Commit
·
f8db31b
1
Parent(s):
d3ca791
tentative to add random seeds
Browse files- generic_ner.py +18 -1
- modeling_stacked.py +19 -2
generic_ner.py
CHANGED
|
@@ -1,4 +1,21 @@
|
|
| 1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from transformers import Pipeline
|
| 3 |
import numpy as np
|
| 4 |
import torch
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import random
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
# 1. Set random seeds
|
| 7 |
+
seed = 2025
|
| 8 |
+
torch.manual_seed(seed)
|
| 9 |
+
torch.cuda.manual_seed_all(seed)
|
| 10 |
+
np.random.seed(seed)
|
| 11 |
+
random.seed(seed)
|
| 12 |
+
os.environ["PYTHONHASHSEED"] = str(seed)
|
| 13 |
+
|
| 14 |
+
# 2. Disable dropout & training randomness
|
| 15 |
+
torch.use_deterministic_algorithms(True, warn_only=True)
|
| 16 |
+
torch.backends.cudnn.deterministic = True
|
| 17 |
+
|
| 18 |
+
torch.backends.cudnn.benchmark = False
|
| 19 |
from transformers import Pipeline
|
| 20 |
import numpy as np
|
| 21 |
import torch
|
modeling_stacked.py
CHANGED
|
@@ -1,3 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from transformers.modeling_outputs import TokenClassifierOutput
|
| 2 |
import torch
|
| 3 |
import torch.nn as nn
|
|
@@ -98,8 +116,7 @@ class ExtendedMultitaskTimeModelForTokenClassification(PreTrainedModel):
|
|
| 98 |
bert_kwargs.pop("head_mask", None)
|
| 99 |
|
| 100 |
outputs = self.model(**bert_kwargs)
|
| 101 |
-
|
| 102 |
-
token_output = outputs[0] # (B, T, H)
|
| 103 |
hidden_states = list(outputs.hidden_states) if output_hidden_states else None
|
| 104 |
|
| 105 |
# Pass through additional transformer layers
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import random
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
# 1. Set random seeds
|
| 7 |
+
seed = 2025
|
| 8 |
+
torch.manual_seed(seed)
|
| 9 |
+
torch.cuda.manual_seed_all(seed)
|
| 10 |
+
np.random.seed(seed)
|
| 11 |
+
random.seed(seed)
|
| 12 |
+
os.environ["PYTHONHASHSEED"] = str(seed)
|
| 13 |
+
|
| 14 |
+
# 2. Disable dropout & training randomness
|
| 15 |
+
torch.use_deterministic_algorithms(True, warn_only=True)
|
| 16 |
+
torch.backends.cudnn.deterministic = True
|
| 17 |
+
torch.backends.cudnn.benchmark = False
|
| 18 |
+
|
| 19 |
from transformers.modeling_outputs import TokenClassifierOutput
|
| 20 |
import torch
|
| 21 |
import torch.nn as nn
|
|
|
|
| 116 |
bert_kwargs.pop("head_mask", None)
|
| 117 |
|
| 118 |
outputs = self.model(**bert_kwargs)
|
| 119 |
+
token_output = self.dropout(outputs[0]) # (B, T, H)
|
|
|
|
| 120 |
hidden_states = list(outputs.hidden_states) if output_hidden_states else None
|
| 121 |
|
| 122 |
# Pass through additional transformer layers
|