hierarchical-dialog-bert / modelling_hat.py
igorktech's picture
Update modelling_hat.py
25aee9f
raw
history blame
105 kB
# coding=utf-8
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch HAT model."""
import torch
import torch.utils.checkpoint
from packaging import version
from dataclasses import dataclass
from typing import Optional, Tuple
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss, CosineEmbeddingLoss
from torch.nn.functional import normalize
from transformers.file_utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
)
from transformers.modeling_outputs import (
ModelOutput,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from transformers.models.roberta.modeling_roberta import RobertaAttention, RobertaIntermediate, RobertaOutput
from transformers.activations import gelu
from transformers import PretrainedConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "kiddothe2b/hierarchical-transformer-base-4096"
_CONFIG_FOR_DOC = "HATConfig"
_TOKENIZER_FOR_DOC = "HATTokenizer"
HAT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"kiddothe2b/hierarchical-transformer-base-4096",
"kiddothe2b/adhoc-hierarchical-transformer-base-4096",
# See all HAT models at https://huggingface.co/models?filter=hierarchical-transformer
]
def transform_tokens2sentences(hidden_states, num_sentences, max_sentence_length):
# transform sequence into segments
seg_hidden_states = torch.reshape(hidden_states, (hidden_states.size(0), num_sentences, max_sentence_length, hidden_states.size(-1)))
# squash segments into sequence into a single axis (samples * segments, max_segment_length, hidden_size)
hidden_states_reshape = seg_hidden_states.contiguous().view(hidden_states.size(0) * num_sentences,
max_sentence_length, seg_hidden_states.size(-1))
return hidden_states_reshape
def transform_masks2sentences(hidden_states, num_sentences, max_sentence_length):
# transform sequence into segments
seg_hidden_states = torch.reshape(hidden_states, (hidden_states.size(0), 1, 1, num_sentences, max_sentence_length))
# squash segments into sequence into a single axis (samples * segments, 1, 1, max_segment_length)
hidden_states_reshape = seg_hidden_states.contiguous().view(hidden_states.size(0) * num_sentences,
1, 1, seg_hidden_states.size(-1))
return hidden_states_reshape
def transform_sentences2tokens(seg_hidden_states, num_sentences, max_sentence_length):
# transform squashed sequence into segments
hidden_states = seg_hidden_states.contiguous().view(seg_hidden_states.size(0) // num_sentences, num_sentences,
max_sentence_length, seg_hidden_states.size(-1))
# transform segments into sequence
hidden_states = hidden_states.contiguous().view(hidden_states.size(0), num_sentences * max_sentence_length,
hidden_states.size(-1))
return hidden_states
@dataclass
class BaseModelOutputWithSentenceAttentions(ModelOutput):
"""
Base class for model's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
sentence_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`.
Sentence attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
sentence_attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class SequenceRepresentationOutput(ModelOutput):
"""
Base class for outputs of document representation models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
representations (`torch.FloatTensor` of shape `(batch_size, config.hidden_size)`):
Latent representations.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
representations: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class HATForBoWPreTrainingOutput(ModelOutput):
"""
Output type of [`HATForPreTraining`].
Args:
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of pre-training losses.
mlm_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
The masked language modeling loss.
srp_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
The sentence representation prediction loss.
drp_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
The document representation prediction loss.
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
document_prediction_logits (`torch.FloatTensor` of shape `(batch_size, config.hidden_size)`):
Prediction scores of the document prediction head (scores for each vocabulary token before Sigmoid).
sentence_prediction_logits (`torch.FloatTensor` of shape `(batch_size, config.hidden_size)`):
Prediction scores of the sentence prediction head (scores for each vocabulary token before Sigmoid).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
mlm_loss: Optional[torch.FloatTensor] = None
srp_loss: Optional[torch.FloatTensor] = None
drp_loss: Optional[torch.FloatTensor] = None
prediction_logits: torch.FloatTensor = None
document_prediction_logits: torch.FloatTensor = None
sentence_prediction_logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class HATForVICRegPreTrainingOutput(ModelOutput):
"""
Output type of [`HATForVICRegPreTraining`].
Args:
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of pre-training losses.
mlm_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
The masked language modeling loss.
sent_sim_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
The sentence similarity loss.
doc_sim_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
The document similarity loss.
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
document_prediction_logits (`torch.FloatTensor` of shape `(batch_size, config.hidden_size)`):
Prediction scores of the document prediction head (scores for each vocabulary token before Sigmoid).
sentence_prediction_logits (`torch.FloatTensor` of shape `(batch_size, config.hidden_size)`):
Prediction scores of the sentence prediction head (scores for each vocabulary token before Sigmoid).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
mlm_loss: Optional[torch.FloatTensor] = None
sent_sim_loss: Optional[torch.FloatTensor] = None
sent_std_loss: Optional[torch.FloatTensor] = None
sent_cov_loss: Optional[torch.FloatTensor] = None
pre_sent_std_loss: Optional[torch.FloatTensor] = None
pre_sent_cov_loss: Optional[torch.FloatTensor] = None
doc_sim_loss: Optional[torch.FloatTensor] = None
doc_std_loss: Optional[torch.FloatTensor] = None
doc_cov_loss: Optional[torch.FloatTensor] = None
pre_doc_std_loss: Optional[torch.FloatTensor] = None
pre_doc_cov_loss: Optional[torch.FloatTensor] = None
prediction_logits: torch.FloatTensor = None
document_prediction_logits: torch.FloatTensor = None
sentence_prediction_logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class HATForSimCLRPreTrainingOutput(ModelOutput):
"""
Output type of [`HATForSimCLRPreTraining`].
