|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch HAT model.""" |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from packaging import version |
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss, CosineEmbeddingLoss |
|
from torch.nn.functional import normalize |
|
|
|
from transformers.file_utils import ( |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
) |
|
from transformers.modeling_outputs import ( |
|
ModelOutput, |
|
MaskedLMOutput, |
|
MultipleChoiceModelOutput, |
|
QuestionAnsweringModelOutput, |
|
SequenceClassifierOutput, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import logging |
|
from transformers.models.roberta.modeling_roberta import RobertaAttention, RobertaIntermediate, RobertaOutput |
|
from transformers.activations import gelu |
|
from transformers import PretrainedConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "kiddothe2b/hierarchical-transformer-base-4096" |
|
_CONFIG_FOR_DOC = "HATConfig" |
|
_TOKENIZER_FOR_DOC = "HATTokenizer" |
|
|
|
HAT_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"kiddothe2b/hierarchical-transformer-base-4096", |
|
"kiddothe2b/adhoc-hierarchical-transformer-base-4096", |
|
|
|
] |
|
|
|
|
|
def transform_tokens2sentences(hidden_states, num_sentences, max_sentence_length): |
|
|
|
seg_hidden_states = torch.reshape(hidden_states, (hidden_states.size(0), num_sentences, max_sentence_length, hidden_states.size(-1))) |
|
|
|
hidden_states_reshape = seg_hidden_states.contiguous().view(hidden_states.size(0) * num_sentences, |
|
max_sentence_length, seg_hidden_states.size(-1)) |
|
|
|
return hidden_states_reshape |
|
|
|
|
|
def transform_masks2sentences(hidden_states, num_sentences, max_sentence_length): |
|
|
|
seg_hidden_states = torch.reshape(hidden_states, (hidden_states.size(0), 1, 1, num_sentences, max_sentence_length)) |
|
|
|
hidden_states_reshape = seg_hidden_states.contiguous().view(hidden_states.size(0) * num_sentences, |
|
1, 1, seg_hidden_states.size(-1)) |
|
|
|
return hidden_states_reshape |
|
|
|
|
|
def transform_sentences2tokens(seg_hidden_states, num_sentences, max_sentence_length): |
|
|
|
hidden_states = seg_hidden_states.contiguous().view(seg_hidden_states.size(0) // num_sentences, num_sentences, |
|
max_sentence_length, seg_hidden_states.size(-1)) |
|
|
|
hidden_states = hidden_states.contiguous().view(hidden_states.size(0), num_sentences * max_sentence_length, |
|
hidden_states.size(-1)) |
|
return hidden_states |
|
|
|
|
|
@dataclass |
|
class BaseModelOutputWithSentenceAttentions(ModelOutput): |
|
""" |
|
Base class for model's outputs, with potential hidden states and attentions. |
|
|
|
Args: |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) |
|
of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
sentence_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. |
|
|
|
Sentence attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
last_hidden_state: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
sentence_attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@dataclass |
|
class SequenceRepresentationOutput(ModelOutput): |
|
""" |
|
Base class for outputs of document representation models. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Classification (or regression if config.num_labels==1) loss. |
|
representations (`torch.FloatTensor` of shape `(batch_size, config.hidden_size)`): |
|
Latent representations. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of |
|
shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
representations: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@dataclass |
|
class HATForBoWPreTrainingOutput(ModelOutput): |
|
""" |
|
Output type of [`HATForPreTraining`]. |
|
|
|
Args: |
|
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): |
|
Total loss as the sum of pre-training losses. |
|
mlm_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): |
|
The masked language modeling loss. |
|
srp_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): |
|
The sentence representation prediction loss. |
|
drp_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): |
|
The document representation prediction loss. |
|
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
document_prediction_logits (`torch.FloatTensor` of shape `(batch_size, config.hidden_size)`): |
|
Prediction scores of the document prediction head (scores for each vocabulary token before Sigmoid). |
|
sentence_prediction_logits (`torch.FloatTensor` of shape `(batch_size, config.hidden_size)`): |
|
Prediction scores of the sentence prediction head (scores for each vocabulary token before Sigmoid). |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of |
|
shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
mlm_loss: Optional[torch.FloatTensor] = None |
|
srp_loss: Optional[torch.FloatTensor] = None |
|
drp_loss: Optional[torch.FloatTensor] = None |
|
prediction_logits: torch.FloatTensor = None |
|
document_prediction_logits: torch.FloatTensor = None |
|
sentence_prediction_logits: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
@dataclass |
|
class HATForVICRegPreTrainingOutput(ModelOutput): |
|
""" |
|
Output type of [`HATForVICRegPreTraining`]. |
|
|
|
Args: |
|
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): |
|
Total loss as the sum of pre-training losses. |
|
mlm_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): |
|
The masked language modeling loss. |
|
sent_sim_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): |
|
The sentence similarity loss. |
|
doc_sim_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): |
|
The document similarity loss. |
|
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
document_prediction_logits (`torch.FloatTensor` of shape `(batch_size, config.hidden_size)`): |
|
Prediction scores of the document prediction head (scores for each vocabulary token before Sigmoid). |
|
sentence_prediction_logits (`torch.FloatTensor` of shape `(batch_size, config.hidden_size)`): |
|
Prediction scores of the sentence prediction head (scores for each vocabulary token before Sigmoid). |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of |
|
shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
mlm_loss: Optional[torch.FloatTensor] = None |
|
sent_sim_loss: Optional[torch.FloatTensor] = None |
|
sent_std_loss: Optional[torch.FloatTensor] = None |
|
sent_cov_loss: Optional[torch.FloatTensor] = None |
|
pre_sent_std_loss: Optional[torch.FloatTensor] = None |
|
pre_sent_cov_loss: Optional[torch.FloatTensor] = None |
|
doc_sim_loss: Optional[torch.FloatTensor] = None |
|
doc_std_loss: Optional[torch.FloatTensor] = None |
|
doc_cov_loss: Optional[torch.FloatTensor] = None |
|
pre_doc_std_loss: Optional[torch.FloatTensor] = None |
|
pre_doc_cov_loss: Optional[torch.FloatTensor] = None |
|
prediction_logits: torch.FloatTensor = None |
|
document_prediction_logits: torch.FloatTensor = None |
|
sentence_prediction_logits: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
@dataclass |
|
class HATForSimCLRPreTrainingOutput(ModelOutput): |
|
""" |
|
Output type of [`HATForSimCLRPreTraining`]. |
|
|
|
Args: |
|
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): |
|
Total loss as the sum of pre-training losses. |
|
mlm_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): |
|
The masked language modeling loss. |
|
sent_sim_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): |
|
