Initial commit
Browse files- README.md +36 -0
- a2c-Walker2DBulletEnv-v0.zip +3 -0
- a2c-Walker2DBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-Walker2DBulletEnv-v0/data +105 -0
- a2c-Walker2DBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-Walker2DBulletEnv-v0/policy.pth +3 -0
- a2c-Walker2DBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-Walker2DBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Walker2DBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 504.15 +/- 251.53
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: Walker2DBulletEnv-v0
|
20 |
+
type: Walker2DBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **Walker2DBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **Walker2DBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-Walker2DBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ccce12a5fab95f24f98a0aa54dd4fac879e085030070b0891bedeb854d5dcc43
|
3 |
+
size 120357
|
a2c-Walker2DBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-Walker2DBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f79ab3f6950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f79ab3f69e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f79ab3f6a70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f79ab3f6b00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f79ab3f6b90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f79ab3f6c20>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f79ab3f6cb0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f79ab3f6d40>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f79ab3f6dd0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f79ab3f6e60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f79ab3f6ef0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f79ab4449c0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASVTwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLFoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsWhZRoColDWAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxaFlGgKiUNYAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLFoWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsWhZRoKolDFgAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
22
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
6
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 1500000,
|
62 |
+
"_total_timesteps": 1500000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1658487168.3031085,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASV7QEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUJgAQAAEQ8lvgAAAABEnr407vTJPgAAAACsONo+AAAAAF9Ocb8BQJK/xizfPn0z2z5+eom9AnMYPiVrFD06nFI/eaPGPqqIob+wQIY+grYFwPzHt7wO0P8+e1IHP2L8pb4AAAAARJ6+NOOEjD4AAAAAkv/gPgAAAABiqYa/6gi6v55wzj6goCE/0LnSPQi7IT62p3u9Up1SP4IRxj5vb6C/kUGePlPQBcCa6vG9DtD/PntSBz/39b6+AAAAAESevjS8y7I+AAAAAEyR4j4AAAAAM1aJv5YSwL9YS8s+lgEhP5taIz5gxEo+s56OvbqbUj/ZZMY+fGKiv4yikj6nwQXAWDGVvA7Q/z57Ugc/lZuavgAAAABEnr40tGCmPgAAAAACYOU+AAAAALSlg7/bcba/Mv3TPpB5ID/JFM49TFIdPiQxVr2QnlI/xqvGPjOHor8FLpk+9LUFwI2Xm7wO0P8+e1IHP5R0lGIu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASV7QEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUJgAQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB5I4M/AAAAAHW3hD8AAAAAt2uqvQAAAAB4oYM/AAAAAPFPfj8AAAAAXdrivQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYlmIPwAAAAAtN4Y/AAAAAJFiuT0AAAAA7v96PwAAAACqEoQ/AAAAAKgx1L0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBtAdz8AAAAATmWDPwAAAAAFB7S8AAAAABWRhD8AAAAA82twPwAAAADlLrY9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID1joc/AAAAANtTdT8AAAAAcB3WOwAAAAAMDHw/AAAAALXRgT8AAAAAZtervQAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASV8QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEg2U7jkuHyMAWyUSzSMAXSUR0CyGGOZG8VYdX2UKGgGR0BGW5eiSJTEaAdLL2gIR0CyGG/47A+IdX2UKGgGR0BFsEtuk1uSaAdLL2gIR0CyGIHIZIhAdX2UKGgGR0BJl0o0ALiNaAdLNmgIR0CyGIVtTDO1dX2UKGgGR0BHSvPTodMkaAdLM2gIR0CyGKluWKMvdX2UKGgGR0BE61rqMWGiaAdLL2gIR0CyGLDe9Ba+dX2UKGgGR0BHx1toBaLXaAdLM2gIR0CyGMcXvYvndX2UKGgGR0BJa1hb4agmaAdLOWgIR0CyGNM3qAz6dX2UKGgGR0BBocn/kvK2aAdLLGgIR0CyGOyIcinpdX2UKGgGR0BI3Jb+tKZlaAdLNmgIR0CyGPQWac7RdX2UKGgGR0BOdyZ0CA+ZaAdLR2gIR0CyGShAGB4EdX2UKGgGR0BK+y7Xg9/0aAdLQGgIR0CyGSqsIVuadX2UKGgGR0BJlcf3evZAaAdLOGgIR0CyGTtcv/R3dX2UKGgGR0BI7OfmLcbjaAdLNmgIR0CyGUA5Jbt7dX2UKGgGR0BG58SwnpjdaAdLNGgIR0CyGYSBshxHdX2UKGgGR0BOZU/fO2RaaAdLSWgIR0CyGY8+7lJZdX2UKGgGR0BOaGXw9aEBaAdLTGgIR0CyGZZH/cWTdX2UKGgGR0BNYkidJ8OTaAdLQGgIR0CyGZj3AVO9dX2UKGgGR0BEa2dNFjNIaAdLLGgIR0CyGdJe7cwhdX2UKGgGR0BHcmG/N7jUaAdLNmgIR0CyGeS1Z1V6dX2UKGgGR0BPU0pd8iOeaAdLTmgIR0CyGfD94u9OdX2UKGgGR0BOTOTzND+jaAdLSWgIR0CyGfU3Ov+wdX2UKGgGR0BLEgYxcmjTaAdLPWgIR0CyGkb0J4SpdX2UKGgGR0BQmIZIg/1QaAdLUmgIR0CyGkcpsoDxdX2UKGgGR0BJtF1jiGWVaAdLO2gIR0CyGkiJCSiedX2UKGgGR0BShh8c+7lJaAdLYWgIR0CyGm6M3qA0dX2UKGgGR0BIzt9H+ZPVaAdLPWgIR0CyGp2xIJ7cdX2UKGgGR0BQUdU0elsQaAdLX2gIR0CyGsx8MNMHdX2UKGgGR0BP5RkEs8PnaAdLYGgIR0CyGs8mjTKDdX2UKGgGR0BQPLqUu+RHaAdLXWgIR0CyGu/qs2ehdX2UKGgGR0BJYJa7mMfjaAdLTWgIR0CyGz4j8k2QdX2UKGgGR0BSABMvh60IaAdLc2gIR0CyG0CkO7QLdX2UKGgGR0BGmoRywOe8aAdLO2gIR0CyG0WWD6FedX2UKGgGR0BPvev6j323aAdLXWgIR0CyG1Ivi97GdX2UKGgGR0BLUSX2M85kaAdLTGgIR0CyG653C9AYdX2UKGgGR0BSRKqCHymRaAdLY2gIR0CyG9F3t8eCdX2UKGgGR0BSVIzSCvovaAdLdGgIR0CyG+JDNQj2dX2UKGgGR0BRjjHS4OMEaAdLemgIR0CyG/zFqBVddX2UKGgGR0BK5fwI+nqFaAdLQWgIR0CyHAa46Oo6dX2UKGgGR0BOYXHR1HOKaAdLS2gIR0CyHDca86FNdX2UKGgGR0BSI74WUKRdaAdLUGgIR0CyHFIhdMTOdX2UKGgGR0BM/Lgflp49aAdLT2gIR0CyHHUJOWSmdX2UKGgGR0BVQ7655JK8aAdLfGgIR0CyHKr7fpEAdX2UKGgGR0BSdeDvmYBvaAdLeWgIR0CyHOCe/YapdX2UKGgGR0BQD2PcSGrTaAdLW2gIR0CyHPHGjsUqdX2UKGgGR0BYfpK8L8aXaAdLdWgIR0CyHPIcrAgxdX2UKGgGR0BQ7eZTho/SaAdLamgIR0CyHT0ahpQDdX2UKGgGR0BN9can752yaAdLYGgIR0CyHWhy4nWrdX2UKGgGR0BNDtFz+3pfaAdLXGgIR0CyHXUyHmA9dX2UKGgGR0BUxWvnr6ciaAdLd2gIR0CyHZuS0Sh8dX2UKGgGR0BMDbtRekYXaAdLVGgIR0CyHeshLXcydX2UKGgGR0BVfakEcKgJaAdLemgIR0CyHhbvPToddX2UKGgGR0BTs3h0hePaaAdLcWgIR0CyHjz9S/CZdX2UKGgGR0BFODKHO8kEaAdLRmgIR0CyHqWCyyD7dX2UKGgGR0BdPz6nBLwnaAdLq2gIR0CyHwqpxWDIdX2UKGgGR0BeBK2fChvjaAdLwGgIR0CyIBdHDrJKdX2UKGgGR0BGNSWiUPhAaAdLPmgIR0CyIG6UFB6bdX2UKGgGR0BrcY7FKkEcaAdNSAFoCEdAsiBu74BV/HV9lChoBkdAQqHMINVinmgHSzBoCEdAsiCyGN70F3V9lChoBkdAS9bCaZx7zGgHS1BoCEdAsiDdgF5fMXV9lChoBkdAUFf4tYjjaWgHS0xoCEdAsiEasIVuaXV9lChoBkdAP0SosI3R5WgHSzFoCEdAsiEiKiwjdHV9lChoBkdAUYVy5qdpZmgHS2doCEdAsiG5M10knnV9lChoBkdAUcCEdvKlpGgHS2JoCEdAsiJCq4pc5nV9lChoBkdAhKS3cpLEk2gHTegDaAhHQLIiyd5prUN1fZQoaAZHQFgCo60Y0l9oB0t8aAhHQLIi9Tj/+851fZQoaAZHQIUMBmXgLqloB03oA2gIR0CyI3k+PikwdX2UKGgGR0BaS2ce8wpOaAdLqGgIR0CyI7du+AVgdX2UKGgGR0BMFupbUwztaAdLV2gIR0CyI/M9r434dX2UKGgGR0Bjz3hl18suaAdL2mgIR0CyJCpI6KcedX2UKGgGR0BRNAx33YcvaAdLaGgIR0CyJEnzQNTcdX2UKGgGR0BjMFkSVW0aaAdL2mgIR0CyJShdhRZVdX2UKGgGR0Bc0lvhqCYkaAdLk2gIR0CyJfj9n9NvdX2UKGgGR0CFR9aSs8xLaAdN6ANoCEdAsiarjABT43V9lChoBkdAYk9Ud7v5QGgHS9NoCEdAsicrNB4UvnV9lChoBkdAdNgovSMLnmgHTeYBaAhHQLIpbzyjHn51fZQoaAZHQHPEyksSTQpoB023AWgIR0CyKaVFMIu5dX2UKGgGR0CFHfSl3yI6aAdN6ANoCEdAsinFyMkyDnV9lChoBkdAhPBVWsA/92gHTegDaAhHQLIp5nFo+Oh1fZQoaAZHQEKnfTCtRvZoB0spaAhHQLIp/rNnoPl1fZQoaAZHQFs6faYeDFtoB0uYaAhHQLIqREYwZfl1fZQoaAZHQEO4A80UGmloB0syaAhHQLIqiy2x6fJ1fZQoaAZHQFww62OQyRBoB0ujaAhHQLIqytSAH3V1fZQoaAZHQG7aBegL7XRoB008AWgIR0CyK1yLVFx5dX2UKGgGR0BJ+oPTXrdFaAdLPWgIR0CyK7afJ3gUdX2UKGgGR0CFkaEFnqVyaAdN6ANoCEdAsi96RfWtl3V9lChoBkdAhYZz+FUQ1GgHTegDaAhHQLIwB0TURWd1fZQoaAZHQIbm+NT987ZoB03oA2gIR0CyMEnk5p8GdX2UKGgGR0CFgKnn+yZ8aAdN6ANoCEdAsjE4keIVM3V9lChoBkdAZh+26TW5H2gHS+poCEdAsjGWO3lS0nV9lChoBkdAUi4+3Ytg8mgHS09oCEdAsjGnmKZUk3V9lChoBkdAhPe6cy31BmgHTegDaAhHQLI1EA6uGK11fZQoaAZHQH42n0Cih39oB02iAmgIR0CyNWkedTYNdX2UKGgGR0B/HYtZmqYJaAdNtgJoCEdAsjVz9fkWAXV9lChoBkdAUxdQzk6tDGgHS1VoCEdAsjWFiF0xM3V9lChoBkdAhQLygPEsKGgHTegDaAhHQLI1l+4LCvZ1fZQoaAZHQGGynCGetjloB0uZaAhHQLI2QIeYD1Z1fZQoaAZHQFQCTZxrBTJoB0tXaAhHQLI2ui0OVgR1fZQoaAZHQGbcbExZdOZoB0vZaAhHQLI2zIzWPLh1fZQoaAZHQFRInqFAVwhoB0tZaAhHQLI3N/hVENR1ZS4="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 46875,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-Walker2DBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bada1ab4d198e3bc14308bcad7c985970a5223380b30f9c619a674709eac8edf
