|
|
|
|
|
import functools |
|
import json |
|
import logging |
|
import os |
|
import re |
|
import sys |
|
import warnings |
|
from dataclasses import dataclass, field |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import datasets |
|
import numpy as np |
|
import torch |
|
import torchaudio |
|
from datasets import DatasetDict, ReadInstruction, load_dataset, load_metric, concatenate_datasets |
|
|
|
try: |
|
import bitsandbytes as bnb |
|
|
|
BNB_AVAILABLE = True |
|
except: |
|
BNB_AVAILABLE = False |
|
try: |
|
import wandb |
|
|
|
WANDB_AVAILABLE = True |
|
except: |
|
WANDB_AVAILABLE = False |
|
import transformers |
|
from transformers import ( |
|
AutoConfig, |
|
AutoFeatureExtractor, |
|
AutoModelForCTC, |
|
AutoTokenizer, |
|
HfArgumentParser, |
|
Trainer, |
|
TrainerCallback, TrainingArguments, |
|
Wav2Vec2Processor, |
|
set_seed, |
|
) |
|
|
|
try: |
|
from torch_audiomentations import ( |
|
Compose, |
|
AddGaussianNoise, |
|
AddGaussianSNR, |
|
ClippingDistortion, |
|
FrequencyMask, |
|
Gain, |
|
LoudnessNormalization, |
|
Normalize, |
|
PitchShift, |
|
PolarityInversion, |
|
Shift, |
|
TimeMask, |
|
TimeStretch, |
|
) |
|
|
|
AUDIOMENTATIONS_AVAILABLE = True |
|
except: |
|
AUDIOMENTATIONS_AVAILABLE = False |
|
try: |
|
from transformers import AutoProcessor |
|
except: |
|
pass |
|
from transformers.trainer_pt_utils import get_parameter_names |
|
from transformers.trainer_utils import get_last_checkpoint, is_main_process |
|
from transformers.utils import check_min_version |
|
from transformers.utils.versions import require_version |
|
|
|
|
|
check_min_version("4.16.0") |
|
|
|
require_version( |
|
"datasets>=1.13.3", |
|
"To fix: pip install -r examples/pytorch/text-classification/requirements.txt", |
|
) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def list_field(default=None, metadata=None): |
|
return field(default_factory=lambda: default, metadata=metadata) |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
metadata={ |
|
"help": "Path to pretrained model or model identifier from huggingface.co/models" |
|
} |
|
) |
|
tokenizer_name_or_path: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models" |
|
}, |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "Where do you want to store the pretrained models downloaded from huggingface.co" |
|
}, |
|
) |
|
freeze_feature_encoder: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to freeze the feature encoder layers of the model."}, |
|
) |
|
attention_dropout: float = field( |
|
default=0.0, |
|
metadata={"help": "The dropout ratio for the attention probabilities."}, |
|
) |
|
activation_dropout: float = field( |
|
default=0.0, |
|
metadata={ |
|
"help": "The dropout ratio for activations inside the fully connected layer." |
|
}, |
|
) |
|
feat_proj_dropout: float = field( |
|
default=0.0, metadata={"help": "The dropout ratio for the projected features."} |
|
) |
|
hidden_dropout: float = field( |
|
default=0.0, |
|
metadata={ |
|
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler." |
|
}, |
|
) |
|
final_dropout: float = field( |
|
default=0.0, |
|
metadata={"help": "The dropout probability for the final projection layer."}, |
|
) |
|
mask_time_prob: float = field( |
|
default=0.05, |
|
metadata={ |
|
"help": "Probability of each feature vector along the time axis to be chosen as the start of the vector" |
|
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" |
|
"vectors will be masked along the time axis." |
|
}, |
|
) |
|
mask_time_length: int = field( |
|
default=10, |
|
metadata={"help": "Length of vector span to mask along the time axis."}, |
|
) |
|
mask_feature_prob: float = field( |
|
default=0.0, |
|
metadata={ |
|
"help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector" |
|
"span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis." |
|
}, |
|
) |
|
mask_feature_length: int = field( |