The sentence similarity loss. |
|
doc_sim_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): |
|
The document similarity loss. |
|
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
document_prediction_logits (`torch.FloatTensor` of shape `(batch_size, config.hidden_size)`): |
|
Prediction scores of the document prediction head (scores for each vocabulary token before Sigmoid). |
|
sentence_prediction_logits (`torch.FloatTensor` of shape `(batch_size, config.hidden_size)`): |
|
Prediction scores of the sentence prediction head (scores for each vocabulary token before Sigmoid). |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of |
|
shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
mlm_loss: Optional[torch.FloatTensor] = None |
|
sent_contr_loss: Optional[torch.FloatTensor] = None |
|
sent_std_loss: Optional[torch.FloatTensor] = None |
|
sent_cov_loss: Optional[torch.FloatTensor] = None |
|
doc_contr_loss: Optional[torch.FloatTensor] = None |
|
doc_std_loss: Optional[torch.FloatTensor] = None |
|
doc_cov_loss: Optional[torch.FloatTensor] = None |
|
prediction_logits: torch.FloatTensor = None |
|
document_prediction_logits: torch.FloatTensor = None |
|
sentence_prediction_logits: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@dataclass |
|
class SentenceClassifierOutput(ModelOutput): |
|
""" |
|
Base class for outputs of sentence classification models. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) : |
|
Classification loss. |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`): |
|
Classification scores (before SoftMax). |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
sentence_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
loss: Optional[Tuple[torch.FloatTensor]] = None |
|
logits: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
sentence_attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
class HATConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a :class:`~transformers.HAT`. |
|
It is used to instantiate a HAT model according to the specified arguments, |
|
defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration |
|
to that of the HAT `kiddothe2b/hat-base-4096 <https://huggingface.co/kiddothe2b/hat-base-4096>`__ architecture. |
|
|
|
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model |
|
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. |
|
|
|
|
|
Args: |
|
vocab_size (:obj:`int`, `optional`, defaults to 30522): |
|
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the |
|
:obj:`inputs_ids` passed when calling :class:`~transformers.BertModel` or |
|
:class:`~transformers.TFBertModel`. |
|
max_sentences (:obj:`int`, `optional`, defaults to 64): |
|
The maximum number of sentences that this model might ever be used with. |
|
max_sentence_size (:obj:`int`, `optional`, defaults to 128): |
|
The maximum sentence length that this model might ever be used with. |
|
model_max_length (:obj:`int`, `optional`, defaults to 8192): |
|
The maximum sequence length (max_sentences * max_sentence_size) that this model might ever be used with |
|
encoder_layout (:obj:`Dict`): |
|
The sentence/document encoder layout. |
|
hidden_size (:obj:`int`, `optional`, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
num_hidden_layers (:obj:`int`, `optional`, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (:obj:`int`, `optional`, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
intermediate_size (:obj:`int`, `optional`, defaults to 3072): |
|
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. |
|
hidden_act (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, |
|
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported. |
|
hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): |
|
The dropout ratio for the attention probabilities. |
|
max_position_embeddings (:obj:`int`, `optional`, defaults to 512): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
type_vocab_size (:obj:`int`, `optional`, defaults to 2): |
|
The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.BertModel` or |
|
:class:`~transformers.TFBertModel`. |
|
initializer_range (:obj:`float`, `optional`, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12): |
|
The epsilon used by the layer normalization layers. |
|
position_embedding_type (:obj:`str`, `optional`, defaults to :obj:`"absolute"`): |
|
Type of position embedding. Choose one of :obj:`"absolute"`, :obj:`"relative_key"`, |
|
:obj:`"relative_key_query"`. For positional embeddings use :obj:`"absolute"`. For more information on |
|
:obj:`"relative_key"`, please refer to `Self-Attention with Relative Position Representations (Shaw et al.) |
|
<https://arxiv.org/abs/1803.02155>`__. For more information on :obj:`"relative_key_query"`, please refer to |
|
`Method 4` in `Improve Transformer Models with Better Relative Position Embeddings (Huang et al.) |
|
<https://arxiv.org/abs/2009.13658>`__. |
|
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if ``config.is_decoder=True``. |
|
classifier_dropout (:obj:`float`, `optional`): |
|
The dropout ratio for the classification head. |
|
""" |
|
model_type = "hi-transformer" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=30522, |
|
hidden_size=768, |
|
max_sentences=64, |
|
max_sentence_size=128, |
|
model_max_length=8192, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
intermediate_size=3072, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=512, |
|
type_vocab_size=2, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-12, |
|
pad_token_id=0, |
|
position_embedding_type="absolute", |
|
encoder_layout=None, |
|
use_cache=True, |
|
classifier_dropout=None, |
|
**kwargs |
|
): |
|
super().__init__(pad_token_id=pad_token_id, **kwargs) |
|
|
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.max_sentences = max_sentences |
|
self.max_sentence_size = max_sentence_size |
|
self.model_max_length = model_max_length |
|
self.encoder_layout = encoder_layout |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.hidden_act = hidden_act |
|
self.intermediate_size = intermediate_size |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.type_vocab_size = type_vocab_size |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.position_embedding_type = position_embedding_type |
|
self.use_cache = use_cache |
|
self.classifier_dropout = classifier_dropout |
|
|
|
|
|
class HATEmbeddings(nn.Module): |
|
""" |
|
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. |
|
""" |
|
|
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.padding_idx = config.pad_token_id |
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=self.padding_idx) |
|
self.position_embeddings = nn.Embedding(config.max_sentence_length + self.padding_idx + 1, config.hidden_size, padding_idx=self.padding_idx) |
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) |
|
|
|
|
|
|
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") |
|
self.register_buffer("position_ids", torch.arange(self.padding_idx + 1, |
|
config.max_sentence_length + self.padding_idx + 1).repeat(config.max_sentences).expand((1, -1))) |
|
if version.parse(torch.__version__) > version.parse("1.6.0"): |
|
self.register_buffer( |
|
"token_type_ids", |
|
torch.zeros(self.position_ids.size(), dtype=torch.long), |
|
persistent=False, |
|
) |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
inputs_embeds=None, |
|
): |
|
if position_ids is None: |
|
if input_ids is not None: |
|
|
|
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, self.position_ids) |
|
else: |
|
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) |
|
|
|
if input_ids is not None: |
|
input_shape = input_ids.size() |
|
else: |
|
input_shape = inputs_embeds.size()[:-1] |
|
|
|
seq_length = input_shape[1] |
|
|
|
|
|
|
|
|
|
if token_type_ids is None: |
|
if hasattr(self, "token_type_ids"): |
|
buffered_token_type_ids = self.token_type_ids[:, :seq_length] |
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) |
|
token_type_ids = buffered_token_type_ids_expanded |
|
else: |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
token_type_embeddings = self.token_type_embeddings(token_type_ids) |
|
|
|
embeddings = inputs_embeds + token_type_embeddings |
|
if self.position_embedding_type == "absolute": |
|
position_embeddings = self.position_embeddings(position_ids) |
|
embeddings += position_embeddings |
|
embeddings = self.LayerNorm(embeddings) |
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
def create_position_ids_from_inputs_embeds(self, inputs_embeds): |
|
""" |
|
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. |
|
|
|
Args: |
|
inputs_embeds: torch.Tensor |
|
|
|
Returns: torch.Tensor |
|
""" |
|
input_shape = inputs_embeds.size()[:-1] |
|
sequence_length = input_shape[1] |
|
|
|
position_ids = torch.arange( |
|
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device |
|
) |
|
return position_ids.unsqueeze(0).expand(input_shape) |
|
|
|
|
|
class HATLayer(nn.Module): |
|
def __init__(self, config, use_sentence_encoder=True, use_document_encoder=True): |
|
super().__init__() |
|
self.max_sentence_length = config.max_sentence_length |
|
self.max_sentences = config.max_sentences |
|
self.hidden_size = config.hidden_size |
|
self.use_document_encoder = use_document_encoder |
|
self.use_sentence_encoder = use_sentence_encoder |
|
if self.use_sentence_encoder: |
|
self.sentence_encoder = TransformerLayer(config) |
|
if self.use_document_encoder: |
|
self.document_encoder = TransformerLayer(config) |
|
self.position_embeddings = nn.Embedding(config.max_sentences+1, config.hidden_size, |
|
padding_idx=config.pad_token_id) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
num_sentences=None, |
|
output_attentions=False, |
|
): |
|
|
|
sentence_outputs = (None, None) |
|
if self.use_sentence_encoder: |
|
|
|
sentence_inputs = transform_tokens2sentences(hidden_states, |
|
num_sentences=num_sentences, |
|
max_sentence_length=self.max_sentence_length) |
|
sentence_masks = transform_masks2sentences(attention_mask, |
|
num_sentences=num_sentences, |
|
max_sentence_length=self.max_sentence_length) |
|
|
|
sentence_outputs = self.sentence_encoder(sentence_inputs, |
|
sentence_masks, |
|
output_attentions=output_attentions) |
|
|
|
|
|
outputs = transform_sentences2tokens(sentence_outputs[0], |
|
num_sentences=num_sentences, |
|
max_sentence_length=self.max_sentence_length) |
|
else: |
|
outputs = hidden_states |
|
|
|
document_outputs = (None, None) |
|
if self.use_document_encoder: |
|
|
|
sentence_global_tokens = outputs[:, ::self.max_sentence_length].clone() |
|
sentence_attention_mask = attention_mask[:, :, :, ::self.max_sentence_length].clone() |
|
|
|
sentence_positions = torch.arange(1, num_sentences+1).repeat(outputs.size(0), 1).to(outputs.device) \ |
|
* (sentence_attention_mask.reshape(-1, num_sentences) >= -100).int().to(outputs.device) |
|
outputs[:, ::self.max_sentence_length] += self.position_embeddings(sentence_positions) |
|
|
|
document_outputs = self.document_encoder(sentence_global_tokens, |
|
sentence_attention_mask, |
|
output_attentions=output_attentions) |
|
|
|
|
|
outputs[:, ::self.max_sentence_length] = document_outputs[0] |
|
|
|
if output_attentions: |
|
return outputs, sentence_outputs[1], document_outputs[1] |
|
|
|
return outputs, None |
|
|
|
|
|
class TransformerLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = RobertaAttention(config) |
|
self.is_decoder = config.is_decoder |
|
self.intermediate = RobertaIntermediate(config) |
|
self.output = RobertaOutput(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
output_attentions=False, |
|
): |
|
|
|
self_attention_outputs = self.attention( |
|
hidden_states, |
|
attention_mask, |
|
output_attentions=output_attentions, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
|
|
outputs = self_attention_outputs[1:] |
|
|
|
intermediate_output = self.intermediate(attention_output) |
|
layer_output = self.output(intermediate_output, attention_output) |
|
outputs = (layer_output,) + outputs |
|
|
|
return outputs |
|
|
|
|
|
class HATEncoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList([HATLayer(config, |
|
use_sentence_encoder=self.config.encoder_layout[str(idx)]['sentence_encoder'], |
|
use_document_encoder=self.config.encoder_layout[str(idx)]['document_encoder']) |
|
for idx in range(config.num_hidden_layers)]) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
num_sentences=None, |
|
use_cache=None, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
return_dict=True, |
|
): |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
all_sentence_attentions = () if output_attentions else None |
|
|
|
for i, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
if use_cache: |
|
logger.warning( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer_module), |
|
hidden_states, |
|
attention_mask, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask, |
|
num_sentences, |
|
output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
all_sentence_attentions = all_sentence_attentions + (layer_outputs[2],) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
all_hidden_states, |
|
all_self_attentions, |
|
all_sentence_attentions |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithSentenceAttentions( |
|
last_hidden_state=hidden_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
sentence_attentions=all_sentence_attentions, |
|
) |
|
|
|
def _tie_weights(self): |
|
""" |
|
Tie the weights between sentence positional embeddings across all layers. |
|
If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the |
|
weights instead. |
|
""" |
|
original_position_embeddings = None |
|
for module in self.layer: |
|
if hasattr(module, "position_embeddings"): |
|
assert hasattr(module.position_embeddings, "weight") |
|
if original_position_embeddings is None: |
|
original_position_embeddings = module.position_embeddings |
|
if self.config.torchscript: |
|
module.position_embeddings.weight = nn.Parameter(original_position_embeddings.weight.clone()) |
|
else: |
|
module.position_embeddings.weight = original_position_embeddings.weight |
|
return |
|
|
|
|
|
class HATPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = HATConfig |
|
base_model_prefix = "hat" |
|
supports_gradient_checkpointing = True |
|
|
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, nn.Linear): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, HATEncoder): |
|
module.gradient_checkpointing = value |
|
|
|
def update_keys_to_ignore(self, config, del_keys_to_ignore): |
|
"""Remove some keys from ignore list""" |
|
if not config.tie_word_embeddings: |
|
|
|
self._keys_to_ignore_on_save = [k for k in self._keys_to_ignore_on_save if k not in del_keys_to_ignore] |
|
self._keys_to_ignore_on_load_missing = [ |
|
k for k in self._keys_to_ignore_on_load_missing if k not in del_keys_to_ignore |
|
] |
|
|
|
@classmethod |
|
def from_config(cls, config): |
|
return cls._from_config(config) |
|
|
|
|
|
HAT_START_DOCSTRING = r""" |
|
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`HATConfig`]): Model configuration class with all the parameters of the |
|
model. Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
HAT_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `({0})`): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using [`HATTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, |
|
1]`: |
|
|
|
- 0 corresponds to a *sentence A* token, |
|
- 1 corresponds to a *sentence B* token. |
|
|
|
[What are token type IDs?](../glossary#token-type-ids) |
|
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.max_position_embeddings - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
class AttentivePooling(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.attn_dropout = config.hidden_dropout_prob |
|
self.lin_proj = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.v = nn.Linear(config.hidden_size, 1, bias=False) |
|
|
|
def forward(self, inputs): |
|
lin_out = self.lin_proj(inputs) |
|
attention_weights = torch.tanh(self.v(lin_out)).squeeze(-1) |
|
attention_weights_normalized = torch.softmax(attention_weights, -1) |
|
return torch.sum(attention_weights_normalized.unsqueeze(-1) * inputs, 1) |
|
|
|
|
|
class HATPooler(nn.Module): |
|
def __init__(self, config, pooling='max'): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.pooling = pooling |
|
if self.pooling == 'attentive': |
|
self.attentive_pooling = AttentivePooling(config) |
|
self.activation = nn.Tanh() |
|
self.max_sentence_length = config.max_sentence_length |
|
|
|
def forward(self, hidden_states): |
|
if self.pooling == 'attentive': |
|
pooled_output = self.attentive_pooling(hidden_states) |
|
else: |
|
pooled_output = torch.max(hidden_states, dim=1)[0] |
|
pooled_output = self.dense(pooled_output) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |
|
|
|
|
|
class HATSentencizer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
self.max_sentence_length = config.max_sentence_length |
|
|
|
def forward(self, hidden_states): |
|
sentence_repr_hidden_states = hidden_states[:, ::self.max_sentence_length] |
|
sentence_outputs = self.dense(sentence_repr_hidden_states) |
|
sentence_outputs = self.activation(sentence_outputs) |
|
return sentence_outputs |
|
|
|
@add_start_docstrings( |
|
"The bare HAT Model transformer outputting raw hidden-states without any specific head on top.", |
|
HAT_START_DOCSTRING, |
|
) |
|
class HATModel(HATPreTrainedModel): |
|
""" |
|
|
|
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of |
|
cross-attention is added between the self-attention layers, following the architecture described in *Attention is |
|
all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz |
|
Kaiser and Illia Polosukhin. |
|
|
|
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set |
|
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and |
|
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. |
|
|
|
.. _*Attention is all you need*: https://arxiv.org/abs/1706.03762 |
|
|
|
""" |
|
|
|
_keys_to_ignore_on_load_missing = [r"position_ids"] |
|
|
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embeddings = HATEmbeddings(config) |
|
self.encoder = HATEncoder(config) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.word_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.embeddings.word_embeddings = value |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
@add_start_docstrings_to_model_forward(HAT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
processor_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=BaseModelOutputWithSentenceAttentions, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
inputs_embeds=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
batch_size, seq_length = input_shape |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones(((batch_size, seq_length)), device=device) |
|
|
|
if token_type_ids is None: |
|
if hasattr(self.embeddings, "token_type_ids"): |
|
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] |
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) |
|
token_type_ids = buffered_token_type_ids_expanded |
|
else: |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) |
|
|
|
|
|
|
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device) |
|
|
|
|
|
num_batch_sentences = input_ids.shape[-1] // self.config.max_sentence_length |
|
|
|
embedding_output = self.embeddings( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
token_type_ids=token_type_ids, |
|
inputs_embeds=inputs_embeds, |
|
) |
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
attention_mask=extended_attention_mask, |
|
num_sentences=num_batch_sentences, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
|
|
if not return_dict: |
|
return (sequence_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithSentenceAttentions( |
|
last_hidden_state=sequence_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
sentence_attentions=encoder_outputs.sentence_attentions, |
|
) |
|
|
|
|
|
class HATLMHead(nn.Module): |
|
"""HAT Head for masked language modeling.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size) |
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) |
|
self.decoder.bias = self.bias |
|
|
|
def forward(self, features, **kwargs): |
|
x = self.dense(features) |
|
x = gelu(x) |
|
x = self.layer_norm(x) |
|
|
|
|
|
x = self.decoder(x) |
|
|
|
return x |
|
|
|
def _tie_weights(self): |
|
|
|
self.bias = self.decoder.bias |
|
|
|
|
|
class HATSentenceHead(nn.Module): |
|
"""HAT Head for masked language modeling.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.decoder = nn.Linear(config.hidden_size, config.sentence_embedding_size) |
|
self.bias = nn.Parameter(torch.zeros(config.sentence_embedding_size)) |
|
self.decoder.bias = self.bias |
|
|
|
def forward(self, features): |
|
x = gelu(features) |
|
x = self.layer_norm(x) |
|
|
|
x = self.decoder(x) |
|
|
|
return x |
|
|
|
def _tie_weights(self): |
|
|
|
self.bias = self.decoder.bias |
|
|
|
|
|
class HATSiameseHead(nn.Module): |
|
"""HAT Head for masked language modeling.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size * 2, bias=False) |
|
|
|
def forward(self, features): |
|
x = self.dense(features) |
|
return x |
|
|
|
|
|
@add_start_docstrings("""HAT Model with a `language modeling` head on top.""", HAT_START_DOCSTRING) |
|
class HATForMaskedLM(HATPreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"position_ids"] |
|
_keys_to_ignore_on_load_unexpected = [r"pooler"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.hi_transformer = HATModel(config) |
|
self.lm_head = HATLMHead(config) |
|
|
|
|
|
self.update_keys_to_ignore(config, ["lm_head.decoder.weight"]) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head.decoder |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head.decoder = new_embeddings |
|
|
|
def get_input_embeddings(self): |
|
return self.hi_transformer.embeddings.word_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.hi_transformer.embeddings.word_embeddings = value |
|
|
|
def _tie_or_clone_weights(self, output_embeddings, input_embeddings): |
|
"""Tie or clone module weights depending of whether we are using TorchScript or not""" |
|
if self.config.torchscript: |
|
output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone()) |
|
else: |
|
output_embeddings.weight = input_embeddings.weight |
|
|
|
if getattr(output_embeddings, "bias", None) is not None: |
|
output_embeddings.bias.data = nn.functional.pad( |
|
output_embeddings.bias.data, |
|
( |
|
0, |
|
output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0], |
|
), |
|
"constant", |
|
0, |
|
) |
|
if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"): |
|
output_embeddings.out_features = input_embeddings.num_embeddings |
|
|
|
@add_start_docstrings_to_model_forward(HAT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
processor_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=MaskedLMOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
mask="<mask>", |
|
) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., |
|
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the |
|
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` |
|
kwargs (`Dict[str, any]`, optional, defaults to *{}*): |
|
Used to hide legacy arguments that have been deprecated. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.hi_transformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = outputs[0] |
|
prediction_scores = self.lm_head(sequence_output) |
|
|
|
masked_lm_loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[2:] |
|
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output |
|
|
|
return MaskedLMOutput( |
|
loss=masked_lm_loss, |
|
logits=prediction_scores, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class HATModelForDocumentRepresentation(HATPreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"position_ids"] |
|
|
|
def __init__(self, config, pooling='max'): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.config = config |
|
self.max_sentence_length = config.max_sentence_length |
|
|
|
self.hi_transformer = HATModel(config) |
|
self.pooler = HATPooler(config, pooling=pooling) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(HAT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
processor_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=SequenceClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.hi_transformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = outputs[0] |
|
pooled_outputs = self.pooler(sequence_output[:, ::self.max_sentence_length]) |
|
|
|
drp_loss = None |
|
if labels is not None: |
|
loss_fct = MSELoss() |
|
drp_loss = loss_fct(pooled_outputs, labels) |
|
|
|
if not return_dict: |
|
output = (pooled_outputs,) + outputs[2:] |
|
return ((drp_loss,) + output) if drp_loss is not None else output |
|
|
|
return SequenceRepresentationOutput( |
|
loss=drp_loss, |
|
representations=pooled_outputs, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings(""" HAT Model transformer for masked sentence representation prediction """, |
|
HAT_START_DOCSTRING, |
|
) |
|
class HATModelForMaskedSentenceRepresentation(HATPreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"position_ids"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.config = config |
|
|
|
self.hi_transformer = HATModel(config) |
|
self.sentencizer = HATSentencizer(config) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(HAT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
processor_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=SequenceClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.hi_transformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = outputs[0] |
|
sentence_outputs = self.sentencizer(sequence_output) |
|
|
|
srp_loss = None |
|
if labels is not None: |
|
loss_fct = MSELoss() |
|
srp_loss = loss_fct(sentence_outputs, labels) |
|
|
|
if not return_dict: |
|
output = (sentence_outputs,) + outputs[2:] |
|
return ((srp_loss,) + output) if srp_loss is not None else output |
|
|
|
return SequenceRepresentationOutput( |
|
loss=srp_loss, |
|
representations=sentence_outputs, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
HAT Model with three heads on top as done during the pretraining: a `masked language modeling` head and a `document |
|
representation prediction ` head and a `masked sentence representation prediction ` head. |
|
""", |
|
HAT_START_DOCSTRING, |
|
) |
|
class HATModelForBoWPreTraining(HATPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.hi_transformer = HATModel(config) |
|
if self.config.mlm or self.config.mslm: |
|
self.lm_head = HATLMHead(config) |
|
if self.config.srp or self.config.srp: |
|
self.sentencizer = HATSentencizer(config) |
|
if self.config.drp: |
|
self.pooler = HATPooler(config, pooling='max') |
|
self.document_cls = nn.Linear(config.hidden_size, config.vocab_size) |
|
if self.config.srp: |
|
self.sentence_cls = nn.Linear(config.hidden_size, config.vocab_size) |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
document_labels=None, |
|
sentence_labels=None, |
|
sentence_masks=None, |
|
sentence_mask_ids=None, |
|
document_mask_ids=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.hi_transformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
|
|
sequence_output = outputs[0] |
|
|
|
|
|
prediction_scores = None |
|
if self.config.mlm or self.config.mslm: |
|
prediction_scores = self.lm_head(sequence_output) |
|
|
|
if self.config.srp or self.config.drp: |
|
sentence_outputs = self.sentencizer(sequence_output) |
|
|
|
|
|
sentence_prediction_scores = None |
|
if self.config.srp: |
|
sentence_prediction_scores = self.sentence_cls(sentence_outputs) |
|
if sentence_mask_ids is not None: |
|
sentence_prediction_scores = sentence_prediction_scores[:, :, sentence_mask_ids].clone() |
|
|
|
|
|
document_prediction_scores = None |
|
if self.config.drp: |
|
pooled_outputs = self.pooler(sentence_outputs) |
|
document_prediction_scores = self.document_cls(pooled_outputs) |
|
if document_mask_ids is not None: |
|
document_prediction_scores = document_prediction_scores[:, document_mask_ids].clone() |
|
|
|
total_loss = None |
|
masked_lm_loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) |
|
total_loss = masked_lm_loss.clone() |
|
|
|
drp_loss = None |
|
if document_labels is not None: |
|
loss_fct = BCEWithLogitsLoss() |
|
drp_loss = loss_fct(document_prediction_scores, document_labels) |
|
if labels is not None: |
|
total_loss += drp_loss |
|
else: |
|
total_loss = drp_loss |
|
|
|
srp_loss = None |
|
if sentence_labels is not None: |
|
if self.config.sentence_embedding_size != self.config.vocab_size: |
|
loss_fct = CosineEmbeddingLoss() |
|
srp_loss = loss_fct(sentence_prediction_scores.view(-1, sentence_labels.shape[-1])[sentence_masks.view(-1).bool()], |
|
sentence_labels.view(-1, sentence_labels.shape[-1])[sentence_masks.view(-1).bool()], |
|
torch.ones((sentence_masks.view(-1).sum(), ), device=sentence_masks.device)) |
|
else: |
|
loss_fct = BCEWithLogitsLoss() |
|
srp_loss = loss_fct(sentence_prediction_scores.view(-1, sentence_labels.shape[-1])[sentence_masks.view(-1).bool()], |
|
sentence_labels.view(-1, sentence_labels.shape[-1])[sentence_masks.view(-1).bool()]) |
|
if labels is not None or document_labels is not None: |
|
total_loss += srp_loss |
|
else: |
|
total_loss = srp_loss |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[2:] |
|
return ((total_loss, masked_lm_loss, srp_loss, drp_loss) + output) if total_loss is not None else output |
|
|
|
return HATForBoWPreTrainingOutput( |
|
loss=total_loss, |
|
mlm_loss=masked_lm_loss, |
|
srp_loss=srp_loss, |
|
drp_loss=drp_loss, |
|
prediction_logits=prediction_scores, |
|
document_prediction_logits=document_prediction_scores, |
|
sentence_prediction_logits=sentence_prediction_scores, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
HAT Model with three heads on top as done during the pretraining: a `masked language modeling` head and a `sentence |
|
projection head` head and a document projection head` head. |
|
""", |
|
HAT_START_DOCSTRING, |
|
) |
|
class HATModelForVICRegPreTraining(HATPreTrainedModel): |
|
def __init__(self, config, |
|
document_regularization=True, |
|
sentence_regularization=True): |
|
super().__init__(config) |
|
|
|
self.document_regularization = document_regularization |
|
self.sentence_regularization = sentence_regularization |
|
self.hi_transformer = HATModel(config) |
|
if self.config.mlm: |
|
self.lm_head = HATLMHead(config) |
|
if self.config.sent_sim or self.config.doc_sim: |
|
self.sentencizer = HATSentencizer(config) |
|
self.cosine = nn.CosineSimilarity(dim=1) |
|
if self.config.doc_sim: |
|
self.pooler = HATPooler(config, pooling='max') |
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
secondary_input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
labels=None, |
|
secondary_labels=None, |
|
sentence_masks=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
primary_outputs = self.hi_transformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
secondary_outputs = self.hi_transformer( |
|
secondary_input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
|
|
primary_sequence_output = primary_outputs[0] |
|
secondary_sequence_output = secondary_outputs[0] |
|
|
|
|
|
primary_prediction_scores = None |
|
secondary_prediction_scores = None |
|
if self.config.mlm: |
|
primary_prediction_scores = self.lm_head(primary_sequence_output) |
|
if secondary_labels is not None: |
|
secondary_prediction_scores = self.lm_head(secondary_sequence_output) |
|
|
|
if self.config.sent_sim or self.config.doc_sim: |
|
primary_sentence_outputs = self.sentencizer(primary_sequence_output) |
|
secondary_sentence_outputs = self.sentencizer(secondary_sequence_output) |
|
|
|
|
|
if self.config.doc_sim: |
|
primary_pooled_outputs = self.pooler(primary_sentence_outputs) |
|
secondary_pooled_outputs = self.pooler(secondary_sentence_outputs) |
|
|
|
|
|
total_loss = None |
|
masked_lm_loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
masked_lm_loss = loss_fct(primary_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) |
|
total_loss = masked_lm_loss.clone() / 2 |
|
if secondary_labels is not None: |
|
masked_lm_loss = loss_fct(secondary_prediction_scores.view(-1, self.config.vocab_size), secondary_labels.view(-1)) |
|
total_loss += masked_lm_loss / 2 |
|
|
|
sent_sim_loss = None |
|
sent_std_loss = None |
|
sent_cov_loss = None |
|
pre_sent_std_loss = None |
|
pre_sent_cov_loss = None |
|
if self.config.sent_sim: |
|
|
|
sent_sim_loss = 1 - self.cosine( |
|
primary_sentence_outputs[sentence_masks].view(-1, self.config.hidden_size), |
|
secondary_sentence_outputs[sentence_masks].view(-1, self.config.hidden_size)).mean() |
|
|
|
sent_std_loss, sent_cov_loss = vic_reg( |
|
primary_sentence_outputs[sentence_masks].view(-1, self.config.hidden_size), |
|
secondary_sentence_outputs[sentence_masks].view(-1, self.config.hidden_size)) |
|
|
|
if labels is not None: |
|
total_loss += sent_sim_loss |
|
else: |
|
total_loss = sent_sim_loss |
|
if self.sentence_regularization: |
|
total_loss += sent_std_loss + (0.1 * sent_cov_loss) |
|
|
|
doc_sim_loss = None |
|
doc_std_loss = None |
|
doc_cov_loss = None |
|
pre_doc_std_loss = None |
|
pre_doc_cov_loss = None |
|
if self.config.doc_sim: |
|
|
|
doc_sim_loss = 1 - self.cosine(primary_pooled_outputs, secondary_pooled_outputs).mean() |
|
|
|
doc_std_loss, doc_cov_loss = vic_reg(primary_pooled_outputs, secondary_pooled_outputs) |
|
total_loss += doc_sim_loss |
|
if self.document_regularization: |
|
total_loss += doc_std_loss + (0.1 * doc_cov_loss) |
|
|
|
if not return_dict: |
|
output = (primary_prediction_scores,) + primary_outputs[2:] |
|
return ((total_loss, masked_lm_loss, sent_sim_loss, doc_sim_loss) + output) if total_loss is not None else output |
|
|
|
return HATForVICRegPreTrainingOutput( |
|
loss=total_loss, |
|
mlm_loss=masked_lm_loss, |
|
sent_sim_loss=sent_sim_loss, |
|
sent_std_loss=sent_std_loss, |
|
sent_cov_loss=sent_cov_loss, |
|
pre_sent_std_loss=pre_sent_std_loss, |
|
pre_sent_cov_loss=pre_sent_cov_loss, |
|
doc_sim_loss=doc_sim_loss, |
|
doc_std_loss=doc_std_loss, |
|
doc_cov_loss=doc_cov_loss, |
|
pre_doc_std_loss=pre_doc_std_loss, |
|
pre_doc_cov_loss=pre_doc_cov_loss, |
|
prediction_logits=primary_prediction_scores, |
|
hidden_states=primary_outputs.hidden_states, |
|
attentions=primary_outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
HAT Model with three heads on top as done during the pretraining: a `masked language modeling` head and a `document |
|
representation prediction ` head and a `masked sentence representation prediction ` head. |
|
""", |
|
HAT_START_DOCSTRING, |
|
) |
|
class HATModelForSimCLRPreTraining(HATPreTrainedModel): |
|
def __init__(self, config, |
|
document_regularization=True, |
|
sentence_regularization=True): |
|
super().__init__(config) |
|
|
|
self.document_regularization = document_regularization |
|
self.sentence_regularization = sentence_regularization |
|
self.hi_transformer = HATModel(config) |
|
if self.config.mlm: |
|
self.lm_head = HATLMHead(config) |
|
if self.config.sent_sim or self.config.doc_sim: |
|
self.sentencizer = HATSentencizer(config) |
|
if self.config.doc_sim: |
|
self.pooler = HATPooler(config, pooling='max') |
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
secondary_input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
labels=None, |
|
secondary_labels=None, |
|
sentence_masks=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
primary_outputs = self.hi_transformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
secondary_outputs = self.hi_transformer( |
|
secondary_input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
|
|
primary_sequence_output = primary_outputs[0] |
|
secondary_sequence_output = secondary_outputs[0] |
|
|
|
|
|
primary_prediction_scores = None |
|
secondary_prediction_scores = None |
|
if self.config.mlm: |
|
primary_prediction_scores = self.lm_head(primary_sequence_output) |
|
if secondary_labels is not None: |
|
secondary_prediction_scores = self.lm_head(secondary_sequence_output) |
|
|
|
if self.config.sent_sim or self.config.doc_sim: |
|
primary_sentence_outputs = self.sentencizer(primary_sequence_output) |
|
secondary_sentence_outputs = self.sentencizer(secondary_sequence_output) |
|
|
|
|
|
if self.config.doc_sim: |
|
primary_pooled_outputs = self.pooler(primary_sentence_outputs) |
|
secondary_pooled_outputs = self.pooler(secondary_sentence_outputs) |
|
|
|
total_loss = None |
|
masked_lm_loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
masked_lm_loss = loss_fct(primary_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) |
|
total_loss = masked_lm_loss.clone() / 2 |
|
if secondary_labels is not None: |
|
masked_lm_loss = loss_fct(secondary_prediction_scores.view(-1, self.config.vocab_size), secondary_labels.view(-1)) |
|
total_loss += masked_lm_loss / 2 |
|
|
|
sent_contr_loss = None |
|
sent_std_loss = None |
|
sent_cov_loss = None |
|
if self.config.sent_sim: |
|
|
|
loss_fct = CrossEntropyLoss() |
|
|
|
flatten_sentence_masks = sentence_masks.view(-1) |
|