Args:
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of pre-training losses.
mlm_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
The masked language modeling loss.
sent_sim_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
The sentence similarity loss.
doc_sim_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
The document similarity loss.
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
document_prediction_logits (`torch.FloatTensor` of shape `(batch_size, config.hidden_size)`):
Prediction scores of the document prediction head (scores for each vocabulary token before Sigmoid).
sentence_prediction_logits (`torch.FloatTensor` of shape `(batch_size, config.hidden_size)`):
Prediction scores of the sentence prediction head (scores for each vocabulary token before Sigmoid).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
mlm_loss: Optional[torch.FloatTensor] = None
sent_contr_loss: Optional[torch.FloatTensor] = None
sent_std_loss: Optional[torch.FloatTensor] = None
sent_cov_loss: Optional[torch.FloatTensor] = None
doc_contr_loss: Optional[torch.FloatTensor] = None
doc_std_loss: Optional[torch.FloatTensor] = None
doc_cov_loss: Optional[torch.FloatTensor] = None
prediction_logits: torch.FloatTensor = None
document_prediction_logits: torch.FloatTensor = None
sentence_prediction_logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class SentenceClassifierOutput(ModelOutput):
"""
Base class for outputs of sentence classification models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) :
Classification loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`):
Classification scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
sentence_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[Tuple[torch.FloatTensor]] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
sentence_attentions: Optional[Tuple[torch.FloatTensor]] = None
class HATConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a :class:`~transformers.HAT`.
It is used to instantiate a HAT model according to the specified arguments,
defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration
to that of the HAT `kiddothe2b/hat-base-4096 <https://huggingface.co/kiddothe2b/hat-base-4096>`__ architecture.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
Args:
vocab_size (:obj:`int`, `optional`, defaults to 30522):
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
:obj:`inputs_ids` passed when calling :class:`~transformers.BertModel` or
:class:`~transformers.TFBertModel`.
max_sentences (:obj:`int`, `optional`, defaults to 64):
The maximum number of sentences that this model might ever be used with.
max_sentence_size (:obj:`int`, `optional`, defaults to 128):
The maximum sentence length that this model might ever be used with.
model_max_length (:obj:`int`, `optional`, defaults to 8192):
The maximum sequence length (max_sentences * max_sentence_size) that this model might ever be used with
encoder_layout (:obj:`Dict`):
The sentence/document encoder layout.
hidden_size (:obj:`int`, `optional`, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (:obj:`int`, `optional`, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (:obj:`int`, `optional`, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (:obj:`int`, `optional`, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string,
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported.
hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (:obj:`int`, `optional`, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (:obj:`int`, `optional`, defaults to 2):
The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.BertModel` or
:class:`~transformers.TFBertModel`.
initializer_range (:obj:`float`, `optional`, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12):
The epsilon used by the layer normalization layers.
position_embedding_type (:obj:`str`, `optional`, defaults to :obj:`"absolute"`):
Type of position embedding. Choose one of :obj:`"absolute"`, :obj:`"relative_key"`,
:obj:`"relative_key_query"`. For positional embeddings use :obj:`"absolute"`. For more information on
:obj:`"relative_key"`, please refer to `Self-Attention with Relative Position Representations (Shaw et al.)
<https://arxiv.org/abs/1803.02155>`__. For more information on :obj:`"relative_key_query"`, please refer to
`Method 4` in `Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)
<https://arxiv.org/abs/2009.13658>`__.
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if ``config.is_decoder=True``.
classifier_dropout (:obj:`float`, `optional`):
The dropout ratio for the classification head.