|
default=10, |
|
metadata={"help": "Length of vector span to mask along the feature axis."}, |
|
) |
|
layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."}) |
|
ctc_loss_reduction: Optional[str] = field( |
|
default="mean", |
|
metadata={ |
|
"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'." |
|
}, |
|
) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
|
|
Using `HfArgumentParser` we can turn this class |
|
into argparse arguments to be able to specify them on |
|
the command line. |
|
""" |
|
|
|
dataset_path: str = field( |
|
default=None, |
|
metadata={ |
|
"help": "The configuration name of the dataset to use (via the datasets library)." |
|
} |
|
) |
|
dataset_name: str = field( |
|
default=None, |
|
metadata={ |
|
"help": "The configuration name of the dataset to use (via the datasets library)." |
|
}, |
|
) |
|
dataset_config_name: str = field( |
|
default=None, |
|
metadata={ |
|
"help": "The configuration name of the dataset to use (via the datasets library)." |
|
}, |
|
) |
|
train_split_name: str = field( |
|
default="train", |
|
metadata={ |
|
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" |
|
}, |
|
) |
|
eval_split_name: str = field( |
|
default="validation", |
|
metadata={ |
|
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" |
|
}, |
|
) |
|
audio_column_name: str = field( |
|
default="audio", |
|
metadata={ |
|
"help": "The name of the dataset column containing the audio data. Defaults to 'audio'" |
|
}, |
|
) |
|
text_column_name: str = field( |
|
default="text", |
|
metadata={ |
|
"help": "The name of the dataset column containing the text data. Defaults to 'text'" |
|
}, |
|
) |
|
wav_filesize_column_name: str = field( |
|
default=None, |
|
metadata={ |
|
"help": "The name of the dataset column containing the wav filesize. Defaults is None" |
|
}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, |
|
metadata={"help": "Overwrite the cached preprocessed datasets or not."}, |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this " |
|
"value if set." |
|
}, |
|
) |
|
chars_to_ignore: Optional[List[str]] = list_field( |
|
default=None, |
|
metadata={"help": "A list of characters to remove from the transcripts."}, |
|
) |
|
eval_metrics: List[str] = list_field( |
|
default=["wer"], |
|
metadata={ |
|
"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`" |
|
}, |
|
) |
|
max_duration_in_seconds: float = field( |
|
default=20.0, |
|
metadata={ |
|
"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`" |
|
}, |
|
) |
|
min_duration_in_seconds: float = field( |
|
default=0.0, |
|
metadata={ |
|
"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds" |
|
}, |
|
) |
|
preprocessing_only: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Whether to only do data preprocessing and skip training. " |
|
"This is especially useful when data preprocessing errors out in distributed training due to timeout. " |
|
"In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` " |
|
"so that the cached datasets can consequently be loaded in distributed training" |
|
}, |
|
) |
|
print_samples: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Print row with validation inference results to stdout after each epoch" |
|
}, |
|
) |
|
use_augmentations: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Use data augmentation during training" |
|
}, |
|
) |
|
use_auth_token: str = field( |
|
default="", |
|
metadata={ |
|
"help": "If :obj:`True`, will use the token generated when running" |
|
":obj:`transformers-cli login` as HTTP bearer authorization for remote files." |
|
}, |
|
) |
|
unk_token: str = field( |
|
default="[UNK]", |
|
metadata={"help": "The unk token for the tokenizer"}, |
|
) |
|
pad_token: str = field( |
|
default="[PAD]", |
|
metadata={"help": "The padding token for the tokenizer"}, |
|
) |
|
word_delimiter_token: str = field( |
|
default="|", |
