Initial Trait2Vec model trained with 80% of the Phenoscape trait pairs.
Browse files- 1_Pooling/config.json +10 -0
- 2_Dense/config.json +6 -0
- 2_Dense/model.safetensors +3 -0
- README.md +578 -3
- config.json +23 -0
- config_sentence_transformers.json +14 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +73 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": true,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
2_Dense/config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"in_features": 768,
|
| 3 |
+
"out_features": 256,
|
| 4 |
+
"bias": true,
|
| 5 |
+
"activation_function": "torch.nn.modules.activation.Tanh"
|
| 6 |
+
}
|
2_Dense/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a633e13bd53c1896b2b55a07023ecfbde01591e22be6c38e8602e931e9190853
|
| 3 |
+
size 787616
|
README.md
CHANGED
|
@@ -1,3 +1,578 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- dataset_size:438516
|
| 8 |
+
- loss:CoSENTLoss
|
| 9 |
+
base_model: sentence-transformers/all-mpnet-base-v2
|
| 10 |
+
widget:
|
| 11 |
+
- source_sentence: 'Ventral humeral ridge: or not'
|
| 12 |
+
sentences:
|
| 13 |
+
- 'If metasternum ossified, shape: long, narrow and tapering markedly anteriorly
|
| 14 |
+
to posteriorly, length up to 3.5 times maximum width'
|
| 15 |
+
- 'Astragalus, dorsolateral margin:: overlaps the anterior and posterior portions
|
| 16 |
+
of the calcaneum equally'
|
| 17 |
+
- 'Ulna size: does not apply'
|
| 18 |
+
- source_sentence: 'Form of distal portion of anteroventral process of ectopterygoid:
|
| 19 |
+
varyingly falcate'
|
| 20 |
+
sentences:
|
| 21 |
+
- 'Middle and distal radials in dorsal and anal fins: absent'
|
| 22 |
+
- 'Degree of development of primitively medial portion of fourth upper pharyngeal
|
| 23 |
+
tooth-plate: fourth upper pharyngeal tooth-plate covers ventral, posterior, dorsal
|
| 24 |
+
and sometimes anterior surfaces of fourth infrapharyngobranchial'
|
| 25 |
+
- 'Shape of pharyngeal apophysis (basioccipital): forked anteriorly'
|
| 26 |
+
- source_sentence: 'Form of distal portion of anteroventral process of ectopterygoid:
|
| 27 |
+
varyingly falcate'
|
| 28 |
+
sentences:
|
| 29 |
+
- 'parhypural: present'
|
| 30 |
+
- 'Epural: heavy'
|
| 31 |
+
- 'First infraorbital: short'
|
| 32 |
+
- source_sentence: 'Form of distal portion of anteroventral process of ectopterygoid:
|
| 33 |
+
varyingly falcate'
|
| 34 |
+
sentences:
|
| 35 |
+
- 'Dentary and angular: touch'
|
| 36 |
+
- 'Urohyal and first basibranchial: firmly attached'
|
| 37 |
+
- 'Supraneural 3-4 (nonadditive): absent'
|
| 38 |
+
- source_sentence: 'Form of distal portion of anteroventral process of ectopterygoid:
|
| 39 |
+
varyingly falcate'
|
| 40 |
+
sentences:
|
| 41 |
+
- 'Ventral diverging lamellae of mesethmoid: lamellae reduced or absent'
|
| 42 |
+
- 'Ventral ridge of the coracoid with a posterior process: absent'
|
| 43 |
+
- 'carpals: fully or partially ossified'
|
| 44 |
+
pipeline_tag: sentence-similarity
|
| 45 |
+
library_name: sentence-transformers
|
| 46 |
+
metrics:
|
| 47 |
+
- pearson_cosine
|
| 48 |
+
- spearman_cosine
|
| 49 |
+
model-index:
|
| 50 |
+
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
|
| 51 |
+
results:
|
| 52 |
+
- task:
|
| 53 |
+
type: semantic-similarity
|
| 54 |
+
name: Semantic Similarity
|
| 55 |
+
dataset:
|
| 56 |
+
name: pheno dev
|
| 57 |
+
type: pheno-dev
|
| 58 |
+
metrics:
|
| 59 |
+
- type: pearson_cosine
|
| 60 |
+
value: 0.6082332469417436
|
| 61 |
+
name: Pearson Cosine
|
| 62 |
+
- type: spearman_cosine
|
| 63 |
+
value: 0.6250387873495056
|
| 64 |
+
