irfan62622 commited on
Commit
871b084
·
1 Parent(s): 33292f3

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1755.60 +/- 173.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7e5cca1b4b74719c8b1269f433dd770f2fcdb6bf09999575df11030c9ef8160
3
+ size 129248
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f842e30b1c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f842e30b250>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f842e30b2e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f842e30b370>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f842e30b400>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f842e30b490>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f842e30b520>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f842e30b5b0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f842e30b640>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f842e30b6d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f842e30b760>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f842e30b7f0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f842e306140>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1688796364479374166,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABh/eT6iL30+1QHUPmVgzj3uTLw+Bc+HPqxOir78Q/E+teIvP4a+Db0fSHO/KmoyPCp8ir40faE/wQx6vtq+xj0xzKI/kdfIP9dnPb9YJfM+N0slv6snq7w2sBE/YfgAPv2Vib+xWAQ/GfjyPpFdfT9/q9m+/TbOvRx9+T7FoEo/3L+3v6U0qr1apRU/jPIlPs51wz5StA/AuONVPoRG4r8VcIO/tS+6PRjK77499pk/dCinv6/Vf75mshM/txGIvxunFr22rJq/XTODvnD+Fj/4KW4/spf3vxn48j6RXX0/woJmPg72sT7AIcE+hGGVPxTmhz8r6ji/896kviBujr5cucE90JX6v3mHOr/s+ZA/iKLDP3M2F77ALu8+oqIwP5Fpbj9ed5u/prL6vgVU2D5rLV6/CYIKwEQEPz+jHRq//ZWJv7FYBD8Z+PI+kV19P0W/DT9FjtE/a9xnv1KWsT91S+A/HLP7PrzAXT7Josy+nIP9vFgnHb6lLFi/4R9oP2G/rj/RlJE/51ZfPUeq5z9zB6Y/8LEQvjwwnL7Q9Ac//+dAPl6N8L9R1Xc/NzAGP/2Vib+xWAQ/GfjyPpFdfT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAMLim3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWG2VPQAAAACSQ/O/AAAAABZT+L0AAAAA9yPrPwAAAABVxA2+AAAAAFkB+T8AAAAAhiPIPQAAAACePvC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApP48NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBJRiz0AAAAAv0PovwAAAACX9kY9AAAAAMeY5j8AAAAANj9gPQAAAABZHwFAAAAAAPKgub0AAAAA1g3bvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJvdrjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC2uNK9AAAAAMPf9b8AAAAAl1XFPQAAAADHO+M/AAAAAIBiWbsAAAAALLL8PwAAAAADPrK8AAAAADt08b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/aso1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAORUavQAAAABIH/a/AAAAALMW470AAAAADNHuPwAAAADB/dY8AAAAAKfN+T8AAAAAKsrmvQAAAACboPi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKApNEnb7CWMAWyUTegDjAF0lEdAq0yiSTyJ9HV9lChoBkdAnkh1YlpoK2gHTegDaAhHQKtNv4mCyyF1fZQoaAZHQKB2phwVCX1oB03oA2gIR0CrUYdcKPXDdX2UKGgGR0CgAqDyvs7daAdN6ANoCEdAq1XIj8k2P3V9lChoBkdAoCN9zOoo/mgHTegDaAhHQKtaEWk8A7x1fZQoaAZHQJrENvm5lOJoB03oA2gIR0CrW7Bt+CsfdX2UKGgGR0CeNRJv5xioaAdN6ANoCEdAq2EvVLBbfXV9lChoBkdAl+0adlNDdGgHTegDaAhHQKtlhZZB9kV1fZQoaAZHQJ3IQf1YhdNoB03oA2gIR0CraHRjjJdTdX2UKGgGR0Cgqu1gH/tIaAdN6ANoCEdAq2l+r2g3+HV9lChoBkdAoEN4TwlSj2gHTegDaAhHQKttXytFKCh1fZQoaAZHQJxlw6eXiR5oB03oA2gIR0CrcaWPDHfedX2UKGgGR0Cdpr176YVqaAdN6ANoCEdAq3SMutfXw3V9lChoBkdAmi1fJ7sv7GgHTegDaAhHQKt2PXEIgNh1fZQoaAZHQJxTnIlt0mtoB03oA2gIR0CrfAF3yI56dX2UKGgGR0CaKNfYjB2waAdN6ANoCEdAq4GcdJaq0nV9lChoBkdAnii5FXq7iGgHTegDaAhHQKuEeQPqcEx1fZQoaAZHQJvT2O0b961oB03oA2gIR0CrhYPWQOnVdX2UKGgGR0CeLYW9US7HaAdN6ANoCEdAq4k8iY9gW3V9lChoBkdAn2OHHNorWmgHTegDaAhHQKuNbooNNJx1fZQoaAZHQKA5iXmeUY9oB03oA2gIR0CrkEqEvkBCdX2UKGgGR0Cf2noJiRW+aAdN6ANoCEdAq5FU8/2TPnV9lChoBkdAnx0ksWfseGgHTegDaAhHQKuVougYgq51fZQoaAZHQJ6tDxhDw6RoB03oA2gIR0CrnB0p/gBLdX2UKGgGR0CgXfuZssQNaAdN6ANoCEdAq6A1VinYQXV9lChoBkdAniWJXuE252gHTegDaAhHQKuhWuqWC3B1fZQoaAZHQJ/YHb212JVoB03oA2gIR0CrpTajWTX8dX2UKGgGR0CfgBHim2sraAdN6ANoCEdAq6mEQTVUdnV9lChoBkdAnseL6LwWnGgHTegDaAhHQKusjlijL0V1fZQoaAZHQKDH4u1WsBBoB03oA2gIR0CrraJD3M6jdX2UKGgGR0CgYHWRaHKwaAdN6ANoCEdAq7F1CzC1qnV9lChoBkdAnsWq8xsVL2gHTegDaAhHQKu2yU6gdwN1fZQoaAZHQJ3ulpfx+a1oB03oA2gIR0Cru0CyIHkcdX2UKGgGR0CeXRppeu3daAdN6ANoCEdAq7zgB91EE3V9lChoBkdAoFBQigTRIGgHTegDaAhHQKvBf9aUzKt1fZQoaAZHQKBAcHD7655oB03oA2gIR0CrxhxVAAyVdX2UKGgGR0Cgc7UYKpkxaAdN6ANoCEdAq8lJrtVrAXV9lChoBkdAoGH2fAbhnGgHTegDaAhHQKvKb8AJb+t1fZQoaAZHQKAylBQemvZoB03oA2gIR0CrzkRvvSc9dX2UKGgGR0CdNdXJ5mh/aAdN6ANoCEdAq9LICnxaxHV9lChoBkdAnusTzmOlwmgHTegDaAhHQKvXJwxWT5h1fZQoaAZHQKB+UUnogV5oB03oA2gIR0Cr2NaC17Y1dX2UKGgGR0CgBIzUAks0aAdN6ANoCEdAq96YZMtbtHV9lChoBkdAnAvPyCnP3WgHTegDaAhHQKvi+FcIJJJ1fZQoaAZHQJ9yD8HfMwFoB03oA2gIR0Cr5hZ0Syt3dX2UKGgGR0Cfjjt2cJ+laAdN6ANoCEdAq+cqMR6F/XV9lChoBkdAnFmI2jwhGGgHTegDaAhHQKvrEhQFcIJ1fZQoaAZHQJ93msdT5whoB03oA2gIR0Cr724TCcgAdX2UKGgGR0CZYbiyIHkcaAdN6ANoCEdAq