flatten_primary_sentence_outputs = primary_sentence_outputs.view(-1, self.config.hidden_size) |
|
flatten_secondary_sentence_outputs = secondary_sentence_outputs.view(-1, self.config.hidden_size) |
|
|
|
flatten_primary_sentence_outputs = normalize(flatten_primary_sentence_outputs) |
|
flatten_secondary_sentence_outputs = normalize(flatten_secondary_sentence_outputs) |
|
sentence_queue = torch.cat([flatten_primary_sentence_outputs, flatten_secondary_sentence_outputs], dim=0) |
|
|
|
|
|
primary_sent_contrast_logits = torch.matmul(flatten_primary_sentence_outputs, sentence_queue.T) / self.config.temperature |
|
secondary_sent_contrast_logits = torch.matmul(flatten_secondary_sentence_outputs, sentence_queue.T) / self.config.temperature |
|
|
|
batch_size = primary_sent_contrast_logits.shape[0] |
|
|
|
|
|
logits_mask = torch.eye(batch_size, batch_size).to(input_ids.device) |
|
primary_logits_mask = torch.cat([logits_mask, torch.zeros_like(logits_mask).to(input_ids.device)], dim=1).to(input_ids.device) |
|
secondary_logits_mask = torch.cat([torch.zeros_like(logits_mask).to(input_ids.device), logits_mask], dim=1).to(input_ids.device) |
|
|
|
primary_sent_contrast_logits += (primary_logits_mask * -1e3) |
|
secondary_sent_contrast_logits += (secondary_logits_mask * -1e3) |
|
|
|
|
|
primary_sent_contrast_logits[:, ~flatten_sentence_masks.repeat(2)] = -1e3 |
|
primary_sent_contrast_logits[:, ~flatten_sentence_masks.repeat(2)] = -1e3 |
|
|
|
|
|
primary_sentence_labels = torch.arange(batch_size).to(input_ids.device) + batch_size |
|
primary_sentence_labels[~flatten_sentence_masks] = -100 |
|
secondary_sentence_labels = torch.arange(batch_size).to(input_ids.device) |
|
secondary_sentence_labels[~flatten_sentence_masks] = -100 |
|
|
|
|
|
sent_contr_loss = (loss_fct(primary_sent_contrast_logits, primary_sentence_labels) + |
|
loss_fct(secondary_sent_contrast_logits, secondary_sentence_labels)) * 0.5 |
|
|
|
|
|
sent_std_loss, sent_cov_loss = vic_reg( |
|
primary_sentence_outputs[sentence_masks].view(-1, self.config.hidden_size), |
|
secondary_sentence_outputs[sentence_masks].view(-1, self.config.hidden_size)) |
|
if labels is not None: |
|
total_loss += sent_contr_loss |
|
else: |
|
total_loss = sent_contr_loss |
|
if self.sentence_regularization: |
|
total_loss += sent_std_loss + (0.1 * sent_cov_loss) |
|
|
|
doc_contr_loss = None |
|
doc_std_loss = None |
|
doc_cov_loss = None |
|
if self.config.doc_sim: |
|
|
|
loss_fct = CrossEntropyLoss() |
|
|
|
primary_pooled_outputs = normalize(primary_pooled_outputs) |
|
secondary_pooled_outputs = normalize(secondary_pooled_outputs) |
|
document_queue = torch.cat([primary_pooled_outputs, secondary_pooled_outputs], dim=0) |
|
|
|
|
|
primary_doc_contrast_logits = torch.matmul(primary_pooled_outputs, document_queue.T) / self.config.temperature |
|
secondary_doc_contrast_logits = torch.matmul(secondary_pooled_outputs, document_queue.T) / self.config.temperature |
|
|
|
batch_size = primary_doc_contrast_logits.shape[0] |
|
|
|
|
|
logits_mask = torch.eye(batch_size, batch_size).to(input_ids.device) |
|
primary_logits_mask = torch.cat([logits_mask, torch.zeros_like(logits_mask).to(input_ids.device)], dim=1).to(input_ids.device) |
|
secondary_logits_mask = torch.cat([torch.zeros_like(logits_mask).to(input_ids.device), logits_mask], dim=1).to(input_ids.device) |
|
|
|
primary_doc_contrast_logits += (primary_logits_mask * -1e3) |
|
secondary_doc_contrast_logits += (secondary_logits_mask * -1e3) |
|
|
|
|
|
primary_doc_labels = torch.arange(batch_size).to(input_ids.device) + batch_size |
|
secondary_doc_labels = torch.arange(batch_size).to(input_ids.device) |
|
|
|
|
|
doc_contr_loss = (loss_fct(primary_doc_contrast_logits, primary_doc_labels) + |
|
loss_fct(secondary_doc_contrast_logits, secondary_doc_labels)) * 0.5 |
|
|
|
|
|
doc_std_loss, doc_cov_loss = vic_reg(primary_pooled_outputs, secondary_pooled_outputs) |
|
if labels is not None: |
|
total_loss += doc_contr_loss |
|
else: |
|
total_loss = doc_contr_loss |
|
if self.document_regularization: |
|
total_loss += doc_std_loss + (0.1 * doc_cov_loss) |
|
|
|
if not return_dict: |
|
output = (primary_prediction_scores,) + primary_outputs[2:] |
|
return ((total_loss, masked_lm_loss, sent_contr_loss, doc_contr_loss) + output) if total_loss is not None else output |
|
|
|
return HATForSimCLRPreTrainingOutput( |
|
loss=total_loss, |
|
mlm_loss=masked_lm_loss, |
|
sent_contr_loss=sent_contr_loss, |
|
sent_std_loss=sent_std_loss, |
|
sent_cov_loss=sent_cov_loss, |
|
doc_contr_loss=doc_contr_loss, |
|
doc_std_loss=doc_std_loss, |
|
doc_cov_loss=doc_cov_loss, |
|
prediction_logits=primary_prediction_scores, |
|
hidden_states=primary_outputs.hidden_states, |
|
attentions=primary_outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
HAT Model transformer with a sequence classification/regression head on top (a linear layer on top of the |
|
pooled output) e.g. for GLUE tasks. |
|
""", |
|
HAT_START_DOCSTRING, |
|
) |
|
class HATForSequenceClassification(HATPreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"position_ids"] |
|
|
|
def __init__(self, config, pooling='max'): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.config = config |
|
self.max_sentence_length = config.max_sentence_length |
|
self.pooling = pooling |
|
|
|
self.hi_transformer = HATModel(config) |
|
classifier_dropout = ( |
|
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob |
|
) |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.pooler = HATPooler(config, pooling=pooling) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(HAT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
processor_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=SequenceClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.hi_transformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = outputs[0] |
|
if self.pooling == 'first': |
|
pooled_output = self.pooler(torch.unsqueeze(sequence_output[:, 0, :], 1)) |
|
elif self.pooling == 'last': |
|
pooled_output = self.pooler(torch.unsqueeze(sequence_output[:, -128, :], 1)) |
|
else: |
|
pooled_output = self.pooler(sequence_output[:, ::self.max_sentence_length]) |
|
|
|
pooled_output = self.dropout(pooled_output) |
|
logits = self.classifier(pooled_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings(""" HAT Model transformer for masked sentence representation prediction """, |
|
HAT_START_DOCSTRING, |
|
) |
|
class HATModelForSequentialSentenceClassification(HATPreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"position_ids"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.config = config |
|
|
|
self.hi_transformer = HATModel(config) |
|
self.sentencizer = HATSentencizer(config) |
|
classifier_dropout = ( |
|
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob |
|
) |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(HAT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
processor_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=SequenceClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.hi_transformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = outputs[0] |
|
sentence_outputs = self.sentencizer(sequence_output) |
|
sentence_outputs = self.dropout(sentence_outputs) |
|
logits = self.classifier(sentence_outputs) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.view(-1, 1).squeeze(), labels.view(-1).squeeze()) |
|
else: |
|
loss = loss_fct(logits.view(-1, 1), labels.view(-1)) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
mask = labels[:, :, 0] != -1 |
|
loss = loss_fct(logits[mask], labels[mask]) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SentenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
sentence_attentions=outputs.sentence_attentions |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
HAT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a |
|
softmax) e.g. for RocStories/SWAG tasks. |
|
""", |
|
HAT_START_DOCSTRING, |
|
) |
|
class HATForMultipleChoice(HATPreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"position_ids"] |
|
|
|
def __init__(self, config, pooling='last'): |
|
super().__init__(config) |
|
|
|
self.pooling = pooling |
|
self.max_sentence_length = config.max_sentence_length |
|
self.hi_transformer = HATModel(config) |
|
classifier_dropout = ( |
|
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob |
|
) |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.pooler = HATPooler(config, pooling=pooling) |
|
self.classifier = nn.Linear(config.hidden_size, 1) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(HAT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) |
|
@add_code_sample_docstrings( |
|
processor_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=MultipleChoiceModelOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
token_type_ids=None, |
|
attention_mask=None, |
|
labels=None, |
|
position_ids=None, |
|
inputs_embeds=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., |
|
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See |
|
`input_ids` above) |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] |
|
|
|
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None |
|
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None |
|
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None |
|
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None |
|
flat_inputs_embeds = ( |
|
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) |
|
if inputs_embeds is not None |
|
else None |
|
) |
|
|
|
outputs = self.hi_transformer( |
|
flat_input_ids, |
|
position_ids=flat_position_ids, |
|
token_type_ids=flat_token_type_ids, |
|
attention_mask=flat_attention_mask, |
|
inputs_embeds=flat_inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = outputs[0] |
|
if self.pooling == 'first': |
|
pooled_output = self.pooler(torch.unsqueeze(sequence_output[:, 0, :], 1)) |
|
elif self.pooling == 'last': |
|
pooled_output = self.pooler(torch.unsqueeze(sequence_output[:, -128, :], 1)) |
|
else: |
|
pooled_output = self.pooler(sequence_output[:, ::self.max_sentence_length]) |
|
|
|
pooled_output = self.dropout(pooled_output) |
|
logits = self.classifier(pooled_output) |
|
reshaped_logits = logits.view(-1, num_choices) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(reshaped_logits, labels) |
|
|
|
if not return_dict: |
|
output = (reshaped_logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return MultipleChoiceModelOutput( |
|
loss=loss, |
|
logits=reshaped_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
HAT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for |
|
Named-Entity-Recognition (NER) tasks. |
|
""", |
|
HAT_START_DOCSTRING, |
|
) |
|
class HATForTokenClassification(HATPreTrainedModel): |
|
_keys_to_ignore_on_load_unexpected = [r"pooler"] |
|
_keys_to_ignore_on_load_missing = [r"position_ids"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.hi_transformer = HATModel(config, add_pooling_layer=False) |
|
classifier_dropout = ( |
|
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob |
|
) |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(HAT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
processor_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=TokenClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.hi_transformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
sequence_output = self.dropout(sequence_output) |
|
logits = self.classifier(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
HAT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear |
|
layers on top of the hidden-states output to compute `span start logits` and `span end logits`). |
|
""", |
|
HAT_START_DOCSTRING, |
|
) |
|
class HATForQuestionAnswering(HATPreTrainedModel): |
|
_keys_to_ignore_on_load_unexpected = [r"pooler"] |
|
_keys_to_ignore_on_load_missing = [r"position_ids"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.hi_transformer = HATModel(config, add_pooling_layer=False) |
|
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(HAT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
processor_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=QuestionAnsweringModelOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
start_positions=None, |
|
end_positions=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the start of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the end of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.hi_transformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
logits = self.qa_outputs(sequence_output) |
|
start_logits, end_logits = logits.split(1, dim=-1) |
|
start_logits = start_logits.squeeze(-1).contiguous() |
|
end_logits = end_logits.squeeze(-1).contiguous() |
|
|
|
total_loss = None |
|
if start_positions is not None and end_positions is not None: |
|
|
|
if len(start_positions.size()) > 1: |
|
start_positions = start_positions.squeeze(-1) |
|
if len(end_positions.size()) > 1: |
|
end_positions = end_positions.squeeze(-1) |
|
|
|
ignored_index = start_logits.size(1) |
|
start_positions = start_positions.clamp(0, ignored_index) |
|
end_positions = end_positions.clamp(0, ignored_index) |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) |
|
start_loss = loss_fct(start_logits, start_positions) |
|
end_loss = loss_fct(end_logits, end_positions) |
|
total_loss = (start_loss + end_loss) / 2 |
|
|
|
if not return_dict: |
|
output = (start_logits, end_logits) + outputs[2:] |
|
return ((total_loss,) + output) if total_loss is not None else output |
|
|
|
return QuestionAnsweringModelOutput( |
|
loss=total_loss, |
|
start_logits=start_logits, |
|
end_logits=end_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
def create_position_ids_from_input_ids(input_ids, padding_idx, position_ids): |
|
""" |
|
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols |
|
are ignored. This is modified from fairseq's `utils.make_positions`. |
|
|
|
Args: |
|
x: torch.Tensor x: |
|
|
|
Returns: torch.Tensor |
|
""" |
|
|
|
mask = input_ids.ne(padding_idx).int() |
|
return position_ids[:, :input_ids.size(1)].repeat(input_ids.size(0), 1) * mask |
|
|
|
|
|
def normalized_output_std_loss(x): |
|
return torch.std(x / torch.nn.functional.normalize(x, dim=1), dim=0).mean() |
|
|
|
|
|
def vic_reg(x: torch.Tensor, y: torch.Tensor): |
|
std_x = torch.sqrt(x.var(dim=0) + 0.0001) |
|
std_y = torch.sqrt(y.var(dim=0) + 0.0001) |
|
std_loss = torch.mean(torch.relu(1 - std_x)) / 2 + torch.mean(torch.relu(1 - std_y)) / 2 |
|
|
|
cov_x = (x.T @ x) / (x.shape[0] - 1) |
|
cov_y = (y.T @ y) / (y.shape[0] - 1) |
|
cov_loss = off_diagonal(cov_x).pow_(2).sum().div(x.shape[-1]) + \ |
|
off_diagonal(cov_y).pow_(2).sum().div(y.shape[-1]) |
|
|
|
return std_loss, cov_loss |
|
|
|
|
|
def off_diagonal(x): |
|
n, m = x.shape |
|
assert n == m |
|
return x.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten() |
|
|
|
|
|
|