"""
model_type = "hi-transformer"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
max_sentences=64,
max_sentence_size=128,
model_max_length=8192,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
position_embedding_type="absolute",
encoder_layout=None,
use_cache=True,
classifier_dropout=None,
**kwargs
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.max_sentences = max_sentences
self.max_sentence_size = max_sentence_size
self.model_max_length = model_max_length
self.encoder_layout = encoder_layout
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.classifier_dropout = classifier_dropout
class HATEmbeddings(nn.Module):
"""
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
"""
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
def __init__(self, config):
super().__init__()
self.padding_idx = config.pad_token_id
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=self.padding_idx)
self.position_embeddings = nn.Embedding(config.max_sentence_length + self.padding_idx + 1, config.hidden_size, padding_idx=self.padding_idx)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer("position_ids", torch.arange(self.padding_idx + 1,
config.max_sentence_length + self.padding_idx + 1).repeat(config.max_sentences).expand((1, -1)))
if version.parse(torch.__version__) > version.parse("1.6.0"):
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long),
persistent=False,
)
def forward(
self,
input_ids=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
):
if position_ids is None:
if input_ids is not None:
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, self.position_ids)
else:
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
"""
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
)
return position_ids.unsqueeze(0).expand(input_shape)
class HATLayer(nn.Module):
def __init__(self, config, use_sentence_encoder=True, use_document_encoder=True):
super().__init__()
self.max_sentence_length = config.max_sentence_length
self.max_sentences = config.max_sentences
self.hidden_size = config.hidden_size
self.use_document_encoder = use_document_encoder
self.use_sentence_encoder = use_sentence_encoder
if self.use_sentence_encoder:
self.sentence_encoder = TransformerLayer(config)
if self.use_document_encoder:
self.document_encoder = TransformerLayer(config)
self.position_embeddings = nn.Embedding(config.max_sentences+1, config.hidden_size,
padding_idx=config.pad_token_id)
def forward(
self,
hidden_states,
attention_mask=None,
num_sentences=None,
output_attentions=False,
):
sentence_outputs = (None, None)
if self.use_sentence_encoder:
# transform sequences to sentences
sentence_inputs = transform_tokens2sentences(hidden_states,
num_sentences=num_sentences,
max_sentence_length=self.max_sentence_length)
sentence_masks = transform_masks2sentences(attention_mask,
num_sentences=num_sentences,
max_sentence_length=self.max_sentence_length)
sentence_outputs = self.sentence_encoder(sentence_inputs,
sentence_masks,
output_attentions=output_attentions)
# transform sentences to tokens
outputs = transform_sentences2tokens(sentence_outputs[0],
num_sentences=num_sentences,
max_sentence_length=self.max_sentence_length)
else:
outputs = hidden_states
document_outputs = (None, None)
if self.use_document_encoder:
# gather sentence representative tokens
sentence_global_tokens = outputs[:, ::self.max_sentence_length].clone()
sentence_attention_mask = attention_mask[:, :, :, ::self.max_sentence_length].clone()
sentence_positions = torch.arange(1, num_sentences+1).repeat(outputs.size(0), 1).to(outputs.device) \
* (sentence_attention_mask.reshape(-1, num_sentences) >= -100).int().to(outputs.device)
outputs[:, ::self.max_sentence_length] += self.position_embeddings(sentence_positions)
document_outputs = self.document_encoder(sentence_global_tokens,
sentence_attention_mask,
output_attentions=output_attentions)
# replace sentence representative tokens
outputs[:, ::self.max_sentence_length] = document_outputs[0]
if output_attentions:
return outputs, sentence_outputs[1], document_outputs[1]
return outputs, None
class TransformerLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = RobertaAttention(config)
self.is_decoder = config.is_decoder
self.intermediate = RobertaIntermediate(config)
self.output = RobertaOutput(config)
def forward(
self,
hidden_states,
attention_mask=None,
output_attentions=False,
):
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
outputs = (layer_output,) + outputs
return outputs
class HATEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([HATLayer(config,
use_sentence_encoder=self.config.encoder_layout[str(idx)]['sentence_encoder'],
use_document_encoder=self.config.encoder_layout[str(idx)]['document_encoder'])
for idx in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
num_sentences=None,
use_cache=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_sentence_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
hidden_states,
attention_mask,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
num_sentences,
output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
all_sentence_attentions = all_sentence_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
all_hidden_states,
all_self_attentions,
all_sentence_attentions
]
if v is not None
)
return BaseModelOutputWithSentenceAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
sentence_attentions=all_sentence_attentions,
)
def _tie_weights(self):
"""
Tie the weights between sentence positional embeddings across all layers.
If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the
weights instead.
"""
original_position_embeddings = None
for module in self.layer:
if hasattr(module, "position_embeddings"):
assert hasattr(module.position_embeddings, "weight")
if original_position_embeddings is None:
original_position_embeddings = module.position_embeddings
if self.config.torchscript:
module.position_embeddings.weight = nn.Parameter(original_position_embeddings.weight.clone())
else:
module.position_embeddings.weight = original_position_embeddings.weight
return
class HATPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = HATConfig
base_model_prefix = "hat"
supports_gradient_checkpointing = True
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, HATEncoder):
module.gradient_checkpointing = value
def update_keys_to_ignore(self, config, del_keys_to_ignore):
"""Remove some keys from ignore list"""
if not config.tie_word_embeddings:
