
|
94 |
+
"_n_updates": 612,
|
95 |
+
"n_steps": 1024,
|
96 |
+
"gamma": 0.99,
|
97 |
+
"gae_lambda": 0.98,
|
98 |
+
"ent_coef": 0.02,
|
99 |
+
"vf_coef": 0.5,
|
100 |
+
"max_grad_norm": 0.5,
|
101 |
+
"batch_size": 256,
|
102 |
+
"n_epochs": 4,
|
103 |
+
"clip_range": {
|
104 |
+
":type:": "<class 'function'>",
|
105 |
+
":serialized:": "gAWVAwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGkvaG9tZS9nYmFyYmFkaWxsby9taW5pY29uZGEzL2VudnMvcmwtY2xhc3MvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAvJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGkvaG9tZS9nYmFyYmFkaWxsby9taW5pY29uZGEzL2VudnMvcmwtY2xhc3MvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
106 |
+
},
|
107 |
+
"clip_range_vf": null,
|
108 |
+
"normalize_advantage": true,
|
109 |
+
"target_kl": null
|
110 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e29219028b726499b1a2af51c812b79e15c3fe8cc841676daf98689c26940fe4
|
3 |
+
size 294045
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce13d91f2e4b76f5d3ee6d5ae40a9252ca6fde57eba41290d9aa7d655040f93d
|
3 |
+
size 147777
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-40-generic-x86_64-with-glibc2.31 #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022
|
2 |
+
Python: 3.10.4
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.21.5
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cea439eb155a5d3405e70beeb9277428a3c63ebe7ced8965706e6c1d96433ac9
|
3 |
+
size 187641
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 302.7124622866011, "std_reward": 7.6804590628575315, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-10T07:32:38.669935"}
|