update model card README.md
Browse files
README.md
CHANGED
@@ -17,8 +17,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 1.
|
21 |
-
- Accuracy: 0.
|
22 |
|
23 |
## Model description
|
24 |
|
@@ -37,30 +37,67 @@ More information needed
|
|
37 |
### Training hyperparameters
|
38 |
|
39 |
The following hyperparameters were used during training:
|
40 |
-
- learning_rate: 5e-
|
41 |
- train_batch_size: 16
|
42 |
- eval_batch_size: 16
|
43 |
- seed: 42
|
44 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
- lr_scheduler_type: linear
|
46 |
-
- num_epochs:
|
47 |
|
48 |
### Training results
|
49 |
|
50 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
-
|
|
53 |
-
|
|
54 |
-
|
|
55 |
-
|
|
56 |
-
|
|
57 |
-
|
|
58 |
-
|
|
59 |
-
|
|
60 |
-
|
|
61 |
-
|
|
62 |
-
|
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
|
66 |
### Framework versions
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.4354
|
21 |
+
- Accuracy: 0.45
|
22 |
|
23 |
## Model description
|
24 |
|
|
|
37 |
### Training hyperparameters
|
38 |
|
39 |
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 5e-06
|
41 |
- train_batch_size: 16
|
42 |
- eval_batch_size: 16
|
43 |
- seed: 42
|
44 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 50
|
47 |
|
48 |
### Training results
|
49 |
|
50 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
+
| 1.6063 | 1.0 | 12 | 1.6079 | 0.4 |
|
53 |
+
| 1.6038 | 2.0 | 24 | 1.6066 | 0.4 |
|
54 |
+
| 1.6027 | 3.0 | 36 | 1.6045 | 0.35 |
|
55 |
+
| 1.5909 | 4.0 | 48 | 1.6023 | 0.35 |
|
56 |
+
| 1.5994 | 5.0 | 60 | 1.6000 | 0.35 |
|
57 |
+
| 1.5947 | 6.0 | 72 | 1.5967 | 0.4 |
|
58 |
+
| 1.5896 | 7.0 | 84 | 1.5932 | 0.4 |
|
59 |
+
| 1.5862 | 8.0 | 96 | 1.5893 | 0.4 |
|
60 |
+
| 1.5743 | 9.0 | 108 | 1.5846 | 0.35 |
|
61 |
+
| 1.5579 | 10.0 | 120 | 1.5791 | 0.3 |
|
62 |
+
| 1.558 | 11.0 | 132 | 1.5720 | 0.4 |
|
63 |
+
| 1.5166 | 12.0 | 144 | 1.5640 | 0.35 |
|
64 |
+
| 1.5053 | 13.0 | 156 | 1.5566 | 0.45 |
|
65 |
+
| 1.4926 | 14.0 | 168 | 1.5483 | 0.45 |
|
66 |
+
| 1.4577 | 15.0 | 180 | 1.5420 | 0.35 |
|
67 |
+
| 1.4501 | 16.0 | 192 | 1.5342 | 0.35 |
|
68 |
+
| 1.4348 | 17.0 | 204 | 1.5291 | 0.35 |
|
69 |
+
| 1.3919 | 18.0 | 216 | 1.5234 | 0.35 |
|
70 |
+
| 1.3671 | 19.0 | 228 | 1.5184 | 0.35 |
|
71 |
+
| 1.3579 | 20.0 | 240 | 1.5130 | 0.4 |
|
72 |
+
| 1.3319 | 21.0 | 252 | 1.5057 | 0.3 |
|
73 |
+
| 1.3035 | 22.0 | 264 | 1.5005 | 0.35 |
|
74 |
+
| 1.2822 | 23.0 | 276 | 1.4957 | 0.35 |
|
75 |
+
| 1.2843 | 24.0 | 288 | 1.4913 | 0.4 |
|
76 |
+
| 1.2554 | 25.0 | 300 | 1.4843 | 0.4 |
|
77 |
+
| 1.2392 | 26.0 | 312 | 1.4783 | 0.4 |
|
78 |
+
| 1.1955 | 27.0 | 324 | 1.4736 | 0.4 |
|
79 |
+
| 1.1923 | 28.0 | 336 | 1.4714 | 0.4 |
|
80 |
+
| 1.1681 | 29.0 | 348 | 1.4712 | 0.4 |
|
81 |
+
| 1.1196 | 30.0 | 360 | 1.4671 | 0.4 |
|
82 |
+
| 1.1386 | 31.0 | 372 | 1.4667 | 0.45 |
|
83 |
+
| 1.1523 | 32.0 | 384 | 1.4619 | 0.4 |
|
84 |
+
| 1.108 | 33.0 | 396 | 1.4591 | 0.45 |
|
85 |
+
| 1.0866 | 34.0 | 408 | 1.4560 | 0.4 |
|
86 |
+
| 1.1072 | 35.0 | 420 | 1.4525 | 0.4 |
|
87 |
+
| 1.0432 | 36.0 | 432 | 1.4535 | 0.45 |
|
88 |
+
| 1.0792 | 37.0 | 444 | 1.4467 | 0.45 |
|
89 |
+
| 1.047 | 38.0 | 456 | 1.4447 | 0.45 |
|
90 |
+
| 1.0416 | 39.0 | 468 | 1.4459 | 0.45 |
|
91 |
+
| 1.0377 | 40.0 | 480 | 1.4470 | 0.45 |
|
92 |
+
| 1.0075 | 41.0 | 492 | 1.4427 | 0.45 |
|
93 |
+
| 1.0202 | 42.0 | 504 | 1.4410 | 0.45 |
|
94 |
+
| 1.0331 | 43.0 | 516 | 1.4390 | 0.45 |
|
95 |
+
| 1.0288 | 44.0 | 528 | 1.4361 | 0.45 |
|
96 |
+
| 0.9867 | 45.0 | 540 | 1.4363 | 0.45 |
|
97 |
+
| 0.9985 | 46.0 | 552 | 1.4370 | 0.45 |
|
98 |
+
| 0.9887 | 47.0 | 564 | 1.4377 | 0.45 |
|
99 |
+
| 1.0523 | 48.0 | 576 | 1.4365 | 0.45 |
|
100 |
+
| 0.9999 | 49.0 | 588 | 1.4354 | 0.45 |
|
101 |
|
102 |
|
103 |
### Framework versions
|