# must make a new list, or the class variable gets modified!
self._keys_to_ignore_on_save = [k for k in self._keys_to_ignore_on_save if k not in del_keys_to_ignore]
self._keys_to_ignore_on_load_missing = [
k for k in self._keys_to_ignore_on_load_missing if k not in del_keys_to_ignore
]
@classmethod
def from_config(cls, config):
return cls._from_config(config)
HAT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`HATConfig`]): Model configuration class with all the parameters of the
model. Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
HAT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`HATTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
class AttentivePooling(nn.Module):
def __init__(self, config):
super().__init__()
self.attn_dropout = config.hidden_dropout_prob
self.lin_proj = nn.Linear(config.hidden_size, config.hidden_size)
self.v = nn.Linear(config.hidden_size, 1, bias=False)
def forward(self, inputs):
lin_out = self.lin_proj(inputs)
attention_weights = torch.tanh(self.v(lin_out)).squeeze(-1)
attention_weights_normalized = torch.softmax(attention_weights, -1)
return torch.sum(attention_weights_normalized.unsqueeze(-1) * inputs, 1)
class HATPooler(nn.Module):
def __init__(self, config, pooling='max'):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.pooling = pooling
if self.pooling == 'attentive':
self.attentive_pooling = AttentivePooling(config)
self.activation = nn.Tanh()
self.max_sentence_length = config.max_sentence_length
def forward(self, hidden_states):
if self.pooling == 'attentive':
pooled_output = self.attentive_pooling(hidden_states)
else:
pooled_output = torch.max(hidden_states, dim=1)[0]
pooled_output = self.dense(pooled_output)
pooled_output = self.activation(pooled_output)
return pooled_output
class HATSentencizer(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
self.max_sentence_length = config.max_sentence_length
def forward(self, hidden_states):
sentence_repr_hidden_states = hidden_states[:, ::self.max_sentence_length]
sentence_outputs = self.dense(sentence_repr_hidden_states)
sentence_outputs = self.activation(sentence_outputs)
return sentence_outputs
@add_start_docstrings(
"The bare HAT Model transformer outputting raw hidden-states without any specific head on top.",
HAT_START_DOCSTRING,
)
class HATModel(HATPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in *Attention is
all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
.. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
"""
_keys_to_ignore_on_load_missing = [r"position_ids"]
# Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->HAT
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = HATEmbeddings(config)
self.encoder = HATEncoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(HAT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithSentenceAttentions,
config_class=_CONFIG_FOR_DOC,
)
# Copied from transformers.models.bert.modeling_bert.BertModel.forward
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
# Compute number of sentences
num_batch_sentences = input_ids.shape[-1] // self.config.max_sentence_length
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
num_sentences=num_batch_sentences,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output) + encoder_outputs[1:]
return BaseModelOutputWithSentenceAttentions(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
sentence_attentions=encoder_outputs.sentence_attentions,
)
class HATLMHead(nn.Module):
"""HAT Head for masked language modeling."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
self.decoder.bias = self.bias
def forward(self, features, **kwargs):
x = self.dense(features)
x = gelu(x)
x = self.layer_norm(x)
# project back to size of vocabulary with bias
x = self.decoder(x)
return x
def _tie_weights(self):
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
self.bias = self.decoder.bias
class HATSentenceHead(nn.Module):
"""HAT Head for masked language modeling."""
def __init__(self, config):
super().__init__()
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.decoder = nn.Linear(config.hidden_size, config.sentence_embedding_size)
self.bias = nn.Parameter(torch.zeros(config.sentence_embedding_size))
self.decoder.bias = self.bias
def forward(self, features):
x = gelu(features)
x = self.layer_norm(x)
x = self.decoder(x)
return x
def _tie_weights(self):
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
self.bias = self.decoder.bias
class HATSiameseHead(nn.Module):
"""HAT Head for masked language modeling."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size * 2, bias=False)
def forward(self, features):
x = self.dense(features)
return x
@add_start_docstrings("""HAT Model with a `language modeling` head on top.""", HAT_START_DOCSTRING)
class HATForMaskedLM(HATPreTrainedModel):
_keys_to_ignore_on_load_missing = [r"position_ids"]
_keys_to_ignore_on_load_unexpected = [r"pooler"]
def __init__(self, config):
super().__init__(config)
self.hi_transformer = HATModel(config)
self.lm_head = HATLMHead(config)
# The LM head weights require special treatment only when they are tied with the word embeddings
self.update_keys_to_ignore(config, ["lm_head.decoder.weight"])
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head.decoder
def set_output_embeddings(self, new_embeddings):
self.lm_head.decoder = new_embeddings
def get_input_embeddings(self):
return self.hi_transformer.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.hi_transformer.embeddings.word_embeddings = value
def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
"""Tie or clone module weights depending of whether we are using TorchScript or not"""
if self.config.torchscript:
output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone())
else:
output_embeddings.weight = input_embeddings.weight
if getattr(output_embeddings, "bias", None) is not None:
output_embeddings.bias.data = nn.functional.pad(
output_embeddings.bias.data,
(
0,
output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0],
),
"constant",
0,
)
if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
output_embeddings.out_features = input_embeddings.num_embeddings
@add_start_docstrings_to_model_forward(HAT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
mask="<mask>",
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
Used to hide legacy arguments that have been deprecated.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.hi_transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class HATModelForDocumentRepresentation(HATPreTrainedModel):
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config, pooling='max'):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.max_sentence_length = config.max_sentence_length
self.hi_transformer = HATModel(config)
self.pooler = HATPooler(config, pooling=pooling)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(HAT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.hi_transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
pooled_outputs = self.pooler(sequence_output[:, ::self.max_sentence_length])
drp_loss = None
if labels is not None:
loss_fct = MSELoss()
drp_loss = loss_fct(pooled_outputs, labels)
if not return_dict:
output = (pooled_outputs,) + outputs[2:]
return ((drp_loss,) + output) if drp_loss is not None else output
return SequenceRepresentationOutput(
loss=drp_loss,
representations=pooled_outputs,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(""" HAT Model transformer for masked sentence representation prediction """,
HAT_START_DOCSTRING,
)
class HATModelForMaskedSentenceRepresentation(HATPreTrainedModel):
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.hi_transformer = HATModel(config)
self.sentencizer = HATSentencizer(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(HAT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.hi_transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sentence_outputs = self.sentencizer(sequence_output)
srp_loss = None
if labels is not None:
loss_fct = MSELoss()
srp_loss = loss_fct(sentence_outputs, labels)
if not return_dict:
output = (sentence_outputs,) + outputs[2:]
return ((srp_loss,) + output) if srp_loss is not None else output
return SequenceRepresentationOutput(
loss=srp_loss,
representations=sentence_outputs,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
HAT Model with three heads on top as done during the pretraining: a `masked language modeling` head and a `document
representation prediction ` head and a `masked sentence representation prediction ` head.
""",
HAT_START_DOCSTRING,
)
class HATModelForBoWPreTraining(HATPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.hi_transformer = HATModel(config)
if self.config.mlm or self.config.mslm:
self.lm_head = HATLMHead(config)
if self.config.srp or self.config.srp:
self.sentencizer = HATSentencizer(config)
if self.config.drp:
self.pooler = HATPooler(config, pooling='max')
self.document_cls = nn.Linear(config.hidden_size, config.vocab_size)
if self.config.srp:
self.sentence_cls = nn.Linear(config.hidden_size, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
labels=None,
document_labels=None,
sentence_labels=None,
sentence_masks=None,
sentence_mask_ids=None,
document_mask_ids=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.hi_transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# Collect sequence output representations
sequence_output = outputs[0]
# Masked Language Modeling (MLM)
prediction_scores = None
if self.config.mlm or self.config.mslm:
prediction_scores = self.lm_head(sequence_output)
if self.config.srp or self.config.drp:
sentence_outputs = self.sentencizer(sequence_output)
# Sentence Representation Prediction (SRP)
sentence_prediction_scores = None
if self.config.srp:
sentence_prediction_scores = self.sentence_cls(sentence_outputs)
if sentence_mask_ids is not None:
sentence_prediction_scores = sentence_prediction_scores[:, :, sentence_mask_ids].clone()
# Document Representation Prediction (DRP)
document_prediction_scores = None
if self.config.drp:
pooled_outputs = self.pooler(sentence_outputs)
document_prediction_scores = self.document_cls(pooled_outputs)
if document_mask_ids is not None:
document_prediction_scores = document_prediction_scores[:, document_mask_ids].clone()
total_loss = None
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
total_loss = masked_lm_loss.clone()
drp_loss = None
if document_labels is not None:
loss_fct = BCEWithLogitsLoss()
drp_loss = loss_fct(document_prediction_scores, document_labels)
if labels is not None:
total_loss += drp_loss
else:
total_loss = drp_loss
srp_loss = None
if sentence_labels is not None:
if self.config.sentence_embedding_size != self.config.vocab_size:
loss_fct = CosineEmbeddingLoss()
srp_loss = loss_fct(sentence_prediction_scores.view(-1, sentence_labels.shape[-1])[sentence_masks.view(-1).bool()],
sentence_labels.view(-1, sentence_labels.shape[-1])[sentence_masks.view(-1).bool()],
torch.ones((sentence_masks.view(-1).sum(), ), device=sentence_masks.device))
else:
loss_fct = BCEWithLogitsLoss()
srp_loss = loss_fct(sentence_prediction_scores.view(-1, sentence_labels.shape[-1])[sentence_masks.view(-1).bool()],
sentence_labels.view(-1, sentence_labels.shape[-1])[sentence_masks.view(-1).bool()])
if labels is not None or document_labels is not None:
total_loss += srp_loss
else:
total_loss = srp_loss
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((total_loss, masked_lm_loss, srp_loss, drp_loss) + output) if total_loss is not None else output
return HATForBoWPreTrainingOutput(
loss=total_loss,
mlm_loss=masked_lm_loss,
srp_loss=srp_loss,
drp_loss=drp_loss,
prediction_logits=prediction_scores,
document_prediction_logits=document_prediction_scores,
sentence_prediction_logits=sentence_prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
HAT Model with three heads on top as done during the pretraining: a `masked language modeling` head and a `sentence
projection head` head and a document projection head` head.