/LEPrfLtHV9lChoBkdAnU4i8Fpwj2gHTegDaAhHQKv0Wo1DSgJ1fZQoaAZHQJ2OjkFOfuloB03oA2gIR0Cr+mjXvphXdX2UKGgGR0CcP78zAN5MaAdN6ANoCEdAq//35rP+oHV9lChoBkdAngWNVBD5TWgHTegDaAhHQKwC+s4DLbJ1fZQoaAZHQJ4mAS00FbFoB03oA2gIR0CsBBtCiRGMdX2UKGgGR0CchVZE2HclaAdN6ANoCEdArAgWovSMLnV9lChoBkdAmt3zVx0dR2gHTegDaAhHQKwMeYVIqb11fZQoaAZHQJyILgBLf1poB03oA2gIR0CsD2OYIBzWdX2UKGgGR0CgJWFnAZbZaAdN6ANoCEdArBBvOGCZnnV9lChoBkdAmAQw4KhL5GgHTegDaAhHQKwVdYf4h2Z1fZQoaAZHQJ76W1w5vLpoB03oA2gIR0CsHEgMc6vJdX2UKGgGR0CelOXRPXTWaAdN6ANoCEdArCD1PacqfHV9lChoBkdAnrRo5YHPeGgHTegDaAhHQKwitGHYYix1fZQoaAZHQJu8DKaG5+ZoB03oA2gIR0CsKEQxN7BwdX2UKGgGR0CdJCMXaakRaAdN6ANoCEdArCx0TDfm93V9lChoBkdAn1pTkyULUmgHTegDaAhHQKwvUhwEQoV1fZQoaAZHQJ/CmBI4EOloB03oA2gIR0CsMGPsZ5zHdX2UKGgGR0Ccgk3IuGsWaAdN6ANoCEdArDQet2cJ+nV9lChoBkdAnyWjzND+i2gHTegDaAhHQKw5ghEjPfN1fZQoaAZHQJ8+uom5UcZoB03oA2gIR0CsPghe5WildX2UKGgGR0CcZo0PpY9xaAdN6ANoCEdArD+kRg7YCnV9lChoBkdAoCWmC5EtumgHTegDaAhHQKxD2e9SMtN1fZQoaAZHQJwyJhOP/71oB03oA2gIR0CsSAU6gdwOdX2UKGgGR0CfTXU/wAlwaAdN6ANoCEdArErlHJ9y93V9lChoBkdAn89WIXTEzmgHTegDaAhHQKxL8Vkc0ch1fZQoaAZHQJxM8JhOP/9oB03oA2gIR0CsT6wemvW6dX2UKGgGR0Ca7PHnEETyaAdN6ANoCEdArFQE/8l5W3V9lChoBkdAnDa1LWZqmGgHTegDaAhHQKxXyYixFAp1fZQoaAZHQJkS4py6tkpoB03oA2gIR0CsWUalUIcBdX2UKGgGR0CdAtcJ+lTFaAdN6ANoCEdArF8lKh+OO3V9lChoBkdAnrtRs2vSt2gHTegDaAhHQKxjnnzxwyZ1fZQoaAZHQJwSX9l2/ztoB03oA2gIR0CsZo+rlvIfdX2UKGgGR0CbIm98JD3NaAdN6ANoCEdArGede2NNrXV9lChoBkdAnbR1b7j1f2gHTegDaAhHQKxrbpRGc4J1fZQoaAZHQJ2iCZpi7TVoB03oA2gIR0Csb5lY+0PZdX2UKGgGR0CgB4HGsFMaaAdN6ANoCEdArHKE/yGzr3V9lChoBkdAoH/UfPomomgHTegDaAhHQKxzil9Brvd1fZQoaAZHQJ82rHaN+9doB03oA2gIR0CseLWsaKk3dX2UKGgGR0Cf/SBU70WeaAdN6ANoCEdArH890Lc9GXV9lChoBkdAoD0Y9eQdS2gHTegDaAhHQKyCK3cYZVJ1fZQoaAZHQJ85A0waisZoB03oA2gIR0Csgz7muDBedX2UKGgGR0CfvTHBUJfIaAdN6ANoCEdArIcDjvNNanV9lChoBkdAnn/E8A7xNWgHTegDaAhHQKyLOmYSg5B1fZQoaAZHQKCEFsKLKmtoB03oA2gIR0Csjid6C17ZdX2UKGgGR0CeliicoYvWaAdN6ANoCEdArI80Bfa6BnV9lChoBkdAoHlv8yeqaWgHTegDaAhHQKyTNRTCLuR1fZQoaAZHQJ6Ihj6N2kloB03oA2gIR0CsmXxYaHbidX2UKGgGR0CgfCwAMlTnaAdN6ANoCEdArJ4o9gWrO3V9lChoBkdAmCu1SflIVmgHTegDaAhHQKyfVgxagVZ1fZQoaAZHQJ1QovrWy1NoB03oA2gIR0Csox0x20RfdX2UKGgGR0Cfq3nwXqJNaAdN6ANoCEdArKdRamoBJnVlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ff17e20824c7dd2c8353b45e0b2f10b27086c583db9935da61c0f05ce6be6bd
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f153f6e3673067e3d5525be53e475049b561ca59fd7a53aa2e8ec21f61d9b04d