name: Spearman Cosine
|
| 65 |
+
- task:
|
| 66 |
+
type: semantic-similarity
|
| 67 |
+
name: Semantic Similarity
|
| 68 |
+
dataset:
|
| 69 |
+
name: pheno test
|
| 70 |
+
type: pheno-test
|
| 71 |
+
metrics:
|
| 72 |
+
- type: pearson_cosine
|
| 73 |
+
value: 0.6822053314599665
|
| 74 |
+
name: Pearson Cosine
|
| 75 |
+
- type: spearman_cosine
|
| 76 |
+
value: 0.705688010939619
|
| 77 |
+
name: Spearman Cosine
|
| 78 |
+
---
|
| 79 |
+
|
| 80 |
+
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
|
| 81 |
+
|
| 82 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 83 |
+
|
| 84 |
+
## Model Details
|
| 85 |
+
|
| 86 |
+
### Model Description
|
| 87 |
+
- **Model Type:** Sentence Transformer
|
| 88 |
+
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 -->
|
| 89 |
+
- **Maximum Sequence Length:** 256 tokens
|
| 90 |
+
- **Output Dimensionality:** 256 dimensions
|
| 91 |
+
- **Similarity Function:** Cosine Similarity
|
| 92 |
+
<!-- - **Training Dataset:** Unknown -->
|
| 93 |
+
<!-- - **Language:** Unknown -->
|
| 94 |
+
<!-- - **License:** Unknown -->
|
| 95 |
+
|
| 96 |
+
### Model Sources
|
| 97 |
+
|
| 98 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 99 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 100 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 101 |
+
|
| 102 |
+
### Full Model Architecture
|
| 103 |
+
|
| 104 |
+
```
|
| 105 |
+
SentenceTransformer(
|
| 106 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: MPNetModel
|
| 107 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 108 |
+
(2): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
| 109 |
+
)
|
| 110 |
+
```
|
| 111 |
+
|
| 112 |
+
## Usage
|
| 113 |
+
|
| 114 |
+
### Direct Usage (Sentence Transformers)
|
| 115 |
+
|
| 116 |
+
First install the Sentence Transformers library:
|
| 117 |
+
|
| 118 |
+
```bash
|
| 119 |
+
pip install -U sentence-transformers
|
| 120 |
+
```
|
| 121 |
+
|
| 122 |
+
Then you can load this model and run inference.
|
| 123 |
+
```python
|
| 124 |
+
from sentence_transformers import SentenceTransformer
|
| 125 |
+
|
| 126 |
+
# Download from the 🤗 Hub
|
| 127 |
+
model = SentenceTransformer("imageomics/trait2vec")
|
| 128 |
+
# Run inference
|
| 129 |
+
sentences = [
|
| 130 |
+
'Form of distal portion of anteroventral process of ectopterygoid: varyingly falcate',
|
| 131 |
+
'Ventral ridge of the coracoid with a posterior process: absent',
|
| 132 |
+
'carpals: fully or partially ossified',
|
| 133 |
+
]
|
| 134 |
+
embeddings = model.encode(sentences)
|
| 135 |
+
print(embeddings.shape)
|
| 136 |
+
# [3, 256]
|
| 137 |
+
|
| 138 |
+
# Get the similarity scores for the embeddings
|
| 139 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 140 |
+
print(similarities.shape)
|
| 141 |
+
# [3, 3]
|
| 142 |
+
```
|
| 143 |
+
|
| 144 |
+
<!--
|
| 145 |
+
### Direct Usage (Transformers)
|
| 146 |
+
|
| 147 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 148 |
+
|
| 149 |
+
</details>
|
| 150 |
+
-->
|
| 151 |
+
|
| 152 |
+
<!--
|
| 153 |
+
### Downstream Usage (Sentence Transformers)
|
| 154 |
+
|
| 155 |
+
You can finetune this model on your own dataset.
|
| 156 |
+
|
| 157 |
+
<details><summary>Click to expand</summary>
|
| 158 |
+
|
| 159 |
+
</details>
|
| 160 |
+
-->
|
| 161 |
+
|
| 162 |
+
<!--
|
| 163 |
+
### Out-of-Scope Use
|
| 164 |
+
|
| 165 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 166 |
+
-->
|
| 167 |
+
|
| 168 |
+
## Evaluation
|
| 169 |
+
|
| 170 |
+
### Metrics
|
| 171 |
+
|
| 172 |
+
#### Semantic Similarity
|
| 173 |
+
|
| 174 |
+
* Datasets: `pheno-dev` and `pheno-test`
