infinitejoy
commited on
Commit
•
fa8e059
1
Parent(s):
4da9fbb
add tokenizer
Browse files- added_tokens.json +1 -0
- eval.py +256 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.json +1 -0
added_tokens.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"<s>": 50, "</s>": 51}
|
eval.py
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import argparse
|
3 |
+
import re
|
4 |
+
from typing import Dict
|
5 |
+
|
6 |
+
from datasets import Audio, Dataset, load_dataset, load_metric
|
7 |
+
|
8 |
+
from transformers import AutoFeatureExtractor, pipeline
|
9 |
+
|
10 |
+
|
11 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
12 |
+
"""DO NOT CHANGE. This function computes and logs the result metrics."""
|
13 |
+
|
14 |
+
log_outputs = args.log_outputs
|
15 |
+
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
16 |
+
|
17 |
+
# load metric
|
18 |
+
wer = load_metric("wer")
|
19 |
+
cer = load_metric("cer")
|
20 |
+
|
21 |
+
# compute metrics
|
22 |
+
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
|
23 |
+
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
|
24 |
+
|
25 |
+
# print & log results
|
26 |
+
result_str = f"WER: {wer_result}\n" f"CER: {cer_result}"
|
27 |
+
print(result_str)
|
28 |
+
|
29 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
30 |
+
f.write(result_str)
|
31 |
+
|
32 |
+
# log all results in text file. Possibly interesting for analysis
|
33 |
+
if log_outputs is not None:
|
34 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
35 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
36 |
+
|
37 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
38 |
+
|
39 |
+
# mapping function to write output
|
40 |
+
def write_to_file(batch, i):
|
41 |
+
p.write(f"{i}" + "\n")
|
42 |
+
p.write(batch["prediction"] + "\n")
|
43 |
+
t.write(f"{i}" + "\n")
|
44 |
+
t.write(batch["target"] + "\n")
|
45 |
+
|
46 |
+
result.map(write_to_file, with_indices=True)
|
47 |
+
|
48 |
+
|
49 |
+
def normalize_text(text: str) -> str:
|
50 |
+
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
|
51 |
+
|
52 |
+
chars_to_ignore_regex = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
|
53 |
+
|
54 |
+
text = re.sub(chars_to_ignore_regex, "", text.lower())
|
55 |
+
|
56 |
+
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
|
57 |
+
# note that order is important here!
|
58 |
+
token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
|
59 |
+
|
60 |
+
for t in token_sequences_to_ignore:
|
61 |
+
text = " ".join(text.split(t))
|
62 |
+
|
63 |
+
return text
|
64 |
+
|
65 |
+
|
66 |
+
def main(args):
|
67 |
+
# load dataset
|
68 |
+
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
69 |
+
|
70 |
+
# for testing: only process the first two examples as a test
|
71 |
+
# dataset = dataset.select(range(10))
|
72 |
+
|
73 |
+
# load processor
|
74 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
|
75 |
+
sampling_rate = feature_extractor.sampling_rate
|
76 |
+
|
77 |
+
# resample audio
|
78 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
|
79 |
+
|
80 |
+
# load eval pipeline
|
81 |
+
asr = pipeline("automatic-speech-recognition", model=args.model_id)
|
82 |
+
|
83 |
+
# map function to decode audio
|
84 |
+
def map_to_pred(batch):
|
85 |
+
prediction = asr(
|
86 |
+
batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
|
87 |
+
)
|
88 |
+
|
89 |
+
batch["prediction"] = prediction["text"]
|
90 |
+
batch["target"] = normalize_text(batch["sentence"])
|
91 |
+
return batch
|
92 |
+
|
93 |
+
# run inference on all examples
|
94 |
+
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
95 |
+
|
96 |
+
# compute and log_results
|
97 |
+
# do not change function below
|
98 |
+
log_results(result, args)
|
99 |
+
|
100 |
+
|
101 |
+
if __name__ == "__main__":
|
102 |
+
parser = argparse.ArgumentParser()
|
103 |
+
|
104 |
+
parser.add_argument(
|
105 |
+
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
106 |
+
)
|
107 |
+
parser.add_argument(
|
108 |
+
"--dataset",
|
109 |
+
type=str,
|
110 |
+
required=True,
|
111 |
+
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
|
112 |
+
)
|
113 |
+
parser.add_argument(
|
114 |
+
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
115 |
+
)
|
116 |
+
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
|
117 |
+
parser.add_argument(
|
118 |
+
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
|
119 |
+
)
|
120 |
+
parser.add_argument(
|
121 |
+
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
|
122 |
+
)
|
123 |
+
parser.add_argument(
|
124 |
+
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
|
125 |
+
)
|
126 |
+
args = parser.parse_args()
|
127 |
+
|
128 |
+
main(args)
|
129 |
+
#!/usr/bin/env python3
|
130 |
+
import argparse
|
131 |
+
import re
|
132 |
+
from typing import Dict
|
133 |
+
|
134 |
+
from datasets import Audio, Dataset, load_dataset, load_metric
|
135 |
+
|
136 |
+
from transformers import AutoFeatureExtractor, pipeline
|
137 |
+
|
138 |
+
|
139 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
140 |
+
"""DO NOT CHANGE. This function computes and logs the result metrics."""
