add models
Browse files- README.md +1320 -1
- config.json +34 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +13 -0
- vocab.txt +0 -0
README.md
CHANGED
@@ -1,3 +1,1322 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- mteb
|
8 |
+
model-index:
|
9 |
+
- name: stella-base-zh-v2
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: STS
|
13 |
+
dataset:
|
14 |
+
type: C-MTEB/AFQMC
|
15 |
+
name: MTEB AFQMC
|
16 |
+
config: default
|
17 |
+
split: validation
|
18 |
+
revision: None
|
19 |
+
metrics:
|
20 |
+
- type: cos_sim_pearson
|
21 |
+
value: 44.62083443545288
|
22 |
+
- type: cos_sim_spearman
|
23 |
+
value: 46.72814628391134
|
24 |
+
- type: euclidean_pearson
|
25 |
+
value: 45.11522093816821
|
26 |
+
- type: euclidean_spearman
|
27 |
+
value: 46.72818648900957
|
28 |
+
- type: manhattan_pearson
|
29 |
+
value: 44.98820754682395
|
30 |
+
- type: manhattan_spearman
|
31 |
+
value: 46.63576705524296
|
32 |
+
- task:
|
33 |
+
type: STS
|
34 |
+
dataset:
|
35 |
+
type: C-MTEB/ATEC
|
36 |
+
name: MTEB ATEC
|
37 |
+
config: default
|
38 |
+
split: test
|
39 |
+
revision: None
|
40 |
+
metrics:
|
41 |
+
- type: cos_sim_pearson
|
42 |
+
value: 49.543902370260234
|
43 |
+
- type: cos_sim_spearman
|
44 |
+
value: 51.22161152883018
|
45 |
+
- type: euclidean_pearson
|
46 |
+
value: 53.49586541060596
|
47 |
+
- type: euclidean_spearman
|
48 |
+
value: 51.22161490583934
|
49 |
+
- type: manhattan_pearson
|
50 |
+
value: 53.51023339947787
|
51 |
+
- type: manhattan_spearman
|
52 |
+
value: 51.22426632538443
|
53 |
+
- task:
|
54 |
+
type: Classification
|
55 |
+
dataset:
|
56 |
+
type: mteb/amazon_reviews_multi
|
57 |
+
name: MTEB AmazonReviewsClassification (zh)
|
58 |
+
config: zh
|
59 |
+
split: test
|
60 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
61 |
+
metrics:
|
62 |
+
- type: accuracy
|
63 |
+
value: 39.644
|
64 |
+
- type: f1
|
65 |
+
value: 37.67897186741224
|
66 |
+
- task:
|
67 |
+
type: STS
|
68 |
+
dataset:
|
69 |
+
type: C-MTEB/BQ
|
70 |
+
name: MTEB BQ
|
71 |
+
config: default
|
72 |
+
split: test
|
73 |
+
revision: None
|
74 |
+
metrics:
|
75 |
+
- type: cos_sim_pearson
|
76 |
+
value: 61.96416237112325
|
77 |
+
- type: cos_sim_spearman
|
78 |
+
value: 64.80484064041543
|
79 |
+
- type: euclidean_pearson
|
80 |
+
value: 63.281983537100594
|
81 |
+
- type: euclidean_spearman
|
82 |
+
value: 64.80483024694405
|
83 |
+
- type: manhattan_pearson
|
84 |
+
value: 63.266046412399426
|
85 |
+
- type: manhattan_spearman
|
86 |
+
value: 64.79643672829964
|
87 |
+
- task:
|
88 |
+
type: Clustering
|
89 |
+
dataset:
|
90 |
+
type: C-MTEB/CLSClusteringP2P
|
91 |
+
name: MTEB CLSClusteringP2P
|
92 |
+
config: default
|
93 |
+
split: test
|
94 |
+
revision: None
|
95 |
+
metrics:
|
96 |
+
- type: v_measure
|
97 |
+
value: 40.25857488823951
|
98 |
+
- task:
|
99 |
+
type: Clustering
|
100 |
+
dataset:
|
101 |
+
type: C-MTEB/CLSClusteringS2S
|
102 |
+
name: MTEB CLSClusteringS2S
|
103 |
+
config: default
|
104 |
+
split: test
|
105 |
+
revision: None
|
106 |
+
metrics:
|
107 |
+
- type: v_measure
|
108 |
+
value: 37.17501553349549
|
109 |
+
- task:
|
110 |
+
type: Reranking
|
111 |
+
dataset:
|
112 |
+
type: C-MTEB/CMedQAv1-reranking
|
113 |
+
name: MTEB CMedQAv1
|
114 |
+
config: default
|
115 |
+
split: test
|
116 |
+
revision: None
|
117 |
+
metrics:
|
118 |
+
- type: map
|
119 |
+
value: 84.69751849160603
|
120 |
+
- type: mrr
|
121 |
+
value: 87.16257936507937
|
122 |
+
- task:
|
123 |
+
type: Reranking
|
124 |
+
dataset:
|
125 |
+
type: C-MTEB/CMedQAv2-reranking
|
126 |
+
name: MTEB CMedQAv2
|
127 |
+
config: default
|
128 |
+
split: test
|
129 |
+
revision: None
|
130 |
+
metrics:
|
131 |
+
- type: map
|
132 |
+
value: 85.31468551417655
|
133 |
+
- type: mrr
|
134 |
+
value: 87.74658730158731
|
135 |
+
- task:
|
136 |
+
type: Retrieval
|
137 |
+
dataset:
|
138 |
+
type: C-MTEB/CmedqaRetrieval
|
139 |
+
name: MTEB CmedqaRetrieval
|
140 |
+
config: default
|
141 |
+
split: dev
|
142 |
+
revision: None
|
143 |
+
metrics:
|
144 |
+
- type: map_at_1
|
145 |
+
value: 24.181
|
146 |
+
- type: map_at_10
|
147 |
+
value: 35.615
|
148 |
+
- type: map_at_100
|
149 |
+
value: 37.444
|
150 |
+
- type: map_at_1000
|
151 |
+
value: 37.573
|
152 |
+
- type: map_at_3
|
153 |
+
value: 31.679000000000002
|
154 |
+
- type: map_at_5
|
155 |
+
value: 33.854
|
156 |
+
- type: mrr_at_1
|
157 |
+
value: 37.108999999999995
|
158 |
+
- type: mrr_at_10
|
159 |
+
value: 44.653
|
160 |
+
- type: mrr_at_100
|
161 |
+
value: 45.647
|
162 |
+
- type: mrr_at_1000
|
163 |
+
value: 45.701
|
164 |
+
- type: mrr_at_3
|
165 |
+
value: 42.256
|
166 |
+
- type: mrr_at_5
|
167 |
+
value: 43.497
|
168 |
+
- type: ndcg_at_1
|
169 |
+
value: 37.108999999999995
|
170 |
+
- type: ndcg_at_10
|
171 |
+
value: 42.028999999999996
|
172 |
+
- type: ndcg_at_100
|
173 |
+
value: 49.292
|
174 |
+
- type: ndcg_at_1000
|
175 |
+
value: 51.64
|
176 |
+
- type: ndcg_at_3
|
177 |
+
value: 37.017
|
178 |
+
- type: ndcg_at_5
|
179 |
+
value: 38.997
|
180 |
+
- type: precision_at_1
|
181 |
+
value: 37.108999999999995
|
182 |
+
- type: precision_at_10
|
183 |
+
value: 9.386999999999999
|
184 |
+
- type: precision_at_100
|
185 |
+
value: 1.536
|
186 |
+
- type: precision_at_1000
|
187 |
+
value: 0.183
|
188 |
+
- type: precision_at_3
|
189 |
+
value: 20.93
|
190 |
+
- type: precision_at_5
|
191 |
+
value: 15.268999999999998
|
192 |
+
- type: recall_at_1
|
193 |
+
value: 24.181
|
194 |
+
- type: recall_at_10
|
195 |
+
value: 51.961999999999996
|
196 |
+
- type: recall_at_100