|
metadata={"help": "The word delimiter token for the tokenizer"}, |
|
) |
|
phoneme_language: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "The target language that should be used be" |
|
" passed to the tokenizer for tokenization. Note that" |
|
" this is only relevant if the model classifies the" |
|
" input audio to a sequence of phoneme sequences." |
|
}, |
|
) |
|
|
|
|
|
class Augmentator: |
|
|
|
def __init__( |
|
self, |
|
apply_gaussian_noise_with_p=0.1, |
|
apply_gain_with_p=0.1, |
|
apply_pitch_shift_with_p=0.1, |
|
apply_time_stretch_with_p=0.1, |
|
augment_proba=0.1, |
|
sample_rate=16_000 |
|
): |
|
self.augmentator_fn = None |
|
self.sample_rate = sample_rate |
|
self.augment_proba = augment_proba |
|
all_p = ( |
|
apply_gaussian_noise_with_p |
|
+ apply_gain_with_p |
|
+ apply_pitch_shift_with_p |
|
+ apply_time_stretch_with_p |
|
) |
|
if AUDIOMENTATIONS_AVAILABLE and all_p > 0: |
|
self.augmentator_fn = Compose([ |
|
TimeStretch(min_rate=0.8, max_rate=1.2, leave_length_unchanged=False, |
|
p=apply_time_stretch_with_p), |
|
PitchShift(min_semitones=-1, max_semitones=1, |
|
p=apply_pitch_shift_with_p), |
|
Gain(min_gain_in_db=-1, max_gain_in_db=1, p=apply_gain_with_p), |
|
AddGaussianNoise(min_amplitude=0.0001, max_amplitude=0.001, |
|
p=apply_gaussian_noise_with_p), |
|
]) |
|
|
|
def __call__(self, input_values: List[float], *args, **kwargs): |
|
if AUDIOMENTATIONS_AVAILABLE and self.augmentator_fn is not None: |
|
return self.augmentator_fn(samples=np.array(input_values), |
|
sample_rate=self.sample_rate).tolist() |
|
else: |
|
return input_values |
|
|
|
|
|
@dataclass |
|
class DataCollatorCTCWithPadding: |
|
""" |
|
Data collator that will dynamically pad the inputs received. |
|
Args: |
|
processor (:class:`~transformers.AutoProcessor`) |
|
The processor used for proccessing the data. |
|
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): |
|
Select a strategy to pad the returned sequences (according to the model's padding side and padding index) |
|
among: |
|
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single |
|
sequence if provided). |
|
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the |
|
maximum acceptable input length for the model if that argument is not provided. |
|
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of |
|
different lengths). |
|
max_length (:obj:`int`, `optional`): |
|
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above). |
|
max_length_labels (:obj:`int`, `optional`): |
|
Maximum length of the ``labels`` returned list and optionally padding length (see above). |
|
pad_to_multiple_of (:obj:`int`, `optional`): |
|
If set will pad the sequence to a multiple of the provided value. |
|
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= |
|
7.5 (Volta). |
|
""" |
|
|
|
processor: 'AutoProcessor' |
|
padding: Union[bool, str] = "longest" |
|
pad_to_multiple_of: Optional[int] = None |
|
pad_to_multiple_of_labels: Optional[int] = None |
|
augmentator_fn: Optional[Callable] = None |
|
use_augmentations: bool = False |
|
|
|
def __call__( |
|
self, features: List[Dict[str, Union[List[int], torch.Tensor]]] |
|
) -> Dict[str, torch.Tensor]: |
|
|
|
|
|
input_features = [ |
|
{ |
|
"input_values": self.augmentator_fn(feature["input_values"]) |
|
if self.use_augmentations |
|
else feature["input_values"]} |
|
for feature in features |
|
] |
|
label_features = [{"input_ids": feature["labels"]} for feature in features] |
|
|
|
batch = self.processor.pad( |
|
input_features, |
|
padding=self.padding, |
|
pad_to_multiple_of=self.pad_to_multiple_of, |
|
return_tensors="pt", |
|
) |
|
|
|
with self.processor.as_target_processor(): |
|
labels_batch = self.processor.pad( |
|
label_features, |
|
padding=self.padding, |
|
pad_to_multiple_of=self.pad_to_multiple_of_labels, |
|
return_tensors="pt", |
|
) |
|
|
|
|
|
