|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
import argparse |
|
import json |
|
import os |
|
import struct |
|
import sys |
|
from pathlib import Path |
|
from typing import TYPE_CHECKING, Any |
|
import itertools |
|
import numpy as np |
|
import torch |
|
from sentencepiece import SentencePieceProcessor |
|
|
|
if 'NO_LOCAL_GGUF' not in os.environ: |
|
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf')) |
|
import gguf |
|
|
|
|
|
if TYPE_CHECKING: |
|
from typing import TypeAlias |
|
|
|
NDArray: TypeAlias = 'np.ndarray[Any, Any]' |
|
|
|
|
|
|
|
|
|
def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: int | None = None) -> NDArray: |
|
if n_kv_head is not None and n_head != n_kv_head: |
|
n_head //= n_kv_head |
|
|
|
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) |
|
.swapaxes(1, 2) |
|
.reshape(weights.shape)) |
|
|
|
def reverse_hf_permute_part(weights: NDArray, n_part: int, n_head: int, n_head_kv: int| None = None) -> NDArray: |
|
r = weights.shape[0] // 3 |
|
return (reverse_hf_permute(weights[r * n_part : r * n_part + r, ...], n_head, n_head_kv)) |
|
|
|
def reverse_hf_part(weights: NDArray, n_part: int) -> NDArray: |
|
r = weights.shape[0] // 3 |
|
return weights[r * n_part : r * n_part + r, ...] |
|
|
|
def count_model_parts(dir_model: str) -> int: |
|
num_parts = 0 |
|
|
|
for filename in os.listdir(dir_model): |
|
if filename.startswith("pytorch_model-"): |
|
num_parts += 1 |
|
|
|
if num_parts > 0: |
|
print("gguf: found " + str(num_parts) + " model parts") |
|
|
|
return num_parts |
|
|
|
|
|
|
|
def parse_args() -> argparse.Namespace: |
|
parser = argparse.ArgumentParser(description="Convert a HuggingFace LLaMA model to a GGML compatible file") |
|
parser.add_argument( |
|
"--vocab-only", action="store_true", |
|
help="extract only the vocab", |
|
) |
|
parser.add_argument( |
|
"--outfile", type=Path, |
|
help="path to write to; default: based on input", |
|
) |
|
parser.add_argument( |
|
"model", type=Path, |
|
help="directory containing model file, or model file itself (*.bin)", |
|
) |
|
parser.add_argument( |
|
"ftype", type=int, choices=[0, 1], default=1, nargs='?', |
|
help="output format - use 0 for float32, 1 for float16", |
|
) |
|
return parser.parse_args() |
|
|
|
args = parse_args() |
|
|
|
dir_model = args.model |
|
ftype = args.ftype |
|
if not dir_model.is_dir(): |
|
print(f'Error: {args.model} is not a directory', file = sys.stderr) |
|
sys.exit(1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
ftype_str = ["f32", "f16"] |
|
|
|
if args.outfile is not None: |
|
fname_out = args.outfile |
|
else: |
|
|
|
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf' |
|
|
|
print("gguf: loading model "+dir_model.name) |
|
|
|
with open(dir_model / "config.json", "r", encoding="utf-8") as f: |
|
hparams = json.load(f) |
|
print("hello print: ",hparams["architectures"][0]) |
|
if hparams["architectures"][0] != "BaichuanForCausalLM": |
|
print("Model architecture not supported: " + hparams["architectures"][0]) |
|
|
|
sys.exit() |
|
|
|
|
|
num_parts = count_model_parts(dir_model) |
|
print(f"num_parts:{num_parts}\n") |
|
ARCH=gguf.MODEL_ARCH.BAICHUAN |
|
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH]) |
|
|
|
print("gguf: get model metadata") |
|
|
|
block_count = hparams["num_hidden_layers"] |
|
head_count = hparams["num_attention_heads"] |
|
|
|
if "num_key_value_heads" in hparams: |
|
head_count_kv = hparams["num_key_value_heads"] |
|
else: |
|
head_count_kv = head_count |
|
|
|
if "_name_or_path" in hparams: |
|
hf_repo = hparams["_name_or_path"] |
|
else: |
|
hf_repo = "" |
|
|
|
if "max_sequence_length" in hparams: |
|
ctx_length = hparams["max_sequence_length"] |
|
elif "max_position_embeddings" in hparams: |
|
ctx_length = hparams["max_position_embeddings"] |
|
elif "model_max_length" in hparams: |
|
ctx_length = hparams["model_max_length"] |
|
else: |
|
print("gguf: can not find ctx length parameter.") |
|
|
|
sys.exit() |
|
|
|
|
|
gguf_writer.add_name(dir_model.name) |
|
gguf_writer.add_source_hf_repo(hf_repo) |
|
gguf_writer.add_tensor_data_layout("Meta AI original pth") |
|
gguf_writer.add_context_length(ctx_length) |
|
gguf_writer.add_embedding_length(hparams["hidden_size"]) |
|
gguf_writer.add_block_count(block_count) |
|
gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) |
|
gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"]) |
|
gguf_writer.add_head_count(head_count) |
|
gguf_writer.add_head_count_kv(head_count_kv) |