|
197 |
+
value: 82.122
|
198 |
+
- type: recall_at_1000
|
199 |
+
value: 98.059
|
200 |
+
- type: recall_at_3
|
201 |
+
value: 36.730000000000004
|
202 |
+
- type: recall_at_5
|
203 |
+
value: 42.884
|
204 |
+
- task:
|
205 |
+
type: PairClassification
|
206 |
+
dataset:
|
207 |
+
type: C-MTEB/CMNLI
|
208 |
+
name: MTEB Cmnli
|
209 |
+
config: default
|
210 |
+
split: validation
|
211 |
+
revision: None
|
212 |
+
metrics:
|
213 |
+
- type: cos_sim_accuracy
|
214 |
+
value: 76.23571858087793
|
215 |
+
- type: cos_sim_ap
|
216 |
+
value: 84.75290046905519
|
217 |
+
- type: cos_sim_f1
|
218 |
+
value: 77.70114942528735
|
219 |
+
- type: cos_sim_precision
|
220 |
+
value: 73.05475504322767
|
221 |
+
- type: cos_sim_recall
|
222 |
+
value: 82.97872340425532
|
223 |
+
- type: dot_accuracy
|
224 |
+
value: 76.23571858087793
|
225 |
+
- type: dot_ap
|
226 |
+
value: 84.75113928508674
|
227 |
+
- type: dot_f1
|
228 |
+
value: 77.70114942528735
|
229 |
+
- type: dot_precision
|
230 |
+
value: 73.05475504322767
|
231 |
+
- type: dot_recall
|
232 |
+
value: 82.97872340425532
|
233 |
+
- type: euclidean_accuracy
|
234 |
+
value: 76.23571858087793
|
235 |
+
- type: euclidean_ap
|
236 |
+
value: 84.75289931658567
|
237 |
+
- type: euclidean_f1
|
238 |
+
value: 77.70114942528735
|
239 |
+
- type: euclidean_precision
|
240 |
+
value: 73.05475504322767
|
241 |
+
- type: euclidean_recall
|
242 |
+
value: 82.97872340425532
|
243 |
+
- type: manhattan_accuracy
|
244 |
+
value: 76.17558628983764
|
245 |
+
- type: manhattan_ap
|
246 |
+
value: 84.75764676597448
|
247 |
+
- type: manhattan_f1
|
248 |
+
value: 77.73437499999999
|
249 |
+
- type: manhattan_precision
|
250 |
+
value: 72.52480259161773
|
251 |
+
- type: manhattan_recall
|
252 |
+
value: 83.75029226093056
|
253 |
+
- type: max_accuracy
|
254 |
+
value: 76.23571858087793
|
255 |
+
- type: max_ap
|
256 |
+
value: 84.75764676597448
|
257 |
+
- type: max_f1
|
258 |
+
value: 77.73437499999999
|
259 |
+
- task:
|
260 |
+
type: Retrieval
|
261 |
+
dataset:
|
262 |
+
type: C-MTEB/CovidRetrieval
|
263 |
+
name: MTEB CovidRetrieval
|
264 |
+
config: default
|
265 |
+
split: dev
|
266 |
+
revision: None
|
267 |
+
metrics:
|
268 |
+
- type: map_at_1
|
269 |
+
value: 67.43900000000001
|
270 |
+
- type: map_at_10
|
271 |
+
value: 76.00099999999999
|
272 |
+
- type: map_at_100
|
273 |
+
value: 76.297
|
274 |
+
- type: map_at_1000
|
275 |
+
value: 76.29899999999999
|
276 |
+
- type: map_at_3
|
277 |
+
value: 74.412
|
278 |
+
- type: map_at_5
|
279 |
+
value: 75.177
|
280 |
+
- type: mrr_at_1
|
281 |
+
value: 67.65
|
282 |
+
- type: mrr_at_10
|
283 |
+
value: 76.007
|
284 |
+
- type: mrr_at_100
|
285 |
+
value: 76.322
|
286 |
+
- type: mrr_at_1000
|
287 |
+
value: 76.324
|
288 |
+
- type: mrr_at_3
|
289 |
+
value: 74.464
|
290 |
+
- type: mrr_at_5
|
291 |
+
value: 75.265
|
292 |
+
- type: ndcg_at_1
|
293 |
+
value: 67.65
|
294 |
+
- type: ndcg_at_10
|
295 |
+
value: 79.85600000000001
|
296 |
+
- type: ndcg_at_100
|
297 |
+
value: 81.34400000000001
|
298 |
+
- type: ndcg_at_1000
|
299 |
+
value: 81.44200000000001
|
300 |
+
- type: ndcg_at_3
|
301 |
+
value: 76.576
|
302 |
+
- type: ndcg_at_5
|
303 |
+
value: 77.956
|
304 |
+
- type: precision_at_1
|
305 |
+
value: 67.65
|
306 |
+
- type: precision_at_10
|
307 |
+
value: 9.283
|
308 |
+
- type: precision_at_100
|
309 |
+
value: 0.9990000000000001
|
310 |
+
- type: precision_at_1000
|
311 |
+
value: 0.101
|
312 |
+
- type: precision_at_3
|
313 |
+
value: 27.749000000000002
|
314 |
+
- type: precision_at_5
|
315 |
+
value: 17.345
|
316 |
+
- type: recall_at_1
|
317 |
+
value: 67.43900000000001
|
318 |
+
- type: recall_at_10
|
319 |
+
value: 91.781
|
320 |
+
- type: recall_at_100
|
321 |
+
value: 98.84100000000001
|
322 |
+
- type: recall_at_1000
|
323 |
+
value: 99.684
|
324 |
+
- type: recall_at_3
|
325 |
+
value: 82.719
|
326 |
+
- type: recall_at_5
|
327 |
+
value: 86.038
|
328 |
+
- task:
|
329 |
+
type: Retrieval
|
330 |
+
dataset:
|
331 |
+
type: C-MTEB/DuRetrieval
|
332 |
+
name: MTEB DuRetrieval
|
333 |
+
config: default
|
334 |
+
split: dev
|
335 |
+
revision: None
|
336 |
+
metrics:
|
337 |
+
- type: map_at_1
|
338 |
+
value: 25.354
|
339 |
+
- type: map_at_10
|
340 |
+
value: 79.499
|
341 |
+
- type: map_at_100
|
342 |
+
value: 82.416
|
343 |
+
- type: map_at_1000
|
344 |
+
value: 82.451
|
345 |
+
- type: map_at_3
|
346 |
+
value: 54.664
|
347 |
+
- type: map_at_5
|
348 |
+
value: 69.378
|
349 |
+
- type: mrr_at_1
|
350 |
+
value: 89.25
|
351 |
+
- type: mrr_at_10
|
352 |
+
value: 92.666
|
353 |
+
- type: mrr_at_100
|
354 |
+
value: 92.738
|
355 |
+
- type: mrr_at_1000
|
356 |
+
value: 92.74
|
357 |
+
- type: mrr_at_3
|
358 |
+
value: 92.342
|
359 |
+
- type: mrr_at_5
|
360 |
+
value: 92.562
|
361 |
+
- type: ndcg_at_1
|
362 |
+
value: 89.25
|
363 |
+
- type: ndcg_at_10
|
364 |
+
value: 86.97
|
365 |
+
- type: ndcg_at_100
|
366 |
+
value: 89.736
|
367 |
+
- type: ndcg_at_1000
|
368 |
+
value: 90.069
|
369 |
+
- type: ndcg_at_3
|
370 |
+
value: 85.476
|
371 |
+
- type: ndcg_at_5
|
372 |
+
value: 84.679
|
373 |
+
- type: precision_at_1
|
374 |
+
value: 89.25
|
375 |
+
- type: precision_at_10
|
376 |
+
value: 41.9
|
377 |
+
- type: precision_at_100
|
378 |
+
value: 4.811
|
379 |
+
- type: precision_at_1000
|
380 |
+
value: 0.48900000000000005
|
381 |
+
- type: precision_at_3
|
382 |
+
value: 76.86699999999999
|
383 |
+
- type: precision_at_5
|
384 |
+
value: 65.25
|
385 |
+
- type: recall_at_1
|
386 |
+
value: 25.354
|
387 |
+
- type: recall_at_10