labels = labels_batch["input_ids"].masked_fill( |
|
labels_batch.attention_mask.ne(1), -100 |
|
) |
|
|
|
batch["labels"] = labels |
|
|
|
return batch |
|
|
|
|
|
def create_vocabulary_from_data( |
|
datasets: DatasetDict, |
|
text_column_name: str, |
|
train_split_name: str, |
|
word_delimiter_token: Optional[str] = None, |
|
unk_token: Optional[str] = None, |
|
pad_token: Optional[str] = None, |
|
): |
|
|
|
def extract_all_chars(batch): |
|
all_text = " ".join(batch[text_column_name]) |
|
vocab = list(set(all_text)) |
|
return {"vocab": [vocab], "all_text": [all_text]} |
|
|
|
print("extract chars") |
|
vocabs = datasets.map( |
|
extract_all_chars, |
|
batched=True, |
|
batch_size=-1, |
|
keep_in_memory=True, |
|
remove_columns=datasets[train_split_name].column_names, |
|
) |
|
|
|
|
|
print("make vocab_set") |
|
vocab_set = functools.reduce( |
|
lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), |
|
vocabs.values(), |
|
) |
|
|
|
vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))} |
|
|
|
|
|
if word_delimiter_token is not None: |
|
vocab_dict[word_delimiter_token] = vocab_dict[" "] |
|
del vocab_dict[" "] |
|
|
|
|
|
if unk_token is not None: |
|
vocab_dict[unk_token] = len(vocab_dict) |
|
|
|
if pad_token is not None: |
|
vocab_dict[pad_token] = len(vocab_dict) |
|
|
|
return vocab_dict |
|
|
|
|
|
def speech_file_to_array_fn(batch, audio_column_name, dataset_path=""): |
|
if dataset_path: |
|
dataset_path = os.path.join(dataset_path, batch[audio_column_name]) |
|
else: |
|
dataset_path = batch[audio_column_name] if isinstance(batch[audio_column_name], |
|
str) else \ |
|
batch[audio_column_name]["path"] |
|
speech_array, sampling_rate = torchaudio.load(dataset_path) |
|
batch[audio_column_name] = { |
|
"array": speech_array[0].numpy(), |
|
"sampling_rate": sampling_rate, |
|
} |
|
return batch |
|
|
|
|
|
class PrintSamplesPredictionCallback(TrainerCallback): |
|
|
|
def __init__(self, processor, eval_dataset): |
|
super(PrintSamplesPredictionCallback, self).__init__() |
|
self.processor = processor |
|
self.eval_dataset = eval_dataset |
|
self.metric_fn = load_metric("wer") |
|
|
|
def on_log( |
|
self, |
|
args: Any, |
|
state: Any, |
|
control: Any, |
|
model: Any, |
|
logs: Optional[Any] = None, |
|
**kwargs |
|
): |
|
""" |
|
:param args: |
|
:param state: |
|
:param control: |
|
:param model: |
|
:param logs: |
|
:param kwargs: 'tokenizer', 'optimizer', 'lr_scheduler', 'train_dataloader', 'eval_dataloader' |
|
:return: |
|
""" |
|
if state.is_local_process_zero: |
|
columns = ["id", "prediction", "reference", "audio", "wer"] |
|
data = [] |
|
for idx, row in enumerate(self.eval_dataset): |
|
input_dict = self.processor(row["input_values"], |
|
return_tensors="pt", padding=True) |
|
logits = model(input_dict.input_values.to(model.device)).logits |
|
pred_ids = torch.argmax(logits, dim=-1)[0] |
|
prediction = self.processor.decode(pred_ids) |
|
print(f"Prediction: {prediction}") |
|
reference = row['references'].lower() |
|
print(f"\nReference: {reference}") |
|
|
|
if WANDB_AVAILABLE: |
|
|
|
audio, sample_rate = tuple(row["audio"].values()) |
|
audio = wandb.Audio(np.squeeze(audio), |
|
sample_rate=sample_rate) |
|
wer = self.metric_fn.compute( |
|
predictions=[prediction], |
|
references=[reference], |
|
) |
|
|
|
data.append([idx, prediction, reference, audio, wer]) |
|
if WANDB_AVAILABLE: |
|
table = wandb.Table(data=data, columns=columns) |
|
wandb.run.log({"audio_predictions": table}) |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file( |
|
json_file=os.path.abspath(sys.argv[1]) |
|
) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
last_checkpoint = None |
|
if ( |
|
os.path.isdir(training_args.output_dir) |
|
and training_args.do_train |
|
and not training_args.overwrite_output_dir |
|
): |
|
last_checkpoint = get_last_checkpoint(training_args.output_dir) |