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f842e30b1c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f842e30b250>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f842e30b2e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f842e30b370>", "_build": "<function ActorCriticPolicy._build at 0x7f842e30b400>", "forward": "<function ActorCriticPolicy.forward at 0x7f842e30b490>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f842e30b520>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f842e30b5b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f842e30b640>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f842e30b6d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f842e30b760>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f842e30b7f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f842e306140>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688796364479374166, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABh/eT6iL30+1QHUPmVgzj3uTLw+Bc+HPqxOir78Q/E+teIvP4a+Db0fSHO/KmoyPCp8ir40faE/wQx6vtq+xj0xzKI/kdfIP9dnPb9YJfM+N0slv6snq7w2sBE/YfgAPv2Vib+xWAQ/GfjyPpFdfT9/q9m+/TbOvRx9+T7FoEo/3L+3v6U0qr1apRU/jPIlPs51wz5StA/AuONVPoRG4r8VcIO/tS+6PRjK77499pk/dCinv6/Vf75mshM/txGIvxunFr22rJq/XTODvnD+Fj/4KW4/spf3vxn48j6RXX0/woJmPg72sT7AIcE+hGGVPxTmhz8r6ji/896kviBujr5cucE90JX6v3mHOr/s+ZA/iKLDP3M2F77ALu8+oqIwP5Fpbj9ed5u/prL6vgVU2D5rLV6/CYIKwEQEPz+jHRq//ZWJv7FYBD8Z+PI+kV19P0W/DT9FjtE/a9xnv1KWsT91S+A/HLP7PrzAXT7Josy+nIP9vFgnHb6lLFi/4R9oP2G/rj/RlJE/51ZfPUeq5z9zB6Y/8LEQvjwwnL7Q9Ac//+dAPl6N8L9R1Xc/NzAGP/2Vib+xWAQ/GfjyPpFdfT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAMLim3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWG2VPQAAAACSQ/O/AAAAABZT+L0AAAAA9yPrPwAAAABVxA2+AAAAAFkB+T8AAAAAhiPIPQAAAACePvC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApP48NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBJRiz0AAAAAv0PovwAAAACX9kY9AAAAAMeY5j8AAAAANj9gPQAAAABZHwFAAAAAAPKgub0AAAAA1g3bvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJvdrjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC2uNK9AAAAAMPf9b8AAAAAl1XFPQAAAADHO+M/AAAAAIBiWbsAAAAALLL8PwAAAAADPrK8AAAAADt08b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/aso1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAORUavQAAAABIH/a/AAAAALMW470AAAAADNHuPwAAAADB/dY8AAAAAKfN+T8AAAAAKsrmvQAAAACboPi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKApNEnb7CWMAWyUTegDjAF0lEdAq0yiSTyJ9HV9lChoBkdAnkh1YlpoK2gHTegDaAhHQKtNv4mCyyF1fZQoaAZHQKB2phwVCX1oB03oA2gIR0CrUYdcKPXDdX2UKGgGR0CgAqDyvs7daAdN6ANoCEdAq1XIj8k2P3V9lChoBkdAoCN9zOoo/mgHTegDaAhHQKtaEWk8A7x1fZQoaAZHQJrENvm5lOJoB03oA2gIR0CrW7Bt+CsfdX2UKGgGR0CeNRJv5xioaAdN6ANoCEdAq2EvVLBbfXV9lChoBkdAl+0adlNDdGgHTegDaAhHQKtlhZZB9kV1fZQoaAZHQJ3IQf1YhdNoB03oA2gIR0CraHRjjJdTdX2UKGgGR0Cgqu1gH/tIaAdN6ANoCEdAq2l+r2g3+HV9lChoBkdAoEN4TwlSj2gHTegDaAhHQKttXytFKCh1fZQoaAZHQJxlw6eXiR5oB03oA2gIR0CrcaWPDHfedX2UKGgGR0Cdpr176YVqaAdN6ANoCEdAq3SMutfXw3V9lChoBkdAmi1fJ7sv7GgHTegDaAhHQKt2PXEIgNh1fZQoaAZHQJxTnIlt0mtoB03oA2gIR0CrfAF3yI56dX2UKGgGR0CaKNfYjB2waAdN6ANoCEdAq4GcdJaq0nV9lChoBkdAnii5FXq7iGgHTegDaAhHQKuEeQPqcEx1fZQoaAZHQJvT2O0b961oB03oA2gIR0CrhYPWQOnVdX2UKGgGR0CeLYW9US7HaAdN6ANoCEdAq4k8iY9gW3V9lChoBkdAn2OHHNorWmgHTegDaAhHQKuNbooNNJx1fZQoaAZHQKA5iXmeUY9oB03oA2gIR0CrkEqEvkBCdX2UKGgGR0Cf2noJiRW+aAdN6ANoCEdAq5FU8/2TPnV9lChoBkdAnx0ksWfseGgHTegDaAhHQKuVougYgq51fZQoaAZHQJ6tDxhDw6RoB03oA2gIR0CrnB0p/gBLdX2UKGgGR0CgXfuZssQNaAdN6ANoCEdAq6A1VinYQXV9lChoBkdAniWJXuE252gHTegDaAhHQKuhWuqWC3B1fZQoaAZHQJ/YHb212JVoB03oA2gIR0CrpTajWTX8dX2UKGgGR0CfgBHim2sraAdN6ANoCEdAq6mEQTVUdnV9lChoBkdAnseL6LwWnGgHTegDaAhHQKusjlijL0V1fZQoaAZHQKDH4u1WsBBoB03oA2gIR0CrraJD3M6jdX2UKGgGR0CgYHWRaHKwaAdN6ANoCEdAq7F1CzC1qnV9lChoBkdAnsWq8xsVL2gHTegDaAhHQKu2yU6gdwN1fZQoaAZHQJ3ulpfx+a1oB03oA2gIR0Cru0CyIHkcdX2UKGgGR0CeXRppeu3daAdN6ANoCEdAq7zgB91EE3V9lChoBkdAoFBQigTRIGgHTegDaAhHQKvBf9aUzKt1fZQoaAZHQKBAcHD7655oB03oA2gIR0CrxhxVAAyVdX2UKGgGR0Cgc7UYKpkxaAdN6ANoCEdAq8lJrtVrAXV9lChoBkdAoGH2fAbhnGgHTegDaAhHQKvKb8AJb+t1fZQoaAZHQKAylBQemvZoB03oA2gIR0CrzkRvvSc9dX2UKGgGR0CdNdXJ5mh/aAdN6ANoCEdAq9LICnxaxHV9lChoBkdAnusTzmOlwmgHTegDaAhHQKvXJwxWT5h1fZQoaAZHQKB+UUnogV5oB03oA2gIR0Cr2NaC17Y1dX2UKGgGR0CgBIzUAks0aAdN6ANoCEdAq96YZMtbtHV9lChoBkdAnAvPyCnP3WgHTegDaAhHQKvi+FcIJJJ1fZQoaAZHQJ9yD8HfMwFoB03oA2gIR0Cr5hZ0Syt3dX2UKGgGR0Cfjjt2cJ+laAdN6ANoCEdAq+cqMR6F/XV9lChoBkdAnFmI2jwhGGgHTegDaAhHQKvrEhQFcIJ1fZQoaAZHQJ93msdT5whoB03oA2gIR0Cr724TCcgAdX2UKGgGR0CZYbiyIHkcaAdN6ANoCEdAq/LEPrfLtHV9lChoBkdAnU4i8Fpwj2gHTegDaAhHQKv0Wo1DSgJ1fZQoaAZHQJ2OjkFOfuloB03oA2gIR0Cr+mjXvphXdX2UKGgGR0CcP78zAN5MaAdN6ANoCEdAq//35rP+oHV9lChoBkdAngWNVBD5TWgHTegDaAhHQKwC+s4DLbJ1fZQoaAZHQJ4mAS00FbFoB03oA2gIR0CsBBtCiRGMdX2UKGgGR0CchVZE2HclaAdN6ANoCEdArAgWovSMLnV9lChoBkdAmt3zVx0dR2gHTegDaAhHQKwMeYVIqb11fZQoaAZHQJyILgBLf1poB03oA2gIR0CsD2OYIBzWdX2UKGgGR0CgJWFnAZbZaAdN6ANoCEdArBBvOGCZnnV9lChoBkdAmAQw4KhL5GgHTegDaAhHQKwVdYf4h2Z1fZQoaAZHQJ76W1w5vLpoB03oA2gIR0CsHEgMc6vJdX2UKGgGR0CelOXRPXTWaAdN6ANoCEdArCD1PacqfHV9lChoBkdAnrRo5YHPeGgHTegDaAhHQKwitGHYYix1fZQoaAZHQJu8DKaG5+ZoB03oA2gIR0CsKEQxN7BwdX2UKGgGR0CdJCMXaakRaAdN6ANoCEdArCx0TDfm93V9lChoBkdAn1pTkyULUmgHTegDaAhHQKwvUhwEQoV1fZQoaAZHQJ/CmBI4EOloB03oA2gIR0CsMGPsZ5zHdX2UKGgGR0Ccgk3IuGsWaAdN6ANoCEdArDQet2cJ+nV9lChoBkdAnyWjzND+i2gHTegDaAhHQKw5ghEjPfN1fZQoaAZHQJ8+uom5UcZoB03oA2gIR0CsPghe5WildX2UKGgGR0CcZo0PpY9xaAdN6ANoCEdArD+kRg7YCnV9lChoBkdAoCWmC5EtumgHTegDaAhHQKxD2e9SMtN1fZQoaAZHQJwyJhOP/71oB03oA2gIR0CsSAU6gdwOdX2UKGgGR0CfTXU/wAlwaAdN6ANoCEdArErlHJ9y93V9lChoBkdAn89WIXTEzmgHTegDaAhHQKxL8Vkc0ch1fZQoaAZHQJxM8JhOP/9oB03oA2gIR0CsT6wemvW6dX2UKGgGR0Ca7PHnEETyaAdN6ANoCEdArFQE/8l5W3V9lChoBkdAnDa1LWZqmGgHTegDaAhHQKxXyYixFAp1fZQoaAZHQJkS4py6tkpoB03oA2gIR0CsWUalUIcBdX2UKGgGR0CdAtcJ+lTFaAdN6ANoCEdArF8lKh+OO3V9lChoBkdAnrtRs2vSt2gHTegDaAhHQKxjnnzxwyZ1fZQoaAZHQJwSX9l2/ztoB03oA2gIR0CsZo+rlvIfdX2UKGgGR0CbIm98JD3NaAdN6ANoCEdArGede2NNrXV9lChoBkdAnbR1b7j1f2gHTegDaAhHQKxrbpRGc4J1fZQoaAZHQJ2iCZpi7TVoB03oA2gIR0Csb5lY+0PZdX2UKGgGR0CgB4HGsFMaaAdN6ANoCEdArHKE/yGzr3V9lChoBkdAoH/UfPomomgHTegDaAhHQKxzil9Brvd1fZQoaAZHQJ82rHaN+9doB03oA2gIR0CseLWsaKk3dX2UKGgGR0Cf/SBU70WeaAdN6ANoCEdArH890Lc9GXV9lChoBkdAoD0Y9eQdS2gHTegDaAhHQKyCK3cYZVJ1fZQoaAZHQJ85A0waisZoB03oA2gIR0Csgz7muDBedX2UKGgGR0CfvTHBUJfIaAdN6ANoCEdArIcDjvNNanV9lChoBkdAnn/E8A7xNWgHTegDaAhHQKyLOmYSg5B1fZQoaAZHQKCEFsKLKmtoB03oA2gIR0Csjid6C17ZdX2UKGgGR0CeliicoYvWaAdN6ANoCEdArI80Bfa6BnV9lChoBkdAoHlv8yeqaWgHTegDaAhHQKyTNRTCLuR1fZQoaAZHQJ6Ihj6N2kloB03oA2gIR0CsmXxYaHbidX2UKGgGR0CgfCwAMlTnaAdN6ANoCEdArJ4o9gWrO3V9lChoBkdAmCu1SflIVmgHTegDaAhHQKyfVgxagVZ1fZQoaAZHQJ1QovrWy1NoB03oA2gIR0Csox0x20RfdX2UKGgGR0Cfq3nwXqJNaAdN6ANoCEdArKdRamoBJnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a594374423eacba35a1047da2d66e5cdb22e9c8c2976a62e89851988166eff37
3
+ size 1106119
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1755.5969136747765, "std_reward": 173.00232430212728, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-08T07:07:41.629881"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6edc428ab7df0324f081704f83f98cc87adfbe55c290b996ede4386598a3f8a2
3
+ size 2176