""",
HAT_START_DOCSTRING,
)
class HATModelForVICRegPreTraining(HATPreTrainedModel):
def __init__(self, config,
document_regularization=True,
sentence_regularization=True):
super().__init__(config)
self.document_regularization = document_regularization
self.sentence_regularization = sentence_regularization
self.hi_transformer = HATModel(config)
if self.config.mlm:
self.lm_head = HATLMHead(config)
if self.config.sent_sim or self.config.doc_sim:
self.sentencizer = HATSentencizer(config)
self.cosine = nn.CosineSimilarity(dim=1)
if self.config.doc_sim:
self.pooler = HATPooler(config, pooling='max')
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids=None,
secondary_input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
labels=None,
secondary_labels=None,
sentence_masks=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
primary_outputs = self.hi_transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
secondary_outputs = self.hi_transformer(
secondary_input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# Collect sequence output representations
primary_sequence_output = primary_outputs[0]
secondary_sequence_output = secondary_outputs[0]
# Masked Language Modeling (MLM)
primary_prediction_scores = None
secondary_prediction_scores = None
if self.config.mlm:
primary_prediction_scores = self.lm_head(primary_sequence_output)
if secondary_labels is not None:
secondary_prediction_scores = self.lm_head(secondary_sequence_output)
if self.config.sent_sim or self.config.doc_sim:
primary_sentence_outputs = self.sentencizer(primary_sequence_output)
secondary_sentence_outputs = self.sentencizer(secondary_sequence_output)
# Document Representation Prediction (DRP)
if self.config.doc_sim:
primary_pooled_outputs = self.pooler(primary_sentence_outputs)
secondary_pooled_outputs = self.pooler(secondary_sentence_outputs)
total_loss = None
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(primary_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
total_loss = masked_lm_loss.clone() / 2
if secondary_labels is not None:
masked_lm_loss = loss_fct(secondary_prediction_scores.view(-1, self.config.vocab_size), secondary_labels.view(-1))
total_loss += masked_lm_loss / 2
sent_sim_loss = None
sent_std_loss = None
sent_cov_loss = None
pre_sent_std_loss = None
pre_sent_cov_loss = None
if self.config.sent_sim:
# sentence projections similarity
sent_sim_loss = 1 - self.cosine(
primary_sentence_outputs[sentence_masks].view(-1, self.config.hidden_size),
secondary_sentence_outputs[sentence_masks].view(-1, self.config.hidden_size)).mean()
# sentence projections variance, covariance
sent_std_loss, sent_cov_loss = vic_reg(
primary_sentence_outputs[sentence_masks].view(-1, self.config.hidden_size),
secondary_sentence_outputs[sentence_masks].view(-1, self.config.hidden_size))
if labels is not None:
total_loss += sent_sim_loss
else:
total_loss = sent_sim_loss
if self.sentence_regularization:
total_loss += sent_std_loss + (0.1 * sent_cov_loss)
doc_sim_loss = None
doc_std_loss = None
doc_cov_loss = None
pre_doc_std_loss = None
pre_doc_cov_loss = None
if self.config.doc_sim:
# document projections similarity
doc_sim_loss = 1 - self.cosine(primary_pooled_outputs, secondary_pooled_outputs).mean()
# document projections variance, covariance
doc_std_loss, doc_cov_loss = vic_reg(primary_pooled_outputs, secondary_pooled_outputs)
total_loss += doc_sim_loss
if self.document_regularization:
total_loss += doc_std_loss + (0.1 * doc_cov_loss)
if not return_dict:
output = (primary_prediction_scores,) + primary_outputs[2:]
return ((total_loss, masked_lm_loss, sent_sim_loss, doc_sim_loss) + output) if total_loss is not None else output
return HATForVICRegPreTrainingOutput(
loss=total_loss,
mlm_loss=masked_lm_loss,
sent_sim_loss=sent_sim_loss,
sent_std_loss=sent_std_loss,
sent_cov_loss=sent_cov_loss,
pre_sent_std_loss=pre_sent_std_loss,
pre_sent_cov_loss=pre_sent_cov_loss,
doc_sim_loss=doc_sim_loss,
doc_std_loss=doc_std_loss,
doc_cov_loss=doc_cov_loss,
pre_doc_std_loss=pre_doc_std_loss,
pre_doc_cov_loss=pre_doc_cov_loss,
prediction_logits=primary_prediction_scores,
hidden_states=primary_outputs.hidden_states,
attentions=primary_outputs.attentions,
)
@add_start_docstrings(
"""
HAT Model with three heads on top as done during the pretraining: a `masked language modeling` head and a `document
representation prediction ` head and a `masked sentence representation prediction ` head.
""",
HAT_START_DOCSTRING,
)
class HATModelForSimCLRPreTraining(HATPreTrainedModel):
def __init__(self, config,
document_regularization=True,
sentence_regularization=True):
super().__init__(config)
self.document_regularization = document_regularization
self.sentence_regularization = sentence_regularization
self.hi_transformer = HATModel(config)
if self.config.mlm:
self.lm_head = HATLMHead(config)
if self.config.sent_sim or self.config.doc_sim:
self.sentencizer = HATSentencizer(config)
if self.config.doc_sim:
self.pooler = HATPooler(config, pooling='max')
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids=None,
secondary_input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
labels=None,
secondary_labels=None,
sentence_masks=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
primary_outputs = self.hi_transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
secondary_outputs = self.hi_transformer(
secondary_input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# Collect sequence output representations
primary_sequence_output = primary_outputs[0]
secondary_sequence_output = secondary_outputs[0]
# Masked Language Modeling (MLM)
primary_prediction_scores = None
secondary_prediction_scores = None