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. " |
|
"Use --overwrite_output_dir to overcome." |
|
) |
|
elif last_checkpoint is not None: |
|
logger.info( |
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " |
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." |
|
) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
logger.setLevel( |
|
logging.INFO if is_main_process(training_args.local_rank) else logging.WARN |
|
) |
|
|
|
|
|
logger.warning( |
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" |
|
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" |
|
) |
|
|
|
if is_main_process(training_args.local_rank): |
|
transformers.utils.logging.set_verbosity_info() |
|
logger.info("Training/evaluation parameters %s", training_args) |
|
|
|
|
|
set_seed(training_args.seed) |
|
|
|
train_split_name = data_args.train_split_name |
|
eval_split_name = data_args.eval_split_name |
|
|
|
|
|
raw_datasets = DatasetDict({ |
|
train_split_name: None, |
|
eval_split_name: None, |
|
}) |
|
|
|
if data_args.dataset_path: |
|
raw_datasets = load_dataset( |
|
"csv", |
|
data_files={ |
|
train_split_name: os.path.join(data_args.dataset_path, "train-all.csv"), |
|
eval_split_name: os.path.join(data_args.dataset_path, "eval-all.csv"), |
|
}, |
|
) |
|
|
|
if training_args.do_train: |
|
if raw_datasets[train_split_name] is None: |
|
raw_datasets[train_split_name] = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
split=data_args.train_split_name, |
|
use_auth_token=data_args.use_auth_token, |
|
) |
|
|
|
if data_args.audio_column_name not in raw_datasets[train_split_name].column_names: |
|
raise ValueError( |
|
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset. " |
|
"Make sure to set `--audio_column_name` to the correct audio column - one of " |
|
f"{', '.join(raw_datasets['train'].column_names)}." |
|
) |
|
|
|
if data_args.text_column_name not in raw_datasets[train_split_name].column_names: |
|
raise ValueError( |
|
f"--text_column_name {data_args.text_column_name} not found in dataset. " |
|
"Make sure to set `--text_column_name` to the correct text column - one of " |
|
f"{', '.join(raw_datasets['train'].column_names)}." |
|
) |
|
|
|
if data_args.max_train_samples is not None: |
|
raw_datasets[train_split_name] = raw_datasets[train_split_name].select( |
|
range(data_args.max_train_samples) |
|
) |
|
|
|
if data_args.wav_filesize_column_name is not None: |
|
raw_datasets[train_split_name] = raw_datasets[train_split_name].sort( |
|
data_args.wav_filesize_column_name, reverse=True) |
|
|
|
if training_args.do_eval: |
|
if raw_datasets[eval_split_name] is None: |
|
raw_datasets[eval_split_name] = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
split=data_args.eval_split_name, |
|
use_auth_token=data_args.use_auth_token, |
|
) |
|
|
|
if data_args.max_eval_samples is not None: |
|
raw_datasets[eval_split_name] = raw_datasets[eval_split_name].select( |
|
range(data_args.max_eval_samples) |
|
) |
|
if data_args.wav_filesize_column_name is not None: |
|
raw_datasets[eval_split_name] = raw_datasets[eval_split_name].sort( |
|
data_args.wav_filesize_column_name, reverse=True) |
|
|
|
|
|
word_delimiter_token = data_args.word_delimiter_token |
|
unk_token = data_args.unk_token |
|
pad_token = data_args.pad_token |
|
|
|
|
|
|
|
|
|
config = AutoConfig.from_pretrained( |
|
model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
use_auth_token=data_args.use_auth_token, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
tokenizer_name_or_path = model_args.tokenizer_name_or_path |
|
tokenizer_kwargs = {} |
|
|
|
|
|
|
|
|
|
with open(os.path.join(tokenizer_name_or_path, "vocab.json"), "r") as fin: |
|
print("loading tokenizer") |
|
print(fin.read()) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
tokenizer_name_or_path, |
|
use_auth_token=data_args.use_auth_token, |
|
**tokenizer_kwargs, |
|
) |
|