|
gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"]) |
|
|
|
if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]: |
|
if "type" in hparams["rope_scaling"]: |
|
if hparams["rope_scaling"]["type"] == "linear": |
|
gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"]) |
|
|
|
|
|
|
|
|
|
print("gguf: get tokenizer metadata") |
|
|
|
tokens: list[bytes] = [] |
|
scores: list[float] = [] |
|
toktypes: list[int] = [] |
|
|
|
tokenizer_model_file = dir_model / 'tokenizer.model' |
|
if not tokenizer_model_file.is_file(): |
|
print(f'Error: Missing {tokenizer_model_file}', file = sys.stderr) |
|
sys.exit(1) |
|
|
|
|
|
print("gguf: get sentencepiece tokenizer vocab, scores and token types") |
|
|
|
tokenizer = SentencePieceProcessor(str(tokenizer_model_file)) |
|
vocab_size = hparams.get('vocab_size') |
|
if vocab_size is None: |
|
vocab_size = tokenizer.vocab_size() |
|
|
|
for i in range(vocab_size): |
|
text: bytes |
|
score: float |
|
|
|
piece = tokenizer.id_to_piece(i) |
|
text = piece.encode("utf-8") |
|
score = tokenizer.get_score(i) |
|
|
|
toktype = 1 |
|
if tokenizer.is_unknown(i): |
|
toktype = 2 |
|
if tokenizer.is_control(i): |
|
toktype = 3 |
|
|
|
|
|
|
|
if tokenizer.is_unused(i): |
|
toktype = 5 |
|
if tokenizer.is_byte(i): |
|
toktype = 6 |
|
|
|
tokens.append(text) |
|
scores.append(score) |
|
toktypes.append(toktype) |
|
|
|
added_tokens_file = dir_model / 'added_tokens.json' |
|
if added_tokens_file.is_file(): |
|
with open(added_tokens_file, "r", encoding="utf-8") as f: |
|
addtokens_json = json.load(f) |
|
|
|
print("gguf: get added tokens") |
|
|
|
for key in addtokens_json: |
|
tokens.append( key.encode("utf-8") ) |
|
scores.append(-1000.0) |
|
toktypes.append(4) |
|
|
|
|
|
gguf_writer.add_tokenizer_model("llama") |
|
gguf_writer.add_token_list(tokens) |
|
gguf_writer.add_token_scores(scores) |
|
gguf_writer.add_token_types(toktypes) |
|
|
|
special_vocab = gguf.SpecialVocab(dir_model) |
|
special_vocab.add_to_gguf(gguf_writer) |
|
|
|
|
|
|
|
tensor_map = gguf.get_tensor_name_map(ARCH,block_count) |
|
|
|
|
|
print("gguf: get tensor metadata") |
|
|
|
if num_parts == 0: |
|
part_names = iter(("pytorch_model.bin",)) |
|
else: |
|
part_names = ( |
|
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) |
|
) |
|
|
|
|
|
for part_name in part_names: |
|
if args.vocab_only: |
|
break |
|
print("gguf: loading model part '" + part_name + "'") |
|
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") |
|
|
|
tmp=model_part |
|
for i in range(block_count): |
|
if f"model.layers.{i}.self_attn.W_pack.weight" in model_part: |
|
print(f"Unpacking and permuting layer {i}") |
|
tmp[f"model.layers.{i}.self_attn.q_proj.weight"]=reverse_hf_permute_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],0,head_count,head_count) |
|
tmp[f"model.layers.{i}.self_attn.k_proj.weight"]=reverse_hf_permute_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],1,head_count,head_count_kv) |
|
tmp[f"model.layers.{i}.self_attn.v_proj.weight"]=reverse_hf_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],2) |
|
del tmp[f"model.layers.{i}.self_attn.W_pack.weight"] |
|
|
|
for name in model_part.keys(): |
|
data = model_part[name] |
|
|
|
if name.endswith(".rotary_emb.inv_freq"): |
|
continue |
|
|
|
old_dtype = data.dtype |
|
|
|
|
|
if data.dtype != torch.float16 and data.dtype != torch.float32: |
|
data = data.to(torch.float32) |
|
|
|
data = data.squeeze().numpy() |
|
|
|
|
|
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias")) |
|
if new_name is None: |
|
print("Can not map tensor '" + name + "'") |
|
sys.exit() |
|
|
|
n_dims = len(data.shape) |
|
data_dtype = data.dtype |
|
|
|
|
|
if ftype == 0 and data_dtype == np.float16: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if ftype == 1 and data_dtype == np.float16 and n_dims == 1: |
|
data = data.astype(np.float32) |
|
|
|
|
|
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: |
|
data = data.astype(np.float16) |
|
|
|
print(name + " -> " + new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype)) |
|
gguf_writer.add_tensor(new_name, data) |
|
|
|
|
|
print("gguf: write header") |
|
gguf_writer.write_header_to_file() |
|
print("gguf: write metadata") |
|
gguf_writer.write_kv_data_to_file() |
|
if not args.vocab_only: |
|
print("gguf: write tensors") |
|
gguf_writer.write_tensors_to_file() |
|
|
|
gguf_writer.close() |
|
|
|
print(f"gguf: model successfully exported to '{fname_out}'") |
|
print("") |
|
|