if self.config.mlm:
primary_prediction_scores = self.lm_head(primary_sequence_output)
if secondary_labels is not None:
secondary_prediction_scores = self.lm_head(secondary_sequence_output)
if self.config.sent_sim or self.config.doc_sim:
primary_sentence_outputs = self.sentencizer(primary_sequence_output)
secondary_sentence_outputs = self.sentencizer(secondary_sequence_output)
# Document Representation Prediction (DRP)
if self.config.doc_sim:
primary_pooled_outputs = self.pooler(primary_sentence_outputs)
secondary_pooled_outputs = self.pooler(secondary_sentence_outputs)
total_loss = None
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(primary_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
total_loss = masked_lm_loss.clone() / 2
if secondary_labels is not None:
masked_lm_loss = loss_fct(secondary_prediction_scores.view(-1, self.config.vocab_size), secondary_labels.view(-1))
total_loss += masked_lm_loss / 2
sent_contr_loss = None
sent_std_loss = None
sent_cov_loss = None
if self.config.sent_sim:
# sentence contrastive loss
loss_fct = CrossEntropyLoss()
# sentence queue: (2 x BS X S, H)
flatten_sentence_masks = sentence_masks.view(-1)
flatten_primary_sentence_outputs = primary_sentence_outputs.view(-1, self.config.hidden_size)
flatten_secondary_sentence_outputs = secondary_sentence_outputs.view(-1, self.config.hidden_size)
# merge sentence queue (sentences from both branches)
flatten_primary_sentence_outputs = normalize(flatten_primary_sentence_outputs)
flatten_secondary_sentence_outputs = normalize(flatten_secondary_sentence_outputs)
sentence_queue = torch.cat([flatten_primary_sentence_outputs, flatten_secondary_sentence_outputs], dim=0)
# sentence logits: (BS x S, 2 x BS x S)
primary_sent_contrast_logits = torch.matmul(flatten_primary_sentence_outputs, sentence_queue.T) / self.config.temperature
secondary_sent_contrast_logits = torch.matmul(flatten_secondary_sentence_outputs, sentence_queue.T) / self.config.temperature
batch_size = primary_sent_contrast_logits.shape[0]
# mask-out self-contrast cases
logits_mask = torch.eye(batch_size, batch_size).to(input_ids.device)
primary_logits_mask = torch.cat([logits_mask, torch.zeros_like(logits_mask).to(input_ids.device)], dim=1).to(input_ids.device)
secondary_logits_mask = torch.cat([torch.zeros_like(logits_mask).to(input_ids.device), logits_mask], dim=1).to(input_ids.device)
primary_sent_contrast_logits += (primary_logits_mask * -1e3)
secondary_sent_contrast_logits += (secondary_logits_mask * -1e3)
# mask-out logits in padded sentences
primary_sent_contrast_logits[:, ~flatten_sentence_masks.repeat(2)] = -1e3
primary_sent_contrast_logits[:, ~flatten_sentence_masks.repeat(2)] = -1e3
# auto-compute labels
primary_sentence_labels = torch.arange(batch_size).to(input_ids.device) + batch_size
primary_sentence_labels[~flatten_sentence_masks] = -100
secondary_sentence_labels = torch.arange(batch_size).to(input_ids.device)
secondary_sentence_labels[~flatten_sentence_masks] = -100
# compute loss for both branches
sent_contr_loss = (loss_fct(primary_sent_contrast_logits, primary_sentence_labels) +
loss_fct(secondary_sent_contrast_logits, secondary_sentence_labels)) * 0.5
# sentence outputs variance, covariance
sent_std_loss, sent_cov_loss = vic_reg(
primary_sentence_outputs[sentence_masks].view(-1, self.config.hidden_size),
secondary_sentence_outputs[sentence_masks].view(-1, self.config.hidden_size))
if labels is not None:
total_loss += sent_contr_loss
else:
total_loss = sent_contr_loss
if self.sentence_regularization:
total_loss += sent_std_loss + (0.1 * sent_cov_loss)
doc_contr_loss = None
doc_std_loss = None
doc_cov_loss = None
if self.config.doc_sim:
# sentence contrastive loss
loss_fct = CrossEntropyLoss()
# sentence queue: (2 x BS, H)
primary_pooled_outputs = normalize(primary_pooled_outputs)
secondary_pooled_outputs = normalize(secondary_pooled_outputs)
document_queue = torch.cat([primary_pooled_outputs, secondary_pooled_outputs], dim=0)
# sentence logits: (BS, 2 x BS)
primary_doc_contrast_logits = torch.matmul(primary_pooled_outputs, document_queue.T) / self.config.temperature
secondary_doc_contrast_logits = torch.matmul(secondary_pooled_outputs, document_queue.T) / self.config.temperature
batch_size = primary_doc_contrast_logits.shape[0]
# mask-out self-contrast cases
logits_mask = torch.eye(batch_size, batch_size).to(input_ids.device)
primary_logits_mask = torch.cat([logits_mask, torch.zeros_like(logits_mask).to(input_ids.device)], dim=1).to(input_ids.device)
secondary_logits_mask = torch.cat([torch.zeros_like(logits_mask).to(input_ids.device), logits_mask], dim=1).to(input_ids.device)
primary_doc_contrast_logits += (primary_logits_mask * -1e3)
secondary_doc_contrast_logits += (secondary_logits_mask * -1e3)
# auto-compute labels
primary_doc_labels = torch.arange(batch_size).to(input_ids.device) + batch_size
secondary_doc_labels = torch.arange(batch_size).to(input_ids.device)
# compute loss for both branches
doc_contr_loss = (loss_fct(primary_doc_contrast_logits, primary_doc_labels) +
loss_fct(secondary_doc_contrast_logits, secondary_doc_labels)) * 0.5
# sentence outputs variance, covariance
doc_std_loss, doc_cov_loss = vic_reg(primary_pooled_outputs, secondary_pooled_outputs)
if labels is not None:
total_loss += doc_contr_loss
else:
total_loss = doc_contr_loss
if self.document_regularization:
total_loss += doc_std_loss + (0.1 * doc_cov_loss)
if not return_dict:
output = (primary_prediction_scores,) + primary_outputs[2:]
return ((total_loss, masked_lm_loss, sent_contr_loss, doc_contr_loss) + output) if total_loss is not None else output