|
141 |
+
|
142 |
+
log_outputs = args.log_outputs
|
143 |
+
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
144 |
+
|
145 |
+
# load metric
|
146 |
+
wer = load_metric("wer")
|
147 |
+
cer = load_metric("cer")
|
148 |
+
|
149 |
+
# compute metrics
|
150 |
+
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
|
151 |
+
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
|
152 |
+
|
153 |
+
# print & log results
|
154 |
+
result_str = f"WER: {wer_result}\n" f"CER: {cer_result}"
|
155 |
+
print(result_str)
|
156 |
+
|
157 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
158 |
+
f.write(result_str)
|
159 |
+
|
160 |
+
# log all results in text file. Possibly interesting for analysis
|
161 |
+
if log_outputs is not None:
|
162 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
163 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
164 |
+
|
165 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
166 |
+
|
167 |
+
# mapping function to write output
|
168 |
+
def write_to_file(batch, i):
|
169 |
+
p.write(f"{i}" + "\n")
|
170 |
+
p.write(batch["prediction"] + "\n")
|
171 |
+
t.write(f"{i}" + "\n")
|
172 |
+
t.write(batch["target"] + "\n")
|
173 |
+
|
174 |
+
result.map(write_to_file, with_indices=True)
|
175 |
+
|
176 |
+
|
177 |
+
def normalize_text(text: str) -> str:
|
178 |
+
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
|
179 |
+
|
180 |
+
chars_to_ignore_regex = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
|
181 |
+
|
182 |
+
text = re.sub(chars_to_ignore_regex, "", text.lower())
|
183 |
+
|
184 |
+
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
|
185 |
+
# note that order is important here!
|
186 |
+
token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
|
187 |
+
|
188 |
+
for t in token_sequences_to_ignore:
|
189 |
+
text = " ".join(text.split(t))
|
190 |
+
|
191 |
+
return text
|
192 |
+
|
193 |
+
|
194 |
+
def main(args):
|
195 |
+
# load dataset
|
196 |
+
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
197 |
+
|
198 |
+
# for testing: only process the first two examples as a test
|
199 |
+
# dataset = dataset.select(range(10))
|
200 |
+
|
201 |
+
# load processor
|
202 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
|
203 |
+
sampling_rate = feature_extractor.sampling_rate
|
204 |
+
|
205 |
+
# resample audio
|
206 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
|
207 |
+
|
208 |
+
# load eval pipeline
|
209 |
+
asr = pipeline("automatic-speech-recognition", model=args.model_id)
|
210 |
+
|
211 |
+
# map function to decode audio
|
212 |
+
def map_to_pred(batch):
|
213 |
+
prediction = asr(
|
214 |
+
batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
|
215 |
+
)
|
216 |
+
|
217 |
+
batch["prediction"] = prediction["text"]
|
218 |
+
batch["target"] = normalize_text(batch["sentence"])
|
219 |
+
return batch
|
220 |
+
|
221 |
+
# run inference on all examples
|
222 |
+
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
223 |
+
|
224 |
+
# compute and log_results
|
225 |
+
# do not change function below
|
226 |
+
log_results(result, args)
|
227 |
+
|
228 |
+
|
229 |
+
if __name__ == "__main__":
|
230 |
+
parser = argparse.ArgumentParser()
|
231 |
+
|
232 |
+
parser.add_argument(
|
233 |
+
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
234 |
+
)
|
235 |
+
parser.add_argument(
|
236 |
+
"--dataset",
|
237 |
+
type=str,
|
238 |
+
required=True,
|
239 |
+
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
|
240 |
+
)
|
241 |
+
parser.add_argument(
|
242 |
+
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
243 |
+
)
|
244 |
+
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
|
245 |
+
parser.add_argument(
|
246 |
+
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
|
247 |
+
)
|
248 |
+
parser.add_argument(
|
249 |
+
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
|
250 |
+
)
|
251 |
+
parser.add_argument(
|
252 |
+
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
|
253 |
+
)
|
254 |
+
args = parser.parse_args()
|
255 |
+
|
256 |
+
main(args)
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|", "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "wav2vec2-large-xls-r-300m-armenian/", "tokenizer_class": "Wav2Vec2CTCTokenizer"}
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"(": 1, ")": 2, "«": 3, "»": 4, "՛": 5, "՝": 6, "՞": 7, "ա": 8, "բ": 9, "գ": 10, "դ": 11, "ե": 12, "զ": 13, "է": 14, "ը": 15, "թ": 16, "ժ": 17, "ի": 18, "լ": 19, "խ": 20, "ծ": 21, "կ": 22, "հ": 23, "ձ": 24, "ղ": 25, "ճ": 26, "մ": 27, "յ": 28, "ն": 29, "շ": 30, "ո": 31, "չ": 32, "պ": 33, "ջ": 34, "ռ": 35, "ս": 36, "վ": 37, "տ": 38, "ր": 39, "ց": 40, "ւ": 41, "փ": 42, "ք": 43, "օ": 44, "ֆ": 45, "և": 46, "։": 47, "|": 0, "[UNK]": 48, "[PAD]": 49}
|