feature_extractor = AutoFeatureExtractor.from_pretrained( |
|
model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
use_auth_token=data_args.use_auth_token, |
|
) |
|
|
|
|
|
config.update( |
|
{ |
|
"feat_proj_dropout": model_args.feat_proj_dropout, |
|
"attention_dropout": model_args.attention_dropout, |
|
"hidden_dropout": model_args.hidden_dropout, |
|
"final_dropout": model_args.final_dropout, |
|
"mask_time_prob": model_args.mask_time_prob, |
|
"mask_time_length": model_args.mask_time_length, |
|
"mask_feature_prob": model_args.mask_feature_prob, |
|
"mask_feature_length": model_args.mask_feature_length, |
|
"gradient_checkpointing": training_args.gradient_checkpointing, |
|
"layerdrop": model_args.layerdrop, |
|
"ctc_loss_reduction": model_args.ctc_loss_reduction, |
|
"pad_token_id": tokenizer.pad_token_id, |
|
"vocab_size": len(tokenizer), |
|
"activation_dropout": model_args.activation_dropout, |
|
} |
|
) |
|
|
|
|
|
model = AutoModelForCTC.from_pretrained( |
|
model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
config=config, |
|
use_auth_token=data_args.use_auth_token, |
|
) |
|
|
|
|
|
if model_args.freeze_feature_encoder: |
|
model.freeze_feature_encoder() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
audio_column_name = data_args.audio_column_name |
|
num_workers = data_args.preprocessing_num_workers |
|
|
|
|
|
phoneme_language = data_args.phoneme_language |
|
|
|
raw_datasets[train_split_name] = raw_datasets[train_split_name].map( |
|
speech_file_to_array_fn, |
|
num_proc=num_workers, |
|
fn_kwargs={"dataset_path": data_args.dataset_path, |
|
"audio_column_name": audio_column_name}, |
|
) |
|
raw_datasets[eval_split_name] = raw_datasets[eval_split_name].map( |
|
speech_file_to_array_fn, |
|
num_proc=num_workers, |
|
fn_kwargs={"dataset_path": data_args.dataset_path, |
|
"audio_column_name": audio_column_name}, |
|
) |
|
|
|
|
|
|
|
def prepare_dataset(batch): |
|
|
|
sample = batch[audio_column_name] |
|
|
|
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) |
|
batch["input_values"] = inputs.input_values[0] |
|
batch["input_length"] = len(batch["input_values"]) |
|
|
|
|
|
additional_kwargs = {} |
|
if phoneme_language is not None: |
|
additional_kwargs["phonemizer_lang"] = phoneme_language |
|
|
|
batch["labels"] = tokenizer(batch[data_args.text_column_name], |
|
**additional_kwargs).input_ids |
|
return batch |
|
|
|
print(f"Vectorizing") |
|
|
|
with training_args.main_process_first(desc="dataset map preprocessing"): |
|
vectorized_datasets = raw_datasets.map( |
|
prepare_dataset, |
|
remove_columns=next(iter(raw_datasets.values())).column_names, |
|
num_proc=num_workers, |
|
desc="preprocess datasets", |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics} |
|
|
|
|
|
|
|
|
|
|
|
|
|
if data_args.preprocessing_only: |
|
logger.info( |
|
f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}" |
|
) |
|
return |
|
|
|
def compute_metrics(pred): |
|
pred_logits = pred.predictions |
|
pred_ids = np.argmax(pred_logits, axis=-1) |
|
|
|
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id |
|
|
|
pred_str = tokenizer.batch_decode(pred_ids) |
|
|
|
label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False) |
|
|
|
metrics = { |
|
k: v.compute(predictions=pred_str, references=label_str) |
|
for k, v in eval_metrics.items() |
|
} |
|
|
|
return metrics |
|
|
|
|
|
if is_main_process(training_args.local_rank): |
|
|
|
feature_extractor.save_pretrained(training_args.output_dir) |
|
tokenizer.save_pretrained(training_args.output_dir) |
|
config.save_pretrained(training_args.output_dir) |
|
|
|
try: |
|
processor = AutoProcessor.from_pretrained(training_args.output_dir) |
|
except (OSError, KeyError): |
|
warnings.warn( |
|
"Loading a processor from a feature extractor config that does not" |
|
" include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following " |
|
" attribute to your `preprocessor_config.json` file to suppress this warning: " |
|
" `'processor_class': 'Wav2Vec2Processor'`", |
|
FutureWarning, |
|
) |
|
processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir) |
|
|
|
|
|
data_collator = DataCollatorCTCWithPadding( |
|
processor=processor, |
|
augmentator_fn=Augmentator(), |
|
use_augmentations=data_args.use_augmentations |
|
) |
|
|
|
decay_parameters = get_parameter_names(model, [torch.nn.LayerNorm]) |
|
decay_parameters = [name for name in decay_parameters if "bias" not in name] |
|
optimizer_grouped_parameters = [ |
|
{ |
|
"params": [p for n, p in model.named_parameters() if n in decay_parameters], |
|
"weight_decay": training_args.weight_decay, |
|
}, |
|
{ |
|
"params": [ |
|
p for n, p in model.named_parameters() if n not in decay_parameters |
|
], |
|
"weight_decay": 0.0, |
|
}, |
|
] |
|
trainer_kwargs = {} |
|
if BNB_AVAILABLE: |
|
optimizer = bnb.optim.Adam8bit( |
|
params=optimizer_grouped_parameters, |
|
betas=(training_args.adam_beta1, training_args.adam_beta2), |
|
eps=training_args.adam_epsilon, |
|
) |
|
trainer_kwargs["optimizers"] = (optimizer, None) |
|
|
|
samples_to_log = [ |
|
{ |
|
**vectorized_datasets[eval_split_name][i], |
|
"references": raw_datasets[eval_split_name][i][data_args.text_column_name], |
|
"audio": raw_datasets[eval_split_name][i][data_args.audio_column_name], |
|
} for i in range(5) |
|
] |
|
|
|
trainer = Trainer( |
|
model=model, |
|
data_collator=data_collator, |
|
args=training_args, |
|
compute_metrics=compute_metrics, |
|
train_dataset=vectorized_datasets[ |
|
train_split_name] if training_args.do_train else None, |
|
eval_dataset=vectorized_datasets[ |
|
eval_split_name] if training_args.do_eval else None, |
|
tokenizer=feature_extractor, |
|
**trainer_kwargs, |
|
callbacks=[PrintSamplesPredictionCallback( |
|
processor=processor, |
|
eval_dataset=samples_to_log)] if data_args.print_samples and training_args.do_eval else None, |
|
) |
|
|
|
|
|
|
|
|
|
if training_args.do_train: |
|
|
|
|
|
if last_checkpoint is not None: |
|
checkpoint = last_checkpoint |
|
elif os.path.isdir(model_args.model_name_or_path): |
|
checkpoint = model_args.model_name_or_path |
|
else: |
|
checkpoint = None |
|
|
|
train_result = trainer.train(resume_from_checkpoint=checkpoint) |
|
trainer.save_model() |
|
|
|
metrics = train_result.metrics |
|
max_train_samples = ( |
|
data_args.max_train_samples |
|
if data_args.max_train_samples is not None |
|
else len(vectorized_datasets[train_split_name]) |
|
) |
|
metrics["train_samples"] = min( |
|
max_train_samples, len(vectorized_datasets[train_split_name]) |
|
) |
|
|
|
trainer.log_metrics(train_split_name, metrics) |
|
trainer.save_metrics(train_split_name, metrics) |
|
trainer.save_state() |
|
|
|
|
|
results = {} |
|
if training_args.do_eval: |
|
logger.info("*** Evaluate ***") |
|
metrics = trainer.evaluate() |
|
max_eval_samples = ( |
|
data_args.max_eval_samples |
|
if data_args.max_eval_samples is not None |
|
else len(vectorized_datasets[eval_split_name]) |
|
) |
|
metrics["eval_samples"] = min(max_eval_samples, |
|
len(vectorized_datasets[eval_split_name])) |
|
|
|
trainer.log_metrics(eval_split_name, metrics) |
|
trainer.save_metrics(eval_split_name, metrics) |
|
|
|
|
|
config_name = ( |
|
data_args.dataset_config_name |
|
if data_args.dataset_config_name is not None |
|
else "na" |
|
) |
|
kwargs = { |
|
"language": "he", |
|
"finetuned_from": model_args.model_name_or_path, |
|
"tasks": "speech-recognition", |
|
"tags": ["automatic-speech-recognition", "robust-speech-event", "he"], |
|
"dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}", |
|
} |
|
|
|
if training_args.push_to_hub: |
|
trainer.push_to_hub(**kwargs) |
|
else: |
|
trainer.create_model_card(**kwargs) |
|
|
|
return results |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|