|
| 175 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 176 |
+
|
| 177 |
+
| Metric | pheno-dev | pheno-test |
|
| 178 |
+
|:--------------------|:----------|:-----------|
|
| 179 |
+
| pearson_cosine | 0.6082 | 0.6822 |
|
| 180 |
+
| **spearman_cosine** | **0.625** | **0.7057** |
|
| 181 |
+
|
| 182 |
+
<!--
|
| 183 |
+
## Bias, Risks and Limitations
|
| 184 |
+
|
| 185 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 186 |
+
-->
|
| 187 |
+
|
| 188 |
+
<!--
|
| 189 |
+
### Recommendations
|
| 190 |
+
|
| 191 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 192 |
+
-->
|
| 193 |
+
|
| 194 |
+
## Training Details
|
| 195 |
+
|
| 196 |
+
### Training Dataset
|
| 197 |
+
|
| 198 |
+
#### Unnamed Dataset
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
* Size: 438,516 training samples
|
| 202 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
| 203 |
+
* Approximate statistics based on the first 1000 samples:
|
| 204 |
+
| | sentence1 | sentence2 | score |
|
| 205 |
+
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
| 206 |
+
| type | string | string | float |
|
| 207 |
+
| details | <ul><li>min: 9 tokens</li><li>mean: 42.84 tokens</li><li>max: 164 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 22.8 tokens</li><li>max: 164 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.1</li><li>max: 0.61</li></ul> |
|
| 208 |
+
* Samples:
|
| 209 |
+
| sentence1 | sentence2 | score |
|
| 210 |
+
|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|
|
| 211 |
+
| <code>Gill raker shape between ceratobranchial 1 and ceratobranchials 2--4: Homomorphic</code> | <code>Extent of development of inferior lamella of lateral ethmoid: inferior lamella absent</code> | <code>0.014706667500582846</code> |
|
| 212 |
+
| <code>Gill raker shape between ceratobranchial 1 and ceratobranchials 2--4: Homomorphic</code> | <code>Shape of anal-fin pterygiophore tips: tips of pterygiophores shaped like an arrow-head; axial series of pterygiophores providing the ventral margin of the anal-fin base a scalloped appearance</code> | <code>0.030538703023734296</code> |
|
| 213 |
+
| <code>Gill raker shape between ceratobranchial 1 and ceratobranchials 2--4: Homomorphic</code> | <code>Suprapreopercle: present</code> | <code>0.3385057414877959</code> |
|
| 214 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
| 215 |
+
```json
|
| 216 |
+
{
|
| 217 |
+
"scale": 20.0,
|
| 218 |
+
"similarity_fct": "pairwise_cos_sim"
|
| 219 |
+
}
|
| 220 |
+
```
|
| 221 |
+
|
| 222 |
+
### Evaluation Dataset
|
| 223 |
+
|
| 224 |
+
#### Unnamed Dataset
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
* Size: 111,628 evaluation samples
|
| 228 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
| 229 |
+
* Approximate statistics based on the first 1000 samples:
|
| 230 |
+
| | sentence1 | sentence2 | score |
|
| 231 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
| 232 |
+
| type | string | string | float |
|
| 233 |
+
| details | <ul><li>min: 9 tokens</li><li>mean: 17.19 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 21.97 tokens</li><li>max: 143 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.1</li><li>max: 0.86</li></ul> |
|
| 234 |
+
* Samples:
|
| 235 |
+
| sentence1 | sentence2 | score |
|
| 236 |
+
|:-------------------------------------------|:------------------------------------------------------------------------------------------------------------------|:----------------------------------|
|
| 237 |
+
| <code>Ventral humeral ridge: or not</code> | <code>Metacarpals, Metacarpal I, presence: absent</code> | <code>0.05558851078197206</code> |
|
| 238 |
+
| <code>Ventral humeral ridge: or not</code> | <code>Metapterygoid–quadrate fenestra: absent</code> | <code>0.004860625129173212</code> |
|
| 239 |
+
| <code>Ventral humeral ridge: or not</code> | <code>Dorsal and ventral borders of the maxillary articular process: straight or slightly curved ventrally</code> | <code>0.10380567059620477</code> |
|
| 240 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
| 241 |
+
```json
|
| 242 |
+
{
|
| 243 |
+
"scale": 20.0,
|
| 244 |
+
"similarity_fct": "pairwise_cos_sim"
|
| 245 |
+
}
|
| 246 |
+
```
|
| 247 |
+
|
| 248 |
+
### Training Hyperparameters
|
| 249 |
+
#### Non-Default Hyperparameters
|
| 250 |
+
|
| 251 |
+
- `eval_strategy`: steps
|
| 252 |
+
- `per_device_train_batch_size`: 64
|
| 253 |
+
- `per_device_eval_batch_size`: 64
|
| 254 |
+
- `learning_rate`: 2e-05
|
| 255 |
+
- `num_train_epochs`: 10
|
| 256 |
+
- `warmup_ratio`: 1e-06
|
| 257 |
+
|
| 258 |
+
#### All Hyperparameters
|
| 259 |
+
<details><summary>Click to expand</summary>
|
| 260 |
+
|
| 261 |
+
- `overwrite_output_dir`: False
|
| 262 |
+
- `do_predict`: False
|
| 263 |
+
- `eval_strategy`: steps
|
| 264 |
+
- `prediction_loss_only`: True
|
| 265 |
+
- `per_device_train_batch_size`: 64
|
| 266 |
+
- `per_device_eval_batch_size`: 64
|
| 267 |
+
- `per_gpu_train_batch_size`: None
|
| 268 |
+
- `per_gpu_eval_batch_size`: None
|
| 269 |
+
- `gradient_accumulation_steps`: 1
|
| 270 |
+
- `eval_accumulation_steps`: None
|
| 271 |
+
- `torch_empty_cache_steps`: None
|
| 272 |
+
- `learning_rate`: 2e-05
|
| 273 |
+
- `weight_decay`: 0.0
|
| 274 |
+
- `adam_beta1`: 0.9
|
| 275 |
+
- `adam_beta2`: 0.999
|
| 276 |
+
- `adam_epsilon`: 1e-08
|
| 277 |
+
- `max_grad_norm`: 1.0
|
| 278 |
+
- `num_train_epochs`: 10
|
| 279 |
+
- `max_steps`: -1
|
| 280 |
+
- `lr_scheduler_type`: linear
|
| 281 |
+
- `lr_scheduler_kwargs`: {}
|
| 282 |
+
- `warmup_ratio`: 1e-06
|
| 283 |
+
- `warmup_steps`: 0
|
| 284 |
+
- `log_level`: passive
|
| 285 |
+
- `log_level_replica`: warning
|
| 286 |
+
- `log_on_each_node`: True
|
| 287 |
+
- `logging_nan_inf_filter`: True
|
| 288 |
+
- `save_safetensors`: True
|
| 289 |
+
- `save_on_each_node`: False
|
| 290 |
+
- `save_only_model`: False
|
| 291 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 292 |
+
- `no_cuda`: False
|
| 293 |
+
- `use_cpu`: False
|
| 294 |
+
- `use_mps_device`: False
|
| 295 |
+
- `seed`: 42
|
| 296 |
+
- `data_seed`: None
|
| 297 |
+
- `jit_mode_eval`: False
|
| 298 |
+
- `use_ipex`: False
|
| 299 |
+
- `bf16`: False
|
| 300 |
+
- `fp16`: False
|
| 301 |
+
- `fp16_opt_level`: O1
|
| 302 |
+
- `half_precision_backend`: auto
|
| 303 |
+
- `bf16_full_eval`: False
|
| 304 |
+
- `fp16_full_eval`: False
|
| 305 |
+
- `tf32`: None
|
| 306 |
+
- `local_rank`: 0
|
| 307 |
+
- `ddp_backend`: None
|
| 308 |
+
- `tpu_num_cores`: None
|
| 309 |
+
- `tpu_metrics_debug`: False
|
| 310 |
+
- `debug`: []
|
| 311 |
+
- `dataloader_drop_last`: False
|
| 312 |
+
- `dataloader_num_workers`: 0
|
| 313 |
+
- `dataloader_prefetch_factor`: None
|
| 314 |
+
- `past_index`: -1
|
| 315 |
+
- `disable_tqdm`: False
|
| 316 |
+
- `remove_unused_columns`: True
|
| 317 |
+
- `label_names`: None
|
| 318 |
+
- `load_best_model_at_end`: False
|
| 319 |
+
- `ignore_data_skip`: False
|
| 320 |
+
- `fsdp`: []
|
| 321 |
+
- `fsdp_min_num_params`: 0
|
| 322 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 323 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 324 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 325 |
+
- `deepspeed`: None
|
| 326 |
+
- `label_smoothing_factor`: 0.0
|
| 327 |
+
- `optim`: adamw_torch
|
| 328 |
+
- `optim_args`: None
|
| 329 |
+
- `adafactor`: False
|
| 330 |
+
- `group_by_length`: False
|
| 331 |
+
- `length_column_name`: length
|
| 332 |
+
- `ddp_find_unused_parameters`: None
|
| 333 |
+
- `ddp_bucket_cap_mb`: None
|
| 334 |
+
- `ddp_broadcast_buffers`: False
|
| 335 |
+
- `dataloader_pin_memory`: True
|
| 336 |
+
- `dataloader_persistent_workers`: False
|
| 337 |
+
- `skip_memory_metrics`: True
|
| 338 |
+
- `use_legacy_prediction_loop`: False
|
| 339 |
+
- `push_to_hub`: False
|
| 340 |
+
- `resume_from_checkpoint`: None
|
| 341 |
+
- `hub_model_id`: None
|
| 342 |
+
- `hub_strategy`: every_save
|
| 343 |
+
- `hub_private_repo`: None
|
| 344 |
+
- `hub_always_push`: False
|
| 345 |
+
- `gradient_checkpointing`: False
|
| 346 |
+
- `gradient_checkpointing_kwargs`: None
|
| 347 |
+
- `include_inputs_for_metrics`: False
|
| 348 |
+
- `include_for_metrics`: []
|
| 349 |
+
- `eval_do_concat_batches`: True
|
| 350 |
+
- `fp16_backend`: auto
|
| 351 |
+
- `push_to_hub_model_id`: None
|
| 352 |
+
- `push_to_hub_organization`: None
|
| 353 |
+
- `mp_parameters`:
|
| 354 |
+
- `auto_find_batch_size`: False
|
| 355 |
+
- `full_determinism`: False
|
| 356 |
+
- `torchdynamo`: None
|
| 357 |
+
- `ray_scope`: last
|
| 358 |
+
- `ddp_timeout`: 1800
|
| 359 |
+
- `torch_compile`: False
|
| 360 |
+
- `torch_compile_backend`: None
|
| 361 |
+
- `torch_compile_mode`: None
|
| 362 |
+
- `dispatch_batches`: None
|
| 363 |
+
- `split_batches`: None
|
| 364 |
+
- `include_tokens_per_second`: False
|
| 365 |
+
- `include_num_input_tokens_seen`: False
|
| 366 |
+
- `neftune_noise_alpha`: None
|
| 367 |
+
- `optim_target_modules`: None
|
| 368 |
+
- `batch_eval_metrics`: False
|
| 369 |
+
- `eval_on_start`: False
|
| 370 |
+
- `use_liger_kernel`: False
|
| 371 |
+
- `eval_use_gather_object`: False
|
| 372 |
+
- `average_tokens_across_devices`: False
|
| 373 |
+
- `prompts`: None
|
| 374 |
+
- `batch_sampler`: batch_sampler
|
| 375 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 376 |
+
|
| 377 |
+
</details>
|
| 378 |
+
|
| 379 |
+
### Training Logs
|
| 380 |
+
<details><summary>Click to expand</summary>
|
| 381 |
+
|
| 382 |
+
| Epoch | Step | Training Loss | Validation Loss | pheno-dev_spearman_cosine | pheno-test_spearman_cosine |
|
| 383 |
+
|:------:|:-----:|:-------------:|:---------------:|:-------------------------:|:--------------------------:|
|
| 384 |
+
| 0.0730 | 500 | 7.3492 | - | - | - |
|
| 385 |
+
| 0.1459 | 1000 | 6.9718 | - | - | - |
|
| 386 |
+
| 0.2189 | 1500 | 6.7986 | - | - | - |
|
| 387 |
+
| 0.2919 | 2000 | 6.7157 | 8.8773 | 0.6305 | - |
|
| 388 |
+
| 0.3649 | 2500 | 6.6327 | - | - | - |
|
| 389 |
+
| 0.4378 | 3000 | 6.5661 | - | - | - |
|
| 390 |
+
| 0.5108 | 3500 | 6.5309 | - | - | - |
|
| 391 |
+
| 0.5838 | 4000 | 6.4737 | 10.0841 | 0.6116 | - |
|
| 392 |
+
| 0.6567 | 4500 | 6.4516 | - | - | - |
|
| 393 |
+
| 0.7297 | 5000 | 6.4235 | - | - | - |
|
| 394 |
+
| 0.8027 | 5500 | 6.3908 | - | - | - |
|
| 395 |
+
| 0.8757 | 6000 | 6.3602 | 10.8098 | 0.6071 | - |
|
| 396 |
+
| 0.9486 | 6500 | 6.3315 | - | - | - |
|
| 397 |
+
| 1.0216 | 7000 | 6.3236 | - | - | - |
|
| 398 |
+
| 1.0946 | 7500 | 6.2753 | - | - | - |
|
| 399 |
+
| 1.1675 | 8000 | 6.2845 | 11.9185 | 0.6263 | - |
|
| 400 |
+
| 1.2405 | 8500 | 6.254 | - | - | - |
|
| 401 |
+
| 1.3135 | 9000 | 6.2351 | - | - | - |
|
| 402 |
+
| 1.3865 | 9500 | 6.2017 | - | - | - |
|
| 403 |
+
| 1.4594 | 10000 | 6.2138 | 12.3766 | 0.6161 | - |
|
| 404 |
+
| 1.5324 | 10500 | 6.2066 | - | - | - |
|
| 405 |
+
| 1.6054 | 11000 | 6.1834 | - | - | - |
|
| 406 |
+
| 1.6783 | 11500 | 6.1937 | - | - | - |
|
| 407 |
+
| 1.7513 | 12000 | 6.1661 | 12.9426 | 0.6113 | - |
|
| 408 |
+
| 1.8243 | 12500 | 6.1362 | - | - | - |
|
| 409 |
+
| 1.8973 | 13000 | 6.1065 | - | - | - |
|
| 410 |
+
| 1.9702 | 13500 | 6.1371 | - | - | - |
|
| 411 |
+
| 2.0432 | 14000 | 6.0983 | 13.5966 | 0.6156 | - |
|
| 412 |
+
| 2.1162 | 14500 | 6.0978 | - | - | - |
|
| 413 |
+
| 2.1891 | 15000 | 6.0767 | - | - | - |
|
| 414 |
+
| 2.2621 | 15500 | 6.066 | - | - | - |
|
| 415 |
+
| 2.3351 | 16000 | 6.0739 | 13.9316 | 0.6260 | - |
|
| 416 |
+
| 2.4081 | 16500 | 6.0635 | - | - | - |
|
| 417 |
+
| 2.4810 | 17000 | 6.0616 | - | - | - |
|
| 418 |
+
| 2.5540 | 17500 | 6.0219 | - | - | - |
|
| 419 |
+
| 2.6270 | 18000 | 6.0129 | 14.3098 | 0.6158 | - |
|
| 420 |
+
| 2.6999 | 18500 | 6.0414 | - | - | - |
|
| 421 |
+
| 2.7729 | 19000 | 6.0317 | - | - | - |
|
| 422 |
+
| 2.8459 | 19500 | 6.0158 | - | - | - |
|
| 423 |
+
| 2.9189 | 20000 | 6.0078 | 14.6487 | 0.6188 | - |
|
| 424 |
+
| 2.9918 | 20500 | 6.0295 | - | - | - |
|
| 425 |
+
| 3.0648 | 21000 | 5.9664 | - | - | - |
|
| 426 |
+
| 3.1378 | 21500 | 5.9682 | - | - | - |
|
| 427 |
+
| 3.2107 | 22000 | 5.9755 | 15.2314 | 0.6202 | - |
|
| 428 |
+
| 3.2837 | 22500 | 5.9608 | - | - | - |
|
| 429 |
+
| 3.3567 | 23000 | 5.9469 | - | - | - |
|
| 430 |
+
| 3.4297 | 23500 | 5.9673 | - | - | - |
|
| 431 |
+
| 3.5026 | 24000 | 5.9496 | 15.4385 | 0.6237 | - |
|
| 432 |
+
| 3.5756 | 24500 | 5.9148 | - | - | - |
|
| 433 |
+
| 3.6486 | 25000 | 5.9568 | - | - | - |
|
| 434 |
+
| 3.7215 | 25500 | 5.9135 | - | - | - |
|
| 435 |
+
| 3.7945 | 26000 | 5.9363 | 15.3029 | 0.6217 | - |
|
| 436 |
+
| 3.8675 | 26500 | 5.9096 | - | - | - |
|
| 437 |
+
| 3.9405 | 27000 | 5.9171 | - | - | - |
|
| 438 |
+
| 4.0134 | 27500 | 5.8955 | - | - | - |
|
| 439 |
+
| 4.0864 | 28000 | 5.861 | 15.3221 | 0.6265 | - |
|
| 440 |
+
| 4.1594 | 28500 | 5.8726 | - | - | - |
|
| 441 |
+
| 4.2323 | 29000 | 5.8835 | - | - | - |
|
| 442 |
+
| 4.3053 | 29500 | 5.8823 | - | - | - |
|
| 443 |
+
| 4.3783 | 30000 | 5.8702 | 15.7276 | 0.6266 | - |
|
| 444 |
+
| 4.4513 | 30500 | 5.8721 | - | - | - |
|
| 445 |
+
| 4.5242 | 31000 | 5.8988 | - | - | - |
|
| 446 |
+
| 4.5972 | 31500 | 5.8671 | - | - | - |
|
| 447 |
+
| 4.6702 | 32000 | 5.8705 | 15.9223 | 0.6212 | - |
|
| 448 |
+
| 4.7431 | 32500 | 5.8905 | - | - | - |
|
| 449 |
+
| 4.8161 | 33000 | 5.8634 | - | - | - |
|
| 450 |
+
| 4.8891 | 33500 | 5.8637 | - | - | - |
|
| 451 |
+
| 4.9621 | 34000 | 5.8385 | 16.1225 | 0.6045 | - |
|
| 452 |
+
| 5.0350 | 34500 | 5.8583 | - | - | - |
|
| 453 |
+
| 5.1080 | 35000 | 5.821 | - | - | - |
|
| 454 |
+
| 5.1810 | 35500 | 5.8219 | - | - | - |
|
| 455 |
+
| 5.2539 | 36000 | 5.8367 | 15.6937 | 0.6240 | - |
|
| 456 |
+
| 5.3269 | 36500 | 5.8245 | - | - | - |
|
| 457 |
+
| 5.3999 | 37000 | 5.8161 | - | - | - |
|
| 458 |
+
| 5.4729 | 37500 | 5.8138 | - | - | - |
|
| 459 |
+
| 5.5458 | 38000 | 5.815 | 15.7507 | 0.6279 | - |
|
| 460 |
+
| 5.6188 | 38500 | 5.8238 | - | - | - |
|
| 461 |
+
| 5.6918 | 39000 | 5.8235 | - | - | - |
|
| 462 |
+
| 5.7647 | 39500 | 5.8407 | - | - | - |
|
| 463 |
+
| 5.8377 | 40000 | 5.8258 | 15.8875 | 0.6213 | - |
|
| 464 |
+
| 5.9107 | 40500 | 5.7941 | - | - | - |
|
| 465 |
+
| 5.9837 | 41000 | 5.8301 | - | - | - |
|
| 466 |
+
| 6.0566 | 41500 | 5.7734 | - | - | - |
|
| 467 |
+
| 6.1296 | 42000 | 5.7759 | 16.0155 | 0.6212 | - |
|
| 468 |
+
| 6.2026 | 42500 | 5.7951 | - | - | - |
|
| 469 |
+
| 6.2755 | 43000 | 5.8023 | - | - | - |
|
| 470 |
+
| 6.3485 | 43500 | 5.7848 | - | - | - |
|
| 471 |
+
| 6.4215 | 44000 | 5.7774 | 16.0796 | 0.6152 | - |
|
| 472 |
+
| 6.4945 | 44500 | 5.7719 | - | - | - |
|
| 473 |
+
| 6.5674 | 45000 | 5.7822 | - | - | - |
|
| 474 |
+
| 6.6404 | 45500 | 5.7734 | - | - | - |
|
| 475 |
+
| 6.7134 | 46000 | 5.7856 | 16.2461 | 0.6142 | - |
|
| 476 |
+
| 6.7863 | 46500 | 5.7949 | - | - | - |
|
| 477 |
+
| 6.8593 | 47000 | 5.8346 | - | - | - |
|
| 478 |
+
| 6.9323 | 47500 | 5.7606 | - | - | - |
|
| 479 |
+
| 7.0053 | 48000 | 5.7839 | 16.0556 | 0.6249 | - |
|
| 480 |
+
| 7.0782 | 48500 | 5.7581 | - | - | - |
|
| 481 |
+
| 7.1512 | 49000 | 5.7472 | - | - | - |
|
| 482 |
+
| 7.2242 | 49500 | 5.7443 | - | - | - |
|
| 483 |
+
| 7.2971 | 50000 | 5.7481 | 16.1126 | 0.6248 | - |
|
| 484 |
+
| 7.3701 | 50500 | 5.7487 | - | - | - |
|
| 485 |
+
| 7.4431 | 51000 | 5.7443 | - | - | - |
|
| 486 |
+
| 7.5161 | 51500 | 5.76 | - | - | - |
|
| 487 |
+
| 7.5890 | 52000 | 5.7353 | 16.0932 | 0.6312 | - |
|
| 488 |
+
| 7.6620 | 52500 | 5.7632 | - | - | - |
|
| 489 |
+
| 7.7350 | 53000 | 5.7788 | - | - | - |
|
| 490 |
+
| 7.8079 | 53500 | 5.758 | - | - | - |
|
| 491 |
+
| 7.8809 | 54000 | 5.7324 | 16.1470 | 0.6247 | - |
|
| 492 |
+
| 7.9539 | 54500 | 5.7425 | - | - | - |
|
| 493 |
+
| 8.0269 | 55000 | 5.7416 | - | - | - |
|
| 494 |
+
| 8.0998 | 55500 | 5.7696 | - | - | - |
|
| 495 |
+
| 8.1728 | 56000 | 5.7493 | 16.2547 | 0.6313 | - |
|
| 496 |
+
| 8.2458 | 56500 | 5.7348 | - | - | - |
|
| 497 |
+
| 8.3187 | 57000 | 5.7173 | - | - | - |
|
| 498 |
+
| 8.3917 | 57500 | 5.7215 | - | - | - |
|
| 499 |
+
| 8.4647 | 58000 | 5.7163 | 16.3313 | 0.6237 | - |
|
| 500 |
+
| 8.5377 | 58500 | 5.722 | - | - | - |
|
| 501 |
+
| 8.6106 | 59000 | 5.7292 | - | - | - |
|
| 502 |
+
| 8.6836 | 59500 | 5.7295 | - | - | - |
|
| 503 |
+
| 8.7566 | 60000 | 5.7267 | 16.3434 | 0.6261 | - |
|
| 504 |
+
| 8.8295 | 60500 | 5.7207 | - | - | - |
|
| 505 |
+
| 8.9025 | 61000 | 5.7252 | - | - | - |
|
| 506 |
+
| 8.9755 | 61500 | 5.7061 | - | - | - |
|
| 507 |
+
| 9.0485 | 62000 | 5.7113 | 16.2999 | 0.6279 | - |
|
| 508 |
+
| 9.1214 | 62500 | 5.695 | - | - | - |
|
| 509 |
+
| 9.1944 | 63000 | 5.7152 | - | - | - |
|
| 510 |
+
| 9.2674 | 63500 | 5.7045 | - | - | - |
|
| 511 |
+
| 9.3403 | 64000 | 5.6907 | 16.2782 | 0.6264 | - |
|
| 512 |
+
| 9.4133 | 64500 | 5.7185 | - | - | - |
|
| 513 |
+
| 9.4863 | 65000 | 5.6903 | - | - | - |
|
| 514 |
+
| 9.5593 | 65500 | 5.705 | - | - | - |
|
| 515 |
+
| 9.6322 | 66000 | 5.7165 | 16.3625 | 0.6249 | - |
|
| 516 |
+
| 9.7052 | 66500 | 5.7027 | - | - | - |
|
| 517 |
+
| 9.7782 | 67000 | 5.7048 | - | - | - |
|
| 518 |
+
| 9.8511 | 67500 | 5.728 | - | - | - |
|
| 519 |
+
| 9.9241 | 68000 | 5.7111 | 16.3087 | 0.6250 | - |
|
| 520 |
+
| 9.9971 | 68500 | 5.7144 | - | - | - |
|
| 521 |
+
| 10.0 | 68520 | - | - | - | 0.7057 |
|
| 522 |
+
|
| 523 |
+
</details>
|
| 524 |
+
|
| 525 |
+
### Framework Versions
|
| 526 |
+
- Python: 3.10.16
|
| 527 |
+
- Sentence Transformers: 3.3.1
|
| 528 |
+
- Transformers: 4.48.1
|
| 529 |
+
- PyTorch: 2.5.1.post303
|
| 530 |
+
- Accelerate: 1.3.0
|
| 531 |
+
- Datasets: 2.14.4
|
| 532 |
+
- Tokenizers: 0.21.0
|
| 533 |
+
|
| 534 |
+
## Citation
|
| 535 |
+
|
| 536 |
+
### BibTeX
|
| 537 |
+
|
| 538 |
+
#### Sentence Transformers
|
| 539 |
+
```bibtex
|
| 540 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 541 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 542 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 543 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 544 |
+
month = "11",
|
| 545 |
+
year = "2019",
|
| 546 |
+
publisher = "Association for Computational Linguistics",
|
| 547 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 548 |
+
}
|
| 549 |
+
```
|
| 550 |
+
|
| 551 |
+
#### CoSENTLoss
|
| 552 |
+
```bibtex
|
| 553 |
+
@online{kexuefm-8847,
|
| 554 |
+
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
| 555 |
+
author={Su Jianlin},
|
| 556 |
+
year={2022},
|
| 557 |
+
month={Jan},
|
| 558 |
+
url={https://kexue.fm/archives/8847},
|
| 559 |
+
}
|
| 560 |
+
```
|
| 561 |
+
|
| 562 |
+
<!--
|
| 563 |
+
## Glossary
|
| 564 |
+
|
| 565 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 566 |
+
-->
|
| 567 |
+
|
| 568 |
+
<!--
|
| 569 |
+
## Model Card Authors
|
| 570 |
+
|
| 571 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 572 |
+
-->
|
| 573 |
+
|
| 574 |
+
<!--
|
| 575 |
+
## Model Card Contact
|
| 576 |
+
|
| 577 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 578 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"MPNetModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"bos_token_id": 0,
|
| 7 |
+
"dtype": "float32",
|
| 8 |
+
"eos_token_id": 2,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 768,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 3072,
|
| 14 |
+
"layer_norm_eps": 1e-05,
|
| 15 |
+
"max_position_embeddings": 514,
|
| 16 |
+
"model_type": "mpnet",
|
| 17 |
+
"num_attention_heads": 12,
|
| 18 |
+
"num_hidden_layers": 12,
|
| 19 |
+
"pad_token_id": 1,
|
| 20 |
+
"relative_attention_num_buckets": 32,
|
| 21 |
+
"transformers_version": "4.57.1",
|
| 22 |
+
"vocab_size": 30527
|
| 23 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "5.1.1",
|
| 4 |
+
"transformers": "4.57.1",
|
| 5 |
+
"pytorch": "2.8.0+cu126"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {
|
| 8 |
+
"query": "",
|
| 9 |
+
"document": ""
|
| 10 |
+
},
|
| 11 |
+
"default_prompt_name": null,
|
| 12 |
+
"similarity_fn_name": "cosine",
|
| 13 |
+
"model_type": "SentenceTransformer"
|
| 14 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:86fbf085e0ca76d528543fa7f538b718833b7138671186746ccaf6c5f20d5b73
|
| 3 |
+
size 437967672
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Dense",
|
| 18 |
+
"type": "sentence_transformers.models.Dense"
|
| 19 |
+
}
|
| 20 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 256,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "[UNK]",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": true,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"104": {
|
| 36 |
+
"content": "[UNK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"30526": {
|
| 44 |
+
"content": "<mask>",
|
| 45 |
+
"lstrip": true,
|
| 46 |
+
"normalized": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": true
|
| 50 |
+
}
|
| 51 |
+
},
|
| 52 |
+
"bos_token": "<s>",
|
| 53 |
+
"clean_up_tokenization_spaces": false,
|
| 54 |
+
"cls_token": "<s>",
|
| 55 |
+
"do_lower_case": true,
|
| 56 |
+
"eos_token": "</s>",
|
| 57 |
+
"extra_special_tokens": {},
|
| 58 |
+
"mask_token": "<mask>",
|
| 59 |
+
"max_length": 128,
|
| 60 |
+
"model_max_length": 256,
|
| 61 |
+
"pad_to_multiple_of": null,
|
| 62 |
+
"pad_token": "<pad>",
|
| 63 |
+
"pad_token_type_id": 0,
|
| 64 |
+
"padding_side": "right",
|
| 65 |
+
"sep_token": "</s>",
|
| 66 |
+
"stride": 0,
|
| 67 |
+
"strip_accents": null,
|
| 68 |
+
"tokenize_chinese_chars": true,
|
| 69 |
+
"tokenizer_class": "MPNetTokenizer",
|
| 70 |
+
"truncation_side": "right",
|
| 71 |
+
"truncation_strategy": "longest_first",
|
| 72 |
+
"unk_token": "[UNK]"
|
| 73 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|