|
388 |
+
value: 88.64999999999999
|
389 |
+
- type: recall_at_100
|
390 |
+
value: 97.56
|
391 |
+
- type: recall_at_1000
|
392 |
+
value: 99.37
|
393 |
+
- type: recall_at_3
|
394 |
+
value: 57.325
|
395 |
+
- type: recall_at_5
|
396 |
+
value: 74.614
|
397 |
+
- task:
|
398 |
+
type: Retrieval
|
399 |
+
dataset:
|
400 |
+
type: C-MTEB/EcomRetrieval
|
401 |
+
name: MTEB EcomRetrieval
|
402 |
+
config: default
|
403 |
+
split: dev
|
404 |
+
revision: None
|
405 |
+
metrics:
|
406 |
+
- type: map_at_1
|
407 |
+
value: 48.3
|
408 |
+
- type: map_at_10
|
409 |
+
value: 57.765
|
410 |
+
- type: map_at_100
|
411 |
+
value: 58.418000000000006
|
412 |
+
- type: map_at_1000
|
413 |
+
value: 58.43899999999999
|
414 |
+
- type: map_at_3
|
415 |
+
value: 54.883
|
416 |
+
- type: map_at_5
|
417 |
+
value: 56.672999999999995
|
418 |
+
- type: mrr_at_1
|
419 |
+
value: 48.3
|
420 |
+
- type: mrr_at_10
|
421 |
+
value: 57.765
|
422 |
+
- type: mrr_at_100
|
423 |
+
value: 58.418000000000006
|
424 |
+
- type: mrr_at_1000
|
425 |
+
value: 58.43899999999999
|
426 |
+
- type: mrr_at_3
|
427 |
+
value: 54.883
|
428 |
+
- type: mrr_at_5
|
429 |
+
value: 56.672999999999995
|
430 |
+
- type: ndcg_at_1
|
431 |
+
value: 48.3
|
432 |
+
- type: ndcg_at_10
|
433 |
+
value: 62.846000000000004
|
434 |
+
- type: ndcg_at_100
|
435 |
+
value: 65.845
|
436 |
+
- type: ndcg_at_1000
|
437 |
+
value: 66.369
|
438 |
+
- type: ndcg_at_3
|
439 |
+
value: 56.996
|
440 |
+
- type: ndcg_at_5
|
441 |
+
value: 60.214999999999996
|
442 |
+
- type: precision_at_1
|
443 |
+
value: 48.3
|
444 |
+
- type: precision_at_10
|
445 |
+
value: 7.9
|
446 |
+
- type: precision_at_100
|
447 |
+
value: 0.9259999999999999
|
448 |
+
- type: precision_at_1000
|
449 |
+
value: 0.097
|
450 |
+
- type: precision_at_3
|
451 |
+
value: 21.032999999999998
|
452 |
+
- type: precision_at_5
|
453 |
+
value: 14.180000000000001
|
454 |
+
- type: recall_at_1
|
455 |
+
value: 48.3
|
456 |
+
- type: recall_at_10
|
457 |
+
value: 79.0
|
458 |
+
- type: recall_at_100
|
459 |
+
value: 92.60000000000001
|
460 |
+
- type: recall_at_1000
|
461 |
+
value: 96.7
|
462 |
+
- type: recall_at_3
|
463 |
+
value: 63.1
|
464 |
+
- type: recall_at_5
|
465 |
+
value: 70.89999999999999
|
466 |
+
- task:
|
467 |
+
type: Classification
|
468 |
+
dataset:
|
469 |
+
type: C-MTEB/IFlyTek-classification
|
470 |
+
name: MTEB IFlyTek
|
471 |
+
config: default
|
472 |
+
split: validation
|
473 |
+
revision: None
|
474 |
+
metrics:
|
475 |
+
- type: accuracy
|
476 |
+
value: 47.895344363216616
|
477 |
+
- type: f1
|
478 |
+
value: 34.95151253165417
|
479 |
+
- task:
|
480 |
+
type: Classification
|
481 |
+
dataset:
|
482 |
+
type: C-MTEB/JDReview-classification
|
483 |
+
name: MTEB JDReview
|
484 |
+
config: default
|
485 |
+
split: test
|
486 |
+
revision: None
|
487 |
+
metrics:
|
488 |
+
- type: accuracy
|
489 |
+
value: 84.78424015009381
|
490 |
+
- type: ap
|
491 |
+
value: 52.436279969597685
|
492 |
+
- type: f1
|
493 |
+
value: 79.49258679392281
|
494 |
+
- task:
|
495 |
+
type: STS
|
496 |
+
dataset:
|
497 |
+
type: C-MTEB/LCQMC
|
498 |
+
name: MTEB LCQMC
|
499 |
+
config: default
|
500 |
+
split: test
|
501 |
+
revision: None
|
502 |
+
metrics:
|
503 |
+
- type: cos_sim_pearson
|
504 |
+
value: 70.2307617475436
|
505 |
+
- type: cos_sim_spearman
|
506 |
+
value: 76.88912653700545
|
507 |
+
- type: euclidean_pearson
|
508 |
+
value: 75.47976675486538
|
509 |
+
- type: euclidean_spearman
|
510 |
+
value: 76.88912210059333
|
511 |
+
- type: manhattan_pearson
|
512 |
+
value: 75.45834919257487
|
513 |
+
- type: manhattan_spearman
|
514 |
+
value: 76.8669208121889
|
515 |
+
- task:
|
516 |
+
type: Reranking
|
517 |
+
dataset:
|
518 |
+
type: C-MTEB/Mmarco-reranking
|
519 |
+
name: MTEB MMarcoReranking
|
520 |
+
config: default
|
521 |
+
split: dev
|
522 |
+
revision: None
|
523 |
+
metrics:
|
524 |
+
- type: map
|
525 |
+
value: 28.047948482579244
|
526 |
+
- type: mrr
|
527 |
+
value: 26.63809523809524
|
528 |
+
- task:
|
529 |
+
type: Retrieval
|
530 |
+
dataset:
|
531 |
+
type: C-MTEB/MMarcoRetrieval
|
532 |
+
name: MTEB MMarcoRetrieval
|
533 |
+
config: default
|
534 |
+
split: dev
|
535 |
+
revision: None
|
536 |
+
metrics:
|
537 |
+
- type: map_at_1
|
538 |
+
value: 65.837
|
539 |
+
- type: map_at_10
|
540 |
+
value: 74.72
|
541 |
+
- type: map_at_100
|
542 |
+
value: 75.068
|
543 |
+
- type: map_at_1000
|
544 |
+
value: 75.079
|
545 |
+
- type: map_at_3
|
546 |
+
value: 72.832
|
547 |
+
- type: map_at_5
|
548 |
+
value: 74.07000000000001
|
549 |
+
- type: mrr_at_1
|
550 |
+
value: 68.009
|
551 |
+
- type: mrr_at_10
|
552 |
+
value: 75.29400000000001
|
553 |
+
- type: mrr_at_100
|
554 |
+
value: 75.607
|
555 |
+
- type: mrr_at_1000
|
556 |
+
value: 75.617
|
557 |
+
- type: mrr_at_3
|
558 |
+
value: 73.677
|
559 |
+
- type: mrr_at_5
|
560 |
+
value: 74.74199999999999
|
561 |
+
- type: ndcg_at_1
|
562 |
+
value: 68.009
|
563 |
+
- type: ndcg_at_10
|
564 |
+
value: 78.36
|
565 |
+
- type: ndcg_at_100
|
566 |
+
value: 79.911
|
567 |
+
- type: ndcg_at_1000
|
568 |
+
value: 80.226
|
569 |
+
- type: ndcg_at_3
|
570 |
+
value: 74.825
|
571 |
+
- type: ndcg_at_5
|
572 |
+
value: 76.9
|
573 |
+
- type: precision_at_1
|
574 |
+
value: 68.009
|
575 |
+
- type: precision_at_10
|
576 |
+
value: 9.463000000000001
|
577 |
+
- type: precision_at_100
|
578 |
+
value: 1.023
|
579 |
+
- type: precision_at_1000
|
580 |
+
value: 0.105
|
581 |
+
- type: precision_at_3
|
582 |
+
value: 28.075
|
583 |
+
- type: precision_at_5
|
584 |
+
value: 17.951
|
585 |
+
- type: recall_at_1
|
586 |
+
value: 65.837
|
587 |
+
- type: recall_at_10
|
588 |
+
value: 89.00099999999999
|
589 |
+
- type: recall_at_100
|
590 |
+
value: 95.968
|
591 |
+
- type: recall_at_1000
|
592 |
+
value: 98.461
|
593 |
+
- type: recall_at_3
|
594 |
+
value: 79.69800000000001
|
595 |
+
- type: recall_at_5
|
596 |
+
value: 84.623
|
597 |
+
- task:
|
598 |
+
type: Classification
|
599 |
+
dataset:
|
600 |
+
type: mteb/amazon_massive_intent
|
601 |
+
name: MTEB MassiveIntentClassification (zh-CN)
|
602 |
+
config: zh-CN
|
603 |
+
split: test
|
604 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
605 |
+
metrics:
|
606 |
+
- type: accuracy
|
607 |
+
value: 68.08675184936112
|
608 |
+
- type: f1
|
609 |
+
value: 65.51466585063827
|
610 |
+
- task:
|
611 |
+
type: Classification
|
612 |
+
dataset:
|
613 |
+
type: mteb/amazon_massive_scenario
|
614 |
+
name: MTEB MassiveScenarioClassification (zh-CN)
|
615 |
+
config: zh-CN
|
616 |
+
split: test
|
617 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
618 |
+
metrics:
|
619 |
+
- type: accuracy
|
620 |
+
value: 73.22461331540013
|
621 |
+
- type: f1
|
622 |
+
value: 72.675432030145
|
623 |
+
- task:
|
624 |
+
type: Retrieval
|
625 |
+
dataset:
|
626 |
+
type: C-MTEB/MedicalRetrieval
|
627 |
+
name: MTEB MedicalRetrieval
|
628 |
+
config: default
|
629 |
+
split: dev
|
630 |
+
revision: None
|
631 |
+
metrics:
|
632 |
+
- type: map_at_1
|
633 |
+
value: 49.2
|
634 |
+
- type: map_at_10
|
635 |
+
value: 55.394
|
636 |
+
- type: map_at_100
|
637 |
+
value: 55.883
|
638 |
+
- type: map_at_1000
|
639 |
+
value: 55.93900000000001
|
640 |
+
- type: map_at_3
|
641 |
+
value: 53.733
|
642 |
+
- type: map_at_5
|
643 |
+
value: 54.778000000000006
|
644 |
+
- type: mrr_at_1
|
645 |
+
value: 49.3
|
646 |
+
- type: mrr_at_10
|
647 |
+
value: 55.444
|
648 |
+
- type: mrr_at_100
|
649 |
+
value: 55.933
|
650 |
+
- type: mrr_at_1000
|
651 |
+
value: 55.989
|
652 |
+
- type: mrr_at_3
|
653 |
+
value: 53.783
|
654 |
+
- type: mrr_at_5
|
655 |
+
value: 54.827999999999996
|
656 |
+
- type: ndcg_at_1
|
657 |
+
value: 49.2
|
658 |
+
- type: ndcg_at_10
|
659 |
+
value: 58.501999999999995
|
660 |
+
- type: ndcg_at_100
|
661 |
+
value: 61.181
|
662 |
+
- type: ndcg_at_1000
|
663 |
+
value: 62.848000000000006
|
664 |
+
- type: ndcg_at_3
|
665 |
+
value: 55.143
|
666 |
+
- type: ndcg_at_5
|
667 |
+
value: 57.032000000000004
|
668 |
+
- type: precision_at_1
|
669 |
+
value: 49.2
|
670 |
+
- type: precision_at_10
|
671 |
+
value: 6.83
|
672 |
+
- type: precision_at_100
|
673 |
+
value: 0.815
|
674 |
+
- type: precision_at_1000
|
675 |
+
value: 0.095
|
676 |
+
- type: precision_at_3
|
677 |
+
value: 19.733
|
678 |
+
- type: precision_at_5
|
679 |
+
value: 12.76
|
680 |
+
- type: recall_at_1
|
681 |
+
value: 49.2
|
682 |
+
- type: recall_at_10
|
683 |
+
value: 68.30000000000001
|
684 |
+
- type: recall_at_100
|
685 |
+
value: 81.5
|
686 |
+
- type: recall_at_1000
|
687 |
+
value: 95.0
|
688 |
+
- type: recall_at_3
|
689 |
+
value: 59.199999999999996
|
690 |
+
- type: recall_at_5
|
691 |
+
value: 63.800000000000004
|
692 |
+
- task:
|
693 |
+
type: Classification
|
694 |
+
dataset:
|
695 |
+
type: C-MTEB/MultilingualSentiment-classification
|
696 |
+
name: MTEB MultilingualSentiment
|
697 |
+
config: default
|
698 |
+
split: validation
|
699 |
+
revision: None
|
700 |
+
metrics:
|
701 |
+
- type: accuracy
|
702 |
+
value: 71.66666666666666
|
703 |
+
- type: f1
|
704 |
+
value: 70.92944632461379
|
705 |
+
- task:
|
706 |
+
type: PairClassification
|
707 |
+
dataset:
|
708 |
+
type: C-MTEB/OCNLI
|
709 |
+
name: MTEB Ocnli
|
710 |
+
config: default
|
711 |
+
split: validation
|
712 |
+
revision: None
|
713 |
+
metrics:
|
714 |
+
- type: cos_sim_accuracy
|
715 |
+
value: 70.00541418516514
|
716 |
+
- type: cos_sim_ap
|
717 |
+
value: 75.16499510773514
|
718 |
+
- type: cos_sim_f1
|
719 |
+
value: 73.09435517099301
|
720 |
+
- type: cos_sim_precision
|
721 |
+
value: 59.932432432432435
|
722 |
+
- type: cos_sim_recall
|
723 |
+
value: 93.66420274551214
|
724 |
+
- type: dot_accuracy
|
725 |
+
value: 70.00541418516514
|
726 |
+
- type: dot_ap
|
727 |
+
value: 75.16499510773514
|
728 |
+
- type: dot_f1
|
729 |
+
value: 73.09435517099301
|
730 |
+
- type: dot_precision
|
731 |
+
value: 59.932432432432435
|
732 |
+
- type: dot_recall
|
733 |
+
value: 93.66420274551214
|
734 |
+
- type: euclidean_accuracy
|
735 |
+
value: 70.00541418516514
|
736 |
+
- type: euclidean_ap
|
737 |
+
value: 75.16499510773514
|
738 |
+
- type: euclidean_f1
|
739 |
+
value: 73.09435517099301
|
740 |
+
- type: euclidean_precision
|
741 |
+
value: 59.932432432432435
|
742 |
+
- type: euclidean_recall
|
743 |
+
value: 93.66420274551214
|
744 |
+
- type: manhattan_accuracy
|
745 |
+
value: 70.11369788846778
|
746 |
+
- type: manhattan_ap
|
747 |
+
value: 75.1259071890593
|
748 |
+
- type: manhattan_f1
|
749 |
+
value: 72.91399229781771
|
750 |
+
- type: manhattan_precision
|
751 |
+
value: 61.294964028776974
|
752 |
+
- type: manhattan_recall
|
753 |
+
value: 89.96832101372756
|
754 |
+
- type: max_accuracy
|
755 |
+
value: 70.11369788846778
|
756 |
+
- type: max_ap
|
757 |
+
value: 75.16499510773514
|
758 |
+
- type: max_f1
|
759 |
+
value: 73.09435517099301
|
760 |
+
- task:
|
761 |
+
type: Classification
|
762 |
+
dataset:
|
763 |
+
type: C-MTEB/OnlineShopping-classification
|
764 |
+
name: MTEB OnlineShopping
|
765 |
+
config: default
|
766 |
+
split: test
|
767 |
+
revision: None
|
768 |
+
metrics:
|
769 |
+
- type: accuracy
|
770 |
+
value: 91.38000000000002
|
771 |
+
- type: ap
|
772 |
+
value: 89.12250244489272
|
773 |
+
- type: f1
|
774 |
+
value: 91.36604511107015
|
775 |
+
- task:
|
776 |
+
type: STS
|
777 |
+
dataset:
|
778 |
+
type: C-MTEB/PAWSX
|
779 |
+
name: MTEB PAWSX
|
780 |
+
config: default
|
781 |
+
split: test
|
782 |
+
revision: None
|
783 |
+
metrics:
|
784 |
+
- type: cos_sim_pearson
|
785 |
+
value: 24.231255568030463
|
786 |
+
- type: cos_sim_spearman
|
787 |
+
value: 29.6964906904186
|
788 |
+
- type: euclidean_pearson
|
789 |
+
value: 30.166130502867016
|
790 |
+
- type: euclidean_spearman
|
791 |
+
value: 29.69614167804371
|
792 |
+
- type: manhattan_pearson
|
793 |
+
value: 30.166606116745935
|
794 |
+
- type: manhattan_spearman
|
795 |
+
value: 29.62681453661945
|
796 |
+
- task:
|
797 |
+
type: STS
|
798 |
+
dataset:
|
799 |
+
type: C-MTEB/QBQTC
|
800 |
+
name: MTEB QBQTC
|
801 |
+
config: default
|
802 |
+
split: test
|
803 |
+
revision: None
|
804 |
+
metrics:
|
805 |
+
- type: cos_sim_pearson
|
806 |
+
value: 34.88835755574809
|
807 |
+
- type: cos_sim_spearman
|
808 |
+
value: 37.3797926051053
|
809 |
+
- type: euclidean_pearson
|
810 |
+
value: 35.46629492698549
|
811 |
+
- type: euclidean_spearman
|
812 |
+
value: 37.37987510604593
|
813 |
+
- type: manhattan_pearson
|
814 |
+
value: 35.4953353526957
|
815 |
+
- type: manhattan_spearman
|
816 |
+
value: 37.41397231689605
|
817 |
+
- task:
|
818 |
+
type: STS
|
819 |
+
dataset:
|
820 |
+
type: mteb/sts22-crosslingual-sts
|
821 |
+
name: MTEB STS22 (zh)
|
822 |
+
config: zh
|
823 |
+
split: test
|
824 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
825 |
+
metrics:
|
826 |
+
- type: cos_sim_pearson
|
827 |
+
value: 67.79575721136626
|
828 |
+
- type: cos_sim_spearman
|
829 |
+
value: 69.02068400784196
|
830 |
+
- type: euclidean_pearson
|
831 |
+
value: 68.30675023447176
|
832 |
+
- type: euclidean_spearman
|
833 |
+
value: 69.02068400784196
|
834 |
+
- type: manhattan_pearson
|
835 |
+
value: 69.91284259797827
|
836 |
+
- type: manhattan_spearman
|
837 |
+
value: 70.31717787763641
|
838 |
+
- task:
|
839 |
+
type: STS
|
840 |
+
dataset:
|
841 |
+
type: C-MTEB/STSB
|
842 |
+
name: MTEB STSB
|
843 |
+
config: default
|
844 |
+
split: test
|
845 |
+
revision: None
|
846 |
+
metrics:
|
847 |
+
- type: cos_sim_pearson
|
848 |
+
value: 79.05026785034129
|
849 |
+
- type: cos_sim_spearman
|
850 |
+
value: 79.62719014756249
|
851 |
+
- type: euclidean_pearson
|
852 |
+
value: 79.13305301290063
|
853 |
+
- type: euclidean_spearman
|
854 |
+
value: 79.62710682651051
|
855 |
+
- type: manhattan_pearson
|
856 |
+
value: 79.07012559140433
|
857 |
+
- type: manhattan_spearman
|
858 |
+
value: 79.58333069893605
|
859 |
+
- task:
|
860 |
+
type: Reranking
|
861 |
+
dataset:
|
862 |
+
type: C-MTEB/T2Reranking
|
863 |
+
name: MTEB T2Reranking
|
864 |
+
config: default
|
865 |
+
split: dev
|
866 |
+
revision: None
|
867 |
+
metrics:
|
868 |
+
- type: map
|
869 |
+
value: 66.34533369244325
|
870 |
+
- type: mrr
|
871 |
+
value: 75.93632792769557
|
872 |
+
- task:
|
873 |
+
type: Retrieval
|
874 |
+
dataset:
|
875 |
+
type: C-MTEB/T2Retrieval
|
876 |
+
name: MTEB T2Retrieval
|
877 |
+
config: default
|
878 |
+
split: dev
|
879 |
+
revision: None
|
880 |
+
metrics:
|
881 |
+
- type: map_at_1
|
882 |
+
value: 26.995
|
883 |
+
- type: map_at_10
|
884 |
+
value: 76.083
|
885 |
+
- type: map_at_100
|
886 |
+
value: 79.727
|
887 |
+
- type: map_at_1000
|
888 |
+
value: 79.798
|
889 |
+
- type: map_at_3
|
890 |
+
value: 53.455
|
891 |
+
- type: map_at_5
|
892 |
+
value: 65.747
|
893 |
+
- type: mrr_at_1
|
894 |
+
value: 89.536
|
895 |
+
- type: mrr_at_10
|
896 |
+
value: 91.972
|
897 |
+
- type: mrr_at_100
|
898 |
+
value: 92.07
|
899 |
+
- type: mrr_at_1000
|
900 |
+
value: 92.07499999999999
|
901 |
+
- type: mrr_at_3
|
902 |
+
value: 91.52900000000001
|
903 |
+
- type: mrr_at_5
|
904 |
+
value: 91.806
|
905 |
+
- type: ndcg_at_1
|
906 |
+
value: 89.536
|
907 |
+
- type: ndcg_at_10
|
908 |
+
value: 83.756
|
909 |
+
- type: ndcg_at_100
|
910 |
+
value: 87.468
|
911 |
+
- type: ndcg_at_1000
|
912 |
+
value: 88.16199999999999
|
913 |
+
- type: ndcg_at_3
|
914 |
+
value: 85.349
|
915 |
+
- type: ndcg_at_5
|
916 |
+
value: 83.855
|
917 |
+
- type: precision_at_1
|
918 |
+
value: 89.536
|
919 |
+
- type: precision_at_10
|
920 |
+
value: 41.713
|
921 |
+
- type: precision_at_100
|
922 |
+
value: 4.994
|
923 |
+
- type: precision_at_1000
|
924 |
+
value: 0.515
|
925 |
+
- type: precision_at_3
|
926 |
+
value: 74.81400000000001
|
927 |
+
- type: precision_at_5
|
928 |
+
value: 62.678
|
929 |
+
- type: recall_at_1
|
930 |
+
value: 26.995
|
931 |
+
- type: recall_at_10
|
932 |
+
value: 82.586
|
933 |
+
- type: recall_at_100
|
934 |
+
value: 94.726
|
935 |
+
- type: recall_at_1000
|
936 |
+
value: 98.276
|
937 |
+
- type: recall_at_3
|
938 |
+
value: 55.106
|
939 |
+
- type: recall_at_5
|
940 |
+
value: 69.096
|
941 |
+
- task:
|
942 |
+
type: Classification
|
943 |
+
dataset:
|
944 |
+
type: C-MTEB/TNews-classification
|
945 |
+
name: MTEB TNews
|
946 |
+
config: default
|
947 |
+
split: validation
|
948 |
+
revision: None
|
949 |
+
metrics:
|
950 |
+
- type: accuracy
|
951 |
+
value: 51.25200000000001
|
952 |
+
- type: f1
|
953 |
+
value: 49.43760438233612
|
954 |
+
- task:
|
955 |
+
type: Clustering
|
956 |
+
dataset:
|
957 |
+
type: C-MTEB/ThuNewsClusteringP2P
|
958 |
+
name: MTEB ThuNewsClusteringP2P
|
959 |
+
config: default
|
960 |
+
split: test
|
961 |
+
revision: None
|
962 |
+
metrics:
|
963 |
+
- type: v_measure
|
964 |
+
value: 62.18575394560257
|
965 |
+
- task:
|
966 |
+
type: Clustering
|
967 |
+
dataset:
|
968 |
+
type: C-MTEB/ThuNewsClusteringS2S
|
969 |
+
name: MTEB ThuNewsClusteringS2S
|
970 |
+
config: default
|
971 |
+
split: test
|
972 |
+
revision: None
|
973 |
+
metrics:
|
974 |
+
- type: v_measure
|
975 |
+
value: 57.97489103903411
|
976 |
+
- task:
|
977 |
+
type: Retrieval
|
978 |
+
dataset:
|
979 |
+
type: C-MTEB/VideoRetrieval
|
980 |
+
name: MTEB VideoRetrieval
|
981 |
+
config: default
|
982 |
+
split: dev
|
983 |
+
revision: None
|
984 |
+
metrics:
|
985 |
+
- type: map_at_1
|
986 |
+
value: 52.2
|
987 |
+
- type: map_at_10
|
988 |
+
value: 63.23800000000001
|
989 |
+
- type: map_at_100
|
990 |
+
value: 63.788
|
991 |
+
- type: map_at_1000
|
992 |
+
value: 63.800999999999995
|
993 |
+
- type: map_at_3
|
994 |
+
value: 61.016999999999996
|
995 |
+
- type: map_at_5
|
996 |
+
value: 62.392
|
997 |
+
- type: mrr_at_1
|
998 |
+
value: 52.2
|
999 |
+
- type: mrr_at_10
|
1000 |
+
value: 63.23800000000001
|
1001 |
+
- type: mrr_at_100
|
1002 |
+
value: 63.788
|
1003 |
+
- type: mrr_at_1000
|
1004 |
+
value: 63.800999999999995
|
1005 |
+
- type: mrr_at_3
|
1006 |
+
value: 61.016999999999996
|
1007 |
+
- type: mrr_at_5
|
1008 |
+
value: 62.392
|
1009 |
+
- type: ndcg_at_1
|
1010 |
+
value: 52.2
|
1011 |
+
- type: ndcg_at_10
|
1012 |
+
value: 68.273
|
1013 |
+
- type: ndcg_at_100
|
1014 |
+
value: 70.892
|
1015 |
+
- type: ndcg_at_1000
|
1016 |
+
value: 71.207
|
1017 |
+
- type: ndcg_at_3
|
1018 |
+
value: 63.794
|
1019 |
+
- type: ndcg_at_5
|
1020 |
+
value: 66.268
|
1021 |
+
- type: precision_at_1
|
1022 |
+
value: 52.2
|
1023 |
+
- type: precision_at_10
|
1024 |
+
value: 8.39
|
1025 |
+
- type: precision_at_100
|
1026 |
+
value: 0.96
|
1027 |
+
- type: precision_at_1000
|
1028 |
+
value: 0.098
|
1029 |
+
- type: precision_at_3
|
1030 |
+
value: 23.933
|
1031 |
+
- type: precision_at_5
|
1032 |
+
value: 15.559999999999999
|
1033 |
+
- type: recall_at_1
|
1034 |
+
value: 52.2
|
1035 |
+
- type: recall_at_10
|
1036 |
+
value: 83.89999999999999
|
1037 |
+
- type: recall_at_100
|
1038 |
+
value: 96.0
|
1039 |
+
- type: recall_at_1000
|
1040 |
+
value: 98.4
|
1041 |
+
- type: recall_at_3
|
1042 |
+
value: 71.8
|
1043 |
+
- type: recall_at_5
|
1044 |
+
value: 77.8
|
1045 |
+
- task:
|
1046 |
+
type: Classification
|
1047 |
+
dataset:
|
1048 |
+
type: C-MTEB/waimai-classification
|
1049 |
+
name: MTEB Waimai
|
1050 |
+
config: default
|
1051 |
+
split: test
|
1052 |
+
revision: None
|
1053 |
+
metrics:
|
1054 |
+
- type: accuracy
|
1055 |
+
value: 86.67999999999999
|
1056 |
+
- type: ap
|
1057 |
+
value: 69.96366657730151
|
1058 |
+
- type: f1
|
1059 |
+
value: 84.92349905611292
|
1060 |
---
|
1061 |
+
|
1062 |
+
## stella model
|
1063 |
+
|
1064 |
+
**新闻 | News**
|
1065 |
+
|
1066 |
+
**[2023-10-12]** 开源stella-base-zh-v2和stella-large-zh-v2, 效果更好且使用简单,**不需要任何前缀文本**。
|
1067 |
+
Release stella-base-zh-v2 and stella-large-zh-v2. The 2 models have better performance
|
1068 |
+
and **do not need any prefix text**.\
|
1069 |
+
**[2023-09-11]** 开源stella-base-zh和stella-large-zh
|
1070 |
+
|
1071 |
+
stella是一个通用的文本编码模型,主要有以下模型:
|
1072 |
+
|
1073 |
+
| Model Name | Model Size (GB) | Dimension | Sequence Length | Language | Need instruction for retrieval? |
|
1074 |
+
|:------------------:|:---------------:|:---------:|:---------------:|:--------:|:-------------------------------:|
|
1075 |
+
| stella-large-zh-v2 | 0.65 | 1024 | 1024 | Chinese | No |
|
1076 |
+
| stella-base-zh-v2 | 0.2 | 768 | 1024 | Chinese | No |
|
1077 |
+
| stella-large-zh | 0.65 | 1024 | 1024 | Chinese | Yes |
|
1078 |
+
| stella-base-zh | 0.2 | 768 | 1024 | Chinese | Yes |
|
1079 |
+
|
1080 |
+
完整的训练思路和训练过程已记录在[博客](https://zhuanlan.zhihu.com/p/655322183),欢迎阅读讨论。
|
1081 |
+
|
1082 |
+
**训练数据:**
|
1083 |
+
|
1084 |
+
1. 开源数据(wudao_base_200GB[1]、m3e[2]和simclue[3]),着重挑选了长度大于512的文本
|
1085 |
+
2. 在通用语料库上使用LLM构造一批(question, paragraph)和(sentence, paragraph)数据
|
1086 |
+
|
1087 |
+
**训练方法:**
|
1088 |
+
|
1089 |
+
1. 对比学习损失函数
|
1090 |
+
2. 带有难负例的对比学习损失函数(分别基于bm25和vector构造了难负例)
|
1091 |
+
3. EWC(Elastic Weights Consolidation)[4]
|
1092 |
+
4. cosent loss[5]
|
1093 |
+
5. 每一种类型的数据一个迭代器,分别计算loss进行更新
|
1094 |
+
|
1095 |
+
stella-v2在stella模型的基础上,使用了更多的训练数据,同时知识蒸馏等方法去除了前置的instruction(
|
1096 |
+
比如piccolo的`查询:`, `结果:`, e5的`query:`和`passage:`)。
|
1097 |
+
|
1098 |
+
**初始权重:**\
|
1099 |
+
stella-base-zh和stella-large-zh分别以piccolo-base-zh[6]和piccolo-large-zh作为基础模型,512-1024的position
|
1100 |
+
embedding使用层次分解位置编码[7]进行初始化。\
|
1101 |
+
感谢商汤科技研究院开源的[piccolo系列模型](https://huggingface.co/sensenova)。
|
1102 |
+
|
1103 |
+
stella is a general-purpose text encoder, which mainly includes the following models:
|
1104 |
+
|
1105 |
+
| Model Name | Model Size (GB) | Dimension | Sequence Length | Language | Need instruction for retrieval? |
|
1106 |
+
|:------------------:|:---------------:|:---------:|:---------------:|:--------:|:-------------------------------:|
|
1107 |
+
| stella-large-zh-v2 | 0.65 | 1024 | 1024 | Chinese | No |
|
1108 |
+
| stella-base-zh-v2 | 0.2 | 768 | 1024 | Chinese | No |
|
1109 |
+
| stella-large-zh | 0.65 | 1024 | 1024 | Chinese | Yes |
|
1110 |
+
| stella-base-zh | 0.2 | 768 | 1024 | Chinese | Yes |
|
1111 |
+
|
1112 |
+
The training data mainly includes:
|
1113 |
+
|
1114 |
+
1. Open-source training data (wudao_base_200GB, m3e, and simclue), with a focus on selecting texts with lengths greater
|
1115 |
+
than 512.
|
1116 |
+
2. A batch of (question, paragraph) and (sentence, paragraph) data constructed on a general corpus using LLM.
|
1117 |
+
|
1118 |
+
The loss functions mainly include:
|
1119 |
+
|
1120 |
+
1. Contrastive learning loss function
|
1121 |
+
2. Contrastive learning loss function with hard negative examples (based on bm25 and vector hard negatives)
|
1122 |
+
3. EWC (Elastic Weights Consolidation)
|
1123 |
+
4. cosent loss
|
1124 |
+
|
1125 |
+
Model weight initialization:\
|
1126 |
+
stella-base-zh and stella-large-zh use piccolo-base-zh and piccolo-large-zh as the base models, respectively, and the
|
1127 |
+
512-1024 position embedding uses the initialization strategy of hierarchical decomposed position encoding.
|
1128 |
+
|
1129 |
+
Training strategy:\
|
1130 |
+
One iterator for each type of data, separately calculating the loss.
|
1131 |
+
|
1132 |
+
Based on stella models, stella-v2 use more training data and remove instruction by Knowledge Distillation.
|
1133 |
+
|
1134 |
+
## Metric
|
1135 |
+
|
1136 |
+
#### C-MTEB leaderboard (Chinese)
|
1137 |
+
|
1138 |
+
| Model Name | Model Size (GB) | Dimension | Sequence Length | Average (35) | Classification (9) | Clustering (4) | Pair Classification (2) | Reranking (4) | Retrieval (8) | STS (8) |
|
1139 |
+
|:------------------:|:---------------:|:---------:|:---------------:|:------------:|:------------------:|:--------------:|:-----------------------:|:-------------:|:-------------:|:-------:|
|
1140 |
+
| stella-large-zh-v2 | 0.65 | 1024 | 1024 | 65.13 | 69.05 | 49.16 | 82.68 | 66.41 | 70.14 | 58.66 |
|
1141 |
+
| stella-base-zh-v2 | 0.2 | 768 | 1024 | 64.36 | 68.29 | 49.4 | 79.95 | 66.1 | 70.08 | 56.92 |
|
1142 |
+
| stella-large-zh | 0.65 | 1024 | 1024 | 64.54 | 67.62 | 48.65 | 78.72 | 65.98 | 71.02 | 58.3 |
|
1143 |
+
| stella-base-zh | 0.2 | 768 | 1024 | 64.16 | 67.77 | 48.7 | 76.09 | 66.95 | 71.07 | 56.54 |
|
1144 |
+
|
1145 |
+
#### Reproduce our results
|
1146 |
+
|
1147 |
+
Codes:
|
1148 |
+
|
1149 |
+
```python
|
1150 |
+
import torch
|
1151 |
+
import numpy as np
|
1152 |
+
from typing import List
|
1153 |
+
from mteb import MTEB
|
1154 |
+
from sentence_transformers import SentenceTransformer
|
1155 |
+
|
1156 |
+
|
1157 |
+
class FastTextEncoder():
|
1158 |
+
def __init__(self, model_name):
|
1159 |
+
self.model = SentenceTransformer(model_name).cuda().half().eval()
|
1160 |
+
self.model.max_seq_length = 512
|
1161 |
+
|
1162 |
+
def encode(
|
1163 |
+
self,
|
1164 |
+
input_texts: List[str],
|
1165 |
+
*args,
|
1166 |
+
**kwargs
|
1167 |
+
):
|
1168 |
+
new_sens = list(set(input_texts))
|
1169 |
+
new_sens.sort(key=lambda x: len(x), reverse=True)
|
1170 |
+
vecs = self.model.encode(
|
1171 |
+
new_sens, normalize_embeddings=True, convert_to_numpy=True, batch_size=256
|
1172 |
+
).astype(np.float32)
|
1173 |
+
sen2arrid = {sen: idx for idx, sen in enumerate(new_sens)}
|
1174 |
+
vecs = vecs[[sen2arrid[sen] for sen in input_texts]]
|
1175 |
+
torch.cuda.empty_cache()
|
1176 |
+
return vecs
|
1177 |
+
|
1178 |
+
|
1179 |
+
if __name__ == '__main__':
|
1180 |
+
model_name = "infgrad/stella-base-zh-v2"
|
1181 |
+
output_folder = "zh_mteb_results/stella-base-zh-v2"
|
1182 |
+
task_names = [t.description["name"] for t in MTEB(task_langs=['zh', 'zh-CN']).tasks]
|
1183 |
+
model = FastTextEncoder(model_name)
|
1184 |
+
for task in task_names:
|
1185 |
+
MTEB(tasks=[task], task_langs=['zh', 'zh-CN']).run(model, output_folder=output_folder)
|
1186 |
+
|
1187 |
+
```
|
1188 |
+
|
1189 |
+
#### Evaluation for long text
|
1190 |
+
|
1191 |
+
经过实际观察发现,C-MTEB的评测数据长度基本都是小于512的,
|
1192 |
+
更致命的是那些长度大于512的文本,其重点都在前半部分
|
1193 |
+
这里以CMRC2018的数据为例说明这个问题:
|
1194 |
+
|
1195 |
+
```
|
1196 |
+
question: 《无双大蛇z》是谁旗下ω-force开发的动作游戏?
|
1197 |
+
|
1198 |
+
passage:《无双大蛇z》是光荣旗下ω-force开发的动作游戏,于2009年3月12日登陆索尼playstation3,并于2009年11月27日推......
|
1199 |
+
```
|
1200 |
+
|
1201 |
+
passage长度为800多,大于512,但是对于这个question而言只需要前面40个字就足以检索,多的内容对于模型而言是一种噪声,反而降低了效果。\
|
1202 |
+
简言之,现有数据集的2个问题:\
|
1203 |
+
1)长度大于512的过少\
|
1204 |
+
2)即便大于512,对于检索而言也只需要前512的文本内容\
|
1205 |
+
导致**无法准确评估模型的长文本编码能力。**
|
1206 |
+
|
1207 |
+
为了解决这个问题,搜集了相关开源数据并使用规则进行过滤,最终整理了6份长文本测试集,他们分别是:
|
1208 |
+
|
1209 |
+
- CMRC2018,通用百科
|
1210 |
+
- CAIL,法律阅读理解
|
1211 |
+
- DRCD,繁体百科,已转简体
|
1212 |
+
- Military,军工问答
|
1213 |
+
- Squad,英文阅读理解,已转中文
|
1214 |
+
- Multifieldqa_zh,清华的大模型长文本理解能力评测数据[9]
|
1215 |
+
|
1216 |
+
处理规则是选取答案在512长度之后的文本,短的测试数据会欠采样一下,长短文本占比约为1:2,所以模型既得理解短文本也得理解长文本。
|
1217 |
+
除了Military数据集,我们提供了其他5个测试数据的下载地址:https://drive.google.com/file/d/1WC6EWaCbVgz-vPMDFH4TwAMkLyh5WNcN/view?usp=sharing
|
1218 |
+
|
1219 |
+
评测指标为Recall@5, 结果如下:
|
1220 |
+
|
1221 |
+
| Dataset | piccolo-base-zh | piccolo-large-zh | bge-base-zh | bge-large-zh | stella-base-zh | stella-large-zh |
|
1222 |
+
|:---------------:|:---------------:|:----------------:|:-----------:|:------------:|:--------------:|:---------------:|
|
1223 |
+
| CMRC2018 | 94.34 | 93.82 | 91.56 | 93.12 | 96.08 | 95.56 |
|
1224 |
+
| CAIL | 28.04 | 33.64 | 31.22 | 33.94 | 34.62 | 37.18 |
|
1225 |
+
| DRCD | 78.25 | 77.9 | 78.34 | 80.26 | 86.14 | 84.58 |
|
1226 |
+
| Military | 76.61 | 73.06 | 75.65 | 75.81 | 83.71 | 80.48 |
|
1227 |
+
| Squad | 91.21 | 86.61 | 87.87 | 90.38 | 93.31 | 91.21 |
|
1228 |
+
| Multifieldqa_zh | 81.41 | 83.92 | 83.92 | 83.42 | 79.9 | 80.4 |
|
1229 |
+
| **Average** | 74.98 | 74.83 | 74.76 | 76.15 | **78.96** | **78.24** |
|
1230 |
+
|
1231 |
+
**注意:** 因为长文本评测数据数量稀少,所以构造时也使用了train部分,如果自行评测,请注意模型的训练数据以免数据泄露。
|
1232 |
+
|
1233 |
+
## Usage
|
1234 |
+
|
1235 |
+
#### stella 中文系列模型
|
1236 |
+
|
1237 |
+
stella-base-zh 和 stella-large-zh: 本模型是在piccolo基础上训练的,因此**用法和piccolo完全一致**
|
1238 |
+
,即在检索重排任务上给query和passage加上`查询: `和`结果: `。对于短短匹配不需要做任何操作。
|
1239 |
+
|
1240 |
+
stella-base-zh-v2 和 stella-large-zh-v2: 本模型使用简单,**任何使用场景中都不需要加前缀文本**。
|
1241 |
+
|
1242 |
+
stella中文系列模型均使用mean pooling做为文本向量。
|
1243 |
+
|
1244 |
+
在sentence-transformer库中的使用方法:
|
1245 |
+
|
1246 |
+
```python
|
1247 |
+
# 对于短对短数据集,下面是通用的使用方式
|
1248 |
+
from sentence_transformers import SentenceTransformer
|
1249 |
+
|
1250 |
+
sentences = ["数据1", "数据2"]
|
1251 |
+
model = SentenceTransformer('infgrad/stella-base-zh-v2')
|
1252 |
+
print(model.max_seq_length)
|
1253 |
+
embeddings_1 = model.encode(sentences, normalize_embeddings=True)
|
1254 |
+
embeddings_2 = model.encode(sentences, normalize_embeddings=True)
|
1255 |
+
similarity = embeddings_1 @ embeddings_2.T
|
1256 |
+
print(similarity)
|
1257 |
+
```
|
1258 |
+
|
1259 |
+
直接使用transformers库:
|
1260 |
+
|
1261 |
+
```python
|
1262 |
+
from transformers import AutoModel, AutoTokenizer
|
1263 |
+
from sklearn.preprocessing import normalize
|
1264 |
+
|
1265 |
+
model = AutoModel.from_pretrained('infgrad/stella-base-zh-v2')
|
1266 |
+
tokenizer = AutoTokenizer.from_pretrained('infgrad/stella-base-zh-v2')
|
1267 |
+
sentences = ["数据1", "数据ABCDEFGH"]
|
1268 |
+
batch_data = tokenizer(
|
1269 |
+
batch_text_or_text_pairs=sentences,
|
1270 |
+
padding="longest",
|
1271 |
+
return_tensors="pt",
|
1272 |
+
max_length=1024,
|
1273 |
+
truncation=True,
|
1274 |
+
)
|
1275 |
+
attention_mask = batch_data["attention_mask"]
|
1276 |
+
model_output = model(**batch_data)
|
1277 |
+
last_hidden = model_output.last_hidden_state.masked_fill(~attention_mask[..., None].bool(), 0.0)
|
1278 |
+
vectors = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
1279 |
+
vectors = normalize(vectors, norm="l2", axis=1, )
|
1280 |
+
print(vectors.shape) # 2,768
|
1281 |
+
```
|
1282 |
+
|
1283 |
+
#### stella models for English
|
1284 |
+
|
1285 |
+
developing...
|
1286 |
+
|
1287 |
+
## Training Detail
|
1288 |
+
|
1289 |
+
**硬件:** 单卡A100-80GB
|
1290 |
+
|
1291 |
+
**环境:** torch1.13.*; transformers-trainer + deepspeed + gradient-checkpointing
|
1292 |
+
|
1293 |
+
**学习率:** 1e-6
|
1294 |
+
|
1295 |
+
**batch_size:** base模型为1024,额外增加20%的难负例;large模型为768,额外增加20%的难负例
|
1296 |
+
|
1297 |
+
**数据量:** 第一版模型约100万,其中用LLM构造的数据约有200K. LLM模型大小为13b。v2系列模型到了2000万训练数据。
|
1298 |
+
|
1299 |
+
## ToDoList
|
1300 |
+
|
1301 |
+
**评测的稳定性:**
|
1302 |
+
评测过程中发现Clustering任务会和官方的结果不一致,大约有±0.0x的小差距,原因是聚类代码没有设置random_seed,差距可以忽略不计,不影响评测结论。
|
1303 |
+
|
1304 |
+
**更高质量的长文本训练和测试数据:** 训练数据多是用13b模型构造的,肯定会存在噪声。
|
1305 |
+
测试数据基本都是从mrc数据整理来的,所以问题都是factoid类型,不符合真实分布。
|
1306 |
+
|
1307 |
+
**OOD的性能:** 虽然近期出现了很多向量编码模型,但是对于不是那么通用的domain,这一众模型包括stella、openai和cohere,
|
1308 |
+
它们的效果均比不上BM25。
|
1309 |
+
|
1310 |
+
## Reference
|
1311 |
+
|
1312 |
+
1. https://www.scidb.cn/en/detail?dataSetId=c6a3fe684227415a9db8e21bac4a15ab
|
1313 |
+
2. https://github.com/wangyuxinwhy/uniem
|
1314 |
+
3. https://github.com/CLUEbenchmark/SimCLUE
|
1315 |
+
4. https://arxiv.org/abs/1612.00796
|
1316 |
+
5. https://kexue.fm/archives/8847
|
1317 |
+
6. https://huggingface.co/sensenova/piccolo-base-zh
|
1318 |
+
7. https://kexue.fm/archives/7947
|
1319 |
+
8. https://github.com/FlagOpen/FlagEmbedding
|
1320 |
+
9. https://github.com/THUDM/LongBench
|
1321 |
+
|
1322 |
+
|
config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertModel"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"directionality": "bidi",
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-12,
|
16 |
+
"max_position_embeddings": 1024,
|
17 |
+
"model_type": "bert",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 0,
|
22 |
+
"pooler_fc_size": 768,
|
23 |
+
"pooler_num_attention_heads": 12,
|
24 |
+
"pooler_num_fc_layers": 3,
|
25 |
+
"pooler_size_per_head": 128,
|
26 |
+
"pooler_type": "first_token_transform",
|
27 |
+
"position_embedding_type": "absolute",
|
28 |
+
"torch_dtype": "float16",
|
29 |
+
"transformers_version": "4.30.2",
|
30 |
+
"type_vocab_size": 2,
|
31 |
+
"uniem_pooling_strategy": "last_mean",
|
32 |
+
"use_cache": true,
|
33 |
+
"vocab_size": 21128
|
34 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bdcd3c81b1712c88199abdd259c995ce1e088457d4472c4041b7bf60badcc18c
|
3 |
+
size 205397037
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"clean_up_tokenization_spaces": true,
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"do_lower_case": true,
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"model_max_length": 1024,
|
7 |
+
"pad_token": "[PAD]",
|
8 |
+
"sep_token": "[SEP]",
|
9 |
+
"strip_accents": null,
|
10 |
+
"tokenize_chinese_chars": true,
|
11 |
+
"tokenizer_class": "BertTokenizer",
|
12 |
+
"unk_token": "[UNK]"
|
13 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|