imirandam commited on
Commit
055322e
·
verified ·
1 Parent(s): 68ec6ef

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -3
README.md CHANGED
@@ -1,3 +1,37 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+
5
+ # Model Card for CLIP_COCO
6
+ ## Model Description
7
+ - **Homepage:** https://imirandam.github.io/BiVLC_project_page/
8
+ - **Repository:** https://github.com/IMirandaM/BiVLC
9
+ - **Paper:**
10
+ - **Point of Contact:** [Imanol Miranda](mailto:imanol.miranda@ehu.eus)
11
+ ### Model Summary
12
+ CLIP_COCO is a model presented in the [BiVLC](https://github.com/IMirandaM/BiVLC) paper for experimentation. It has been fine-tuned with OpenCLIP framework using as basis the CLIP ViT-B-32 model pre-trained by 'openai'. The idea behind this fine-tuning is to have a baseline to compare the [CLIP_TROHN-Text](https://huggingface.co/imirandam/CLIP_TROHN-Text) and [CLIP_TROHN-Img](https://huggingface.co/imirandam/CLIP_TROHN-Img) models. Hyperparameters:
13
+
14
+ * Learning rate: 1e-6.
15
+ * Scheduler: Cosine scheduler with 50 warmup steps.
16
+ * Optimizer: AdamW optimizer with beta1 = 0.9, beta2 = 0.98, eps = 1e-6 and weight decay = 0.1.
17
+ * Loss function: InfoNCE Loss.
18
+ * Batch size: We define a batch size of 400, resulting in 400 images x 400 captions.
19
+ * Epochs: We fine-tune all models over 10 epochs and we used validation accuracy as the model selection criterion, i.e. we selected the model with the highest accuracy on the corresponding validation set.
20
+ * Data: It is fine-tuned with COCO 2017 train split.
21
+
22
+ ### Evaluation Data
23
+ The model is evaluated in [BiVLC](https://huggingface.co/datasets/imirandam/BiVLC).
24
+
25
+ ### Licensing Information
26
+ This work is licensed under a MIT License.
27
+
28
+ ## Citation Information
29
+ If you find this dataset useful, please consider citing our paper:
30
+ ```
31
+ @inproceedings{,
32
+ title={},
33
+ author={},
34
+ booktitle={},
35
+ year={}
36
+ }
37
+ ```