|
3 |
+
size 52030
|
a2c-Walker2DBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac4b4a3091c1f3cd6c021e77fa73a9ca93918a1631f091636132bbc522f62b12
|
3 |
+
size 52670
|
a2c-Walker2DBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-Walker2DBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f79ab3f6950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f79ab3f69e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f79ab3f6a70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f79ab3f6b00>", "_build": "<function ActorCriticPolicy._build at 0x7f79ab3f6b90>", "forward": "<function ActorCriticPolicy.forward at 0x7f79ab3f6c20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f79ab3f6cb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f79ab3f6d40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f79ab3f6dd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f79ab3f6e60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f79ab3f6ef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f79ab4449c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVTwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLFoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsWhZRoColDWAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxaFlGgKiUNYAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLFoWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsWhZRoKolDFgAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [22], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1500000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658487168.3031085, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASV7QEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUJgAQAAEQ8lvgAAAABEnr407vTJPgAAAACsONo+AAAAAF9Ocb8BQJK/xizfPn0z2z5+eom9AnMYPiVrFD06nFI/eaPGPqqIob+wQIY+grYFwPzHt7wO0P8+e1IHP2L8pb4AAAAARJ6+NOOEjD4AAAAAkv/gPgAAAABiqYa/6gi6v55wzj6goCE/0LnSPQi7IT62p3u9Up1SP4IRxj5vb6C/kUGePlPQBcCa6vG9DtD/PntSBz/39b6+AAAAAESevjS8y7I+AAAAAEyR4j4AAAAAM1aJv5YSwL9YS8s+lgEhP5taIz5gxEo+s56OvbqbUj/ZZMY+fGKiv4yikj6nwQXAWDGVvA7Q/z57Ugc/lZuavgAAAABEnr40tGCmPgAAAAACYOU+AAAAALSlg7/bcba/Mv3TPpB5ID/JFM49TFIdPiQxVr2QnlI/xqvGPjOHor8FLpk+9LUFwI2Xm7wO0P8+e1IHP5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASV7QEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUJgAQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB5I4M/AAAAAHW3hD8AAAAAt2uqvQAAAAB4oYM/AAAAAPFPfj8AAAAAXdrivQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYlmIPwAAAAAtN4Y/AAAAAJFiuT0AAAAA7v96PwAAAACqEoQ/AAAAAKgx1L0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBtAdz8AAAAATmWDPwAAAAAFB7S8AAAAABWRhD8AAAAA82twPwAAAADlLrY9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID1joc/AAAAANtTdT8AAAAAcB3WOwAAAAAMDHw/AAAAALXRgT8AAAAAZtervQAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASV8QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEg2U7jkuHyMAWyUSzSMAXSUR0CyGGOZG8VYdX2UKGgGR0BGW5eiSJTEaAdLL2gIR0CyGG/47A+IdX2UKGgGR0BFsEtuk1uSaAdLL2gIR0CyGIHIZIhAdX2UKGgGR0BJl0o0ALiNaAdLNmgIR0CyGIVtTDO1dX2UKGgGR0BHSvPTodMkaAdLM2gIR0CyGKluWKMvdX2UKGgGR0BE61rqMWGiaAdLL2gIR0CyGLDe9Ba+dX2UKGgGR0BHx1toBaLXaAdLM2gIR0CyGMcXvYvndX2UKGgGR0BJa1hb4agmaAdLOWgIR0CyGNM3qAz6dX2UKGgGR0BBocn/kvK2aAdLLGgIR0CyGOyIcinpdX2UKGgGR0BI3Jb+tKZlaAdLNmgIR0CyGPQWac7RdX2UKGgGR0BOdyZ0CA+ZaAdLR2gIR0CyGShAGB4EdX2UKGgGR0BK+y7Xg9/0aAdLQGgIR0CyGSqsIVuadX2UKGgGR0BJlcf3evZAaAdLOGgIR0CyGTtcv/R3dX2UKGgGR0BI7OfmLcbjaAdLNmgIR0CyGUA5Jbt7dX2UKGgGR0BG58SwnpjdaAdLNGgIR0CyGYSBshxHdX2UKGgGR0BOZU/fO2RaaAdLSWgIR0CyGY8+7lJZdX2UKGgGR0BOaGXw9aEBaAdLTGgIR0CyGZZH/cWTdX2UKGgGR0BNYkidJ8OTaAdLQGgIR0CyGZj3AVO9dX2UKGgGR0BEa2dNFjNIaAdLLGgIR0CyGdJe7cwhdX2UKGgGR0BHcmG/N7jUaAdLNmgIR0CyGeS1Z1V6dX2UKGgGR0BPU0pd8iOeaAdLTmgIR0CyGfD94u9OdX2UKGgGR0BOTOTzND+jaAdLSWgIR0CyGfU3Ov+wdX2UKGgGR0BLEgYxcmjTaAdLPWgIR0CyGkb0J4SpdX2UKGgGR0BQmIZIg/1QaAdLUmgIR0CyGkcpsoDxdX2UKGgGR0BJtF1jiGWVaAdLO2gIR0CyGkiJCSiedX2UKGgGR0BShh8c+7lJaAdLYWgIR0CyGm6M3qA0dX2UKGgGR0BIzt9H+ZPVaAdLPWgIR0CyGp2xIJ7cdX2UKGgGR0BQUdU0elsQaAdLX2gIR0CyGsx8MNMHdX2UKGgGR0BP5RkEs8PnaAdLYGgIR0CyGs8mjTKDdX2UKGgGR0BQPLqUu+RHaAdLXWgIR0CyGu/qs2ehdX2UKGgGR0BJYJa7mMfjaAdLTWgIR0CyGz4j8k2QdX2UKGgGR0BSABMvh60IaAdLc2gIR0CyG0CkO7QLdX2UKGgGR0BGmoRywOe8aAdLO2gIR0CyG0WWD6FedX2UKGgGR0BPvev6j323aAdLXWgIR0CyG1Ivi97GdX2UKGgGR0BLUSX2M85kaAdLTGgIR0CyG653C9AYdX2UKGgGR0BSRKqCHymRaAdLY2gIR0CyG9F3t8eCdX2UKGgGR0BSVIzSCvovaAdLdGgIR0CyG+JDNQj2dX2UKGgGR0BRjjHS4OMEaAdLemgIR0CyG/zFqBVddX2UKGgGR0BK5fwI+nqFaAdLQWgIR0CyHAa46Oo6dX2UKGgGR0BOYXHR1HOKaAdLS2gIR0CyHDca86FNdX2UKGgGR0BSI74WUKRdaAdLUGgIR0CyHFIhdMTOdX2UKGgGR0BM/Lgflp49aAdLT2gIR0CyHHUJOWSmdX2UKGgGR0BVQ7655JK8aAdLfGgIR0CyHKr7fpEAdX2UKGgGR0BSdeDvmYBvaAdLeWgIR0CyHOCe/YapdX2UKGgGR0BQD2PcSGrTaAdLW2gIR0CyHPHGjsUqdX2UKGgGR0BYfpK8L8aXaAdLdWgIR0CyHPIcrAgxdX2UKGgGR0BQ7eZTho/SaAdLamgIR0CyHT0ahpQDdX2UKGgGR0BN9can752yaAdLYGgIR0CyHWhy4nWrdX2UKGgGR0BNDtFz+3pfaAdLXGgIR0CyHXUyHmA9dX2UKGgGR0BUxWvnr6ciaAdLd2gIR0CyHZuS0Sh8dX2UKGgGR0BMDbtRekYXaAdLVGgIR0CyHeshLXcydX2UKGgGR0BVfakEcKgJaAdLemgIR0CyHhbvPToddX2UKGgGR0BTs3h0hePaaAdLcWgIR0CyHjz9S/CZdX2UKGgGR0BFODKHO8kEaAdLRmgIR0CyHqWCyyD7dX2UKGgGR0BdPz6nBLwnaAdLq2gIR0CyHwqpxWDIdX2UKGgGR0BeBK2fChvjaAdLwGgIR0CyIBdHDrJKdX2UKGgGR0BGNSWiUPhAaAdLPmgIR0CyIG6UFB6bdX2UKGgGR0BrcY7FKkEcaAdNSAFoCEdAsiBu74BV/HV9lChoBkdAQqHMINVinmgHSzBoCEdAsiCyGN70F3V9lChoBkdAS9bCaZx7zGgHS1BoCEdAsiDdgF5fMXV9lChoBkdAUFf4tYjjaWgHS0xoCEdAsiEasIVuaXV9lChoBkdAP0SosI3R5WgHSzFoCEdAsiEiKiwjdHV9lChoBkdAUYVy5qdpZmgHS2doCEdAsiG5M10knnV9lChoBkdAUcCEdvKlpGgHS2JoCEdAsiJCq4pc5nV9lChoBkdAhKS3cpLEk2gHTegDaAhHQLIiyd5prUN1fZQoaAZHQFgCo60Y0l9oB0t8aAhHQLIi9Tj/+851fZQoaAZHQIUMBmXgLqloB03oA2gIR0CyI3k+PikwdX2UKGgGR0BaS2ce8wpOaAdLqGgIR0CyI7du+AVgdX2UKGgGR0BMFupbUwztaAdLV2gIR0CyI/M9r434dX2UKGgGR0Bjz3hl18suaAdL2mgIR0CyJCpI6KcedX2UKGgGR0BRNAx33YcvaAdLaGgIR0CyJEnzQNTcdX2UKGgGR0BjMFkSVW0aaAdL2mgIR0CyJShdhRZVdX2UKGgGR0Bc0lvhqCYkaAdLk2gIR0CyJfj9n9NvdX2UKGgGR0CFR9aSs8xLaAdN6ANoCEdAsiarjABT43V9lChoBkdAYk9Ud7v5QGgHS9NoCEdAsicrNB4UvnV9lChoBkdAdNgovSMLnmgHTeYBaAhHQLIpbzyjHn51fZQoaAZHQHPEyksSTQpoB023AWgIR0CyKaVFMIu5dX2UKGgGR0CFHfSl3yI6aAdN6ANoCEdAsinFyMkyDnV9lChoBkdAhPBVWsA/92gHTegDaAhHQLIp5nFo+Oh1fZQoaAZHQEKnfTCtRvZoB0spaAhHQLIp/rNnoPl1fZQoaAZHQFs6faYeDFtoB0uYaAhHQLIqREYwZfl1fZQoaAZHQEO4A80UGmloB0syaAhHQLIqiy2x6fJ1fZQoaAZHQFww62OQyRBoB0ujaAhHQLIqytSAH3V1fZQoaAZHQG7aBegL7XRoB008AWgIR0CyK1yLVFx5dX2UKGgGR0BJ+oPTXrdFaAdLPWgIR0CyK7afJ3gUdX2UKGgGR0CFkaEFnqVyaAdN6ANoCEdAsi96RfWtl3V9lChoBkdAhYZz+FUQ1GgHTegDaAhHQLIwB0TURWd1fZQoaAZHQIbm+NT987ZoB03oA2gIR0CyMEnk5p8GdX2UKGgGR0CFgKnn+yZ8aAdN6ANoCEdAsjE4keIVM3V9lChoBkdAZh+26TW5H2gHS+poCEdAsjGWO3lS0nV9lChoBkdAUi4+3Ytg8mgHS09oCEdAsjGnmKZUk3V9lChoBkdAhPe6cy31BmgHTegDaAhHQLI1EA6uGK11fZQoaAZHQH42n0Cih39oB02iAmgIR0CyNWkedTYNdX2UKGgGR0B/HYtZmqYJaAdNtgJoCEdAsjVz9fkWAXV9lChoBkdAUxdQzk6tDGgHS1VoCEdAsjWFiF0xM3V9lChoBkdAhQLygPEsKGgHTegDaAhHQLI1l+4LCvZ1fZQoaAZHQGGynCGetjloB0uZaAhHQLI2QIeYD1Z1fZQoaAZHQFQCTZxrBTJoB0tXaAhHQLI2ui0OVgR1fZQoaAZHQGbcbExZdOZoB0vZaAhHQLI2zIzWPLh1fZQoaAZHQFRInqFAVwhoB0tZaAhHQLI3N/hVENR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 46875, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (191 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 504.14877816557566, "std_reward": 251.52744694520058, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-22T11:38:08.283502"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4210d47d80160b92f90ff280251369a7756e02288aa4d781aaeb103b91ee5ff6
|
3 |
+
size 2491
|