return HATForSimCLRPreTrainingOutput(
loss=total_loss,
mlm_loss=masked_lm_loss,
sent_contr_loss=sent_contr_loss,
sent_std_loss=sent_std_loss,
sent_cov_loss=sent_cov_loss,
doc_contr_loss=doc_contr_loss,
doc_std_loss=doc_std_loss,
doc_cov_loss=doc_cov_loss,
prediction_logits=primary_prediction_scores,
hidden_states=primary_outputs.hidden_states,
attentions=primary_outputs.attentions,
)
@add_start_docstrings(
"""
HAT Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
HAT_START_DOCSTRING,
)
class HATForSequenceClassification(HATPreTrainedModel):
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config, pooling='max'):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.max_sentence_length = config.max_sentence_length
self.pooling = pooling
self.hi_transformer = HATModel(config)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.pooler = HATPooler(config, pooling=pooling)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(HAT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.hi_transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
if self.pooling == 'first':
pooled_output = self.pooler(torch.unsqueeze(sequence_output[:, 0, :], 1))
elif self.pooling == 'last':
pooled_output = self.pooler(torch.unsqueeze(sequence_output[:, -128, :], 1))
else:
pooled_output = self.pooler(sequence_output[:, ::self.max_sentence_length])
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(""" HAT Model transformer for masked sentence representation prediction """,
HAT_START_DOCSTRING,
)
class HATModelForSequentialSentenceClassification(HATPreTrainedModel):
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.hi_transformer = HATModel(config)
self.sentencizer = HATSentencizer(config)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(HAT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.hi_transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sentence_outputs = self.sentencizer(sequence_output)
sentence_outputs = self.dropout(sentence_outputs)
logits = self.classifier(sentence_outputs)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.view(-1, 1).squeeze(), labels.view(-1).squeeze())
else:
loss = loss_fct(logits.view(-1, 1), labels.view(-1))
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
mask = labels[:, :, 0] != -1
loss = loss_fct(logits[mask], labels[mask])
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SentenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
sentence_attentions=outputs.sentence_attentions
)
@add_start_docstrings(
"""
HAT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
HAT_START_DOCSTRING,
)
class HATForMultipleChoice(HATPreTrainedModel):
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config, pooling='last'):
super().__init__(config)
self.pooling = pooling
self.max_sentence_length = config.max_sentence_length
self.hi_transformer = HATModel(config)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.pooler = HATPooler(config, pooling=pooling)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(HAT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
token_type_ids=None,
attention_mask=None,
labels=None,
position_ids=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
flat_inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.hi_transformer(
flat_input_ids,
position_ids=flat_position_ids,
token_type_ids=flat_token_type_ids,
attention_mask=flat_attention_mask,
inputs_embeds=flat_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
if self.pooling == 'first':
pooled_output = self.pooler(torch.unsqueeze(sequence_output[:, 0, :], 1))
elif self.pooling == 'last':
pooled_output = self.pooler(torch.unsqueeze(sequence_output[:, -128, :], 1))
else:
pooled_output = self.pooler(sequence_output[:, ::self.max_sentence_length])
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
HAT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
HAT_START_DOCSTRING,
)
class HATForTokenClassification(HATPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.hi_transformer = HATModel(config, add_pooling_layer=False)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(HAT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.hi_transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
HAT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
HAT_START_DOCSTRING,
)
class HATForQuestionAnswering(HATPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.hi_transformer = HATModel(config, add_pooling_layer=False)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(HAT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
start_positions=None,
end_positions=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.hi_transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def create_position_ids_from_input_ids(input_ids, padding_idx, position_ids):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: torch.Tensor x:
Returns: torch.Tensor
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
return position_ids[:, :input_ids.size(1)].repeat(input_ids.size(0), 1) * mask
def normalized_output_std_loss(x):
return torch.std(x / torch.nn.functional.normalize(x, dim=1), dim=0).mean()
def vic_reg(x: torch.Tensor, y: torch.Tensor):
std_x = torch.sqrt(x.var(dim=0) + 0.0001)
std_y = torch.sqrt(y.var(dim=0) + 0.0001)
std_loss = torch.mean(torch.relu(1 - std_x)) / 2 + torch.mean(torch.relu(1 - std_y)) / 2
cov_x = (x.T @ x) / (x.shape[0] - 1)
cov_y = (y.T @ y) / (y.shape[0] - 1)
cov_loss = off_diagonal(cov_x).pow_(2).sum().div(x.shape[-1]) + \
off_diagonal(cov_y).pow_(2).sum().div(y.shape[-1])
return std_loss, cov_loss
def off_diagonal(x):
n, m = x.shape
assert n == m
return x.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten()