ikedachin commited on
Commit
cbf3abf
1 Parent(s): fdbbb14

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md CHANGED
@@ -20,3 +20,70 @@ language:
20
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
 
22
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
 
22
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
23
+
24
+
25
+
26
+ ### 使用したdataset
27
+ 下記からランダムに5000データを抽出
28
+ - DeL-TaiseiOzaki/Tengentoppa-sft-v1.0
29
+ - llm-jp/magpie-sft-v1.0
30
+
31
+
32
+ ### 実行コード
33
+
34
+
35
+ ```:Python
36
+ from tqdm import tqdm
37
+ import os
38
+ import json
39
+
40
+ import torch
41
+ from unsloth import FastLanguageModel
42
+
43
+ from transformers import (
44
+ AutoTokenizer,
45
+ AutoModelForCausalLM,
46
+ BitsAndBytesConfig,
47
+ )
48
+
49
+ HF_TOKEN = "your-token"
50
+ model_name = "ikedachin/llm-jp-3-13b-finetune-2"
51
+
52
+ # QLoRAの設定
53
+ bnb_config = BitsAndBytesConfig(
54
+ load_in_4bit=True,
55
+ bnb_4bit_quant_type="nf4",
56
+ bnb_4bit_compute_dtype=torch.bfloat16,
57
+ bnb_4bit_use_double_quant=False,
58
+
59
+ )
60
+
61
+ # modelのダウンロード
62
+ model = AutoModelForCausalLM.from_pretrained(
63
+ model_name,
64
+ quantization_config=bnb_config,
65
+ device_map="auto",
66
+ token = HF_TOKEN
67
+ )
68
+
69
+ # tokenizerのダウンロード
70
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, token = HF_TOKEN)
71
+
72
+
73
+ prompt = "<ここに入力を入れる>"
74
+
75
+ # トークン化
76
+ tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
77
+
78
+ # 推論
79
+ with torch.no_grad():
80
+ outputs = model.generate(
81
+ tokenized_input,
82
+ max_new_tokens=300,
83
+ do_sample=False,
84
+ repetition_penalty=1.2
85
+ )[0]
86
+
87
+ # トークンから言葉にデコード
88
+ output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
89
+ ```