|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
import argparse |
|
import json |
|
import os |
|
import re |
|
import struct |
|
import sys |
|
from pathlib import Path |
|
from typing import Any |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import AutoTokenizer |
|
|
|
if 'NO_LOCAL_GGUF' not in os.environ: |
|
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf')) |
|
import gguf |
|
|
|
|
|
def count_model_parts(dir_model: Path) -> int: |
|
num_parts = 0 |
|
for filename in os.listdir(dir_model): |
|
if filename.startswith("pytorch_model-"): |
|
num_parts += 1 |
|
|
|
if num_parts > 0: |
|
print("gguf: found " + str(num_parts) + " model parts") |
|
return num_parts |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def parse_args() -> argparse.Namespace: |
|
parser = argparse.ArgumentParser(description="Convert a Bloom model to a GGML compatible file") |
|
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") |
|
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") |
|
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)") |
|
parser.add_argument("ftype", type=int, help="output format - use 0 for float32, 1 for float16", choices=[0, 1], default = 1) |
|
return parser.parse_args() |
|
|
|
args = parse_args() |
|
|
|
dir_model = args.model |
|
ftype = args.ftype |
|
if not dir_model.is_dir(): |
|
print(f'Error: {args.model} is not a directory', file = sys.stderr) |
|
sys.exit(1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
ftype_str = ["f32", "f16"] |
|
|
|
if args.outfile is not None: |
|
fname_out = args.outfile |
|
else: |
|
|
|
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf' |
|
|
|
print("gguf: loading model "+dir_model.name) |
|
|
|
with open(dir_model / "config.json", "r", encoding="utf-8") as f: |
|
hparams = json.load(f) |
|
|
|
if hparams["architectures"][0] != "BloomForCausalLM": |
|
print("Model architecture not supported: " + hparams["architectures"][0]) |
|
sys.exit(1) |
|
|
|
|
|
num_parts = count_model_parts(dir_model) |
|
|
|
ARCH=gguf.MODEL_ARCH.BLOOM |
|
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH]) |
|
|
|
print("gguf: get model metadata") |
|
|
|
block_count = hparams["n_layer"] |
|
|
|
gguf_writer.add_name("Bloom") |
|
n_embed = hparams.get("hidden_size", hparams.get("n_embed")) |
|
n_head = hparams.get("n_head", hparams.get("num_attention_heads")) |
|
gguf_writer.add_context_length(hparams.get("seq_length", n_embed)) |
|
gguf_writer.add_embedding_length(n_embed) |
|
gguf_writer.add_feed_forward_length(4 * n_embed) |
|
gguf_writer.add_block_count(block_count) |
|
gguf_writer.add_head_count(n_head) |
|
gguf_writer.add_head_count_kv(n_head) |
|
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"]) |
|
gguf_writer.add_file_type(ftype) |
|
|
|
|
|
|
|
print("gguf: get tokenizer metadata") |
|
|
|
tokens: list[bytearray] = [] |
|
scores: list[float] = [] |
|
toktypes: list[int] = [] |
|
|
|
|
|
gguf_writer.add_tokenizer_model("gpt2") |
|
|
|
print("gguf: get gpt2 tokenizer vocab") |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(dir_model) |
|
|
|
|
|
|
|
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab)) |
|
assert max(tokenizer.vocab.values()) < vocab_size |
|
|
|
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} |
|
|
|
for i in range(vocab_size): |
|
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]") |
|
scores.append(0.0) |
|
toktypes.append(gguf.TokenType.NORMAL) |
|
|
|
gguf_writer.add_token_list(tokens) |
|
gguf_writer.add_token_scores(scores) |
|
gguf_writer.add_token_types(toktypes) |
|
|
|
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True) |
|
special_vocab.add_to_gguf(gguf_writer) |
|
|
|
|
|
|
|
tensor_map = gguf.get_tensor_name_map(ARCH, block_count) |
|
|
|
|
|
n_head_kv = hparams.get("n_head_kv", n_head) |
|
head_dim = n_embed // n_head |
|
|
|
|
|
print("gguf: get tensor metadata") |
|
|
|
if num_parts == 0: |
|
part_names = iter(("pytorch_model.bin",)) |
|
else: |
|
part_names = ( |
|
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) |
|
) |
|
|
|
for part_name in part_names: |
|
if args.vocab_only: |
|
break |
|
print("gguf: loading model part '" + part_name + "'") |
|
model_part = torch.load(dir_model / part_name, map_location="cpu") |
|
|
|
has_lm_head = True |
|
if "lm_head.weight" not in model_part.keys() and "output.weight" not in model_part.keys(): |
|
has_lm_head = False |
|
|
|
for original_name in model_part.keys(): |
|
data = model_part[original_name] |
|
name = re.sub(r'transformer\.', '', original_name) |
|
|
|
old_dtype = data.dtype |
|
|
|
|
|
if data.dtype != torch.float16 and data.dtype != torch.float32: |
|
data = data.to(torch.float32) |
|
|
|
data = data.squeeze().numpy() |
|
|
|
if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name): |
|
|
|
|
|
|
|
qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed)) |
|
data = np.concatenate( |
|
(qkv_weights[:, 0, :, :].reshape((-1, n_embed)), |
|
qkv_weights[:, 1, :, :].reshape((-1, n_embed)), |
|
qkv_weights[:, 2, :, :].reshape((-1, n_embed))), |
|
axis=0 |
|
) |
|
print("re-format attention.linear_qkv.weight") |
|
elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name): |
|
qkv_bias = data.reshape((n_head, 3, n_embed // n_head)) |
|
data = np.concatenate( |
|
(qkv_bias[:, 0, :].reshape((n_embed,)), |
|
qkv_bias[:, 1, :].reshape((n_embed,)), |
|
qkv_bias[:, 2, :].reshape((n_embed,))), |
|
axis=0 |
|
) |
|
print("re-format attention.linear_qkv.bias") |
|
|
|
|
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) |
|
if new_name is None: |
|
print("Can not map tensor '" + name + "'") |
|
sys.exit() |
|
|
|
n_dims = len(data.shape) |
|
data_dtype = data.dtype |
|
|
|
|
|
if ftype == 0 and data_dtype == np.float16: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if ftype == 1 and data_dtype == np.float16 and n_dims == 1: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: |
|
data = data.astype(np.float16) |
|
|
|
print(name, "=>", new_name + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype)) |
|
|
|
gguf_writer.add_tensor(new_name, data) |
|
|
|
if not has_lm_head and name == "word_embeddings.weight": |
|
gguf_writer.add_tensor("output.weight", data) |
|
print(name, "=>", "output.weight" + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype)) |
|
|
|
|
|
print("gguf: write header") |
|
gguf_writer.write_header_to_file() |
|
print("gguf: write metadata") |
|
gguf_writer.write_kv_data_to_file() |
|
if not args.vocab_only: |
|
print("gguf: write tensors") |
|
gguf_writer.write_tensors_to_file() |
|
|
|
gguf_writer.close() |
|
|
|
print(f"gguf: model successfully exported to '{fname_out}'") |
|
print("") |
|
|