Update README.md (#1)
Browse files- Update README.md (7269b5af023860f1d56d55f319d1975e9315d415)
README.md
CHANGED
@@ -24,7 +24,7 @@ tags:
|
|
24 |
## Model Description
|
25 |
|
26 |
This model consists of a fine-tuned version of BgGPT-7B-Instruct-v0.2 for a propaganda detection task. It is effectively a binary classifier, determining wether propaganda is present in the output string.
|
27 |
-
This model was created by [`Identrics`](https://identrics.ai/), in the scope of the WASPer project.The detailed taxonomy of the full pipeline could be found [here](https://github.com/Identrics/wasper/).
|
28 |
|
29 |
|
30 |
## Uses
|
@@ -42,8 +42,8 @@ Then the model can be downloaded and used for inference:
|
|
42 |
```py
|
43 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
44 |
|
45 |
-
model = AutoModelForSequenceClassification.from_pretrained("identrics/
|
46 |
-
tokenizer = AutoTokenizer.from_pretrained("identrics/
|
47 |
|
48 |
tokens = tokenizer("Газа евтин, американското ядрено гориво евтино, пълно с фотоволтаици а пък тока с 30% нагоре. Защо ?", return_tensors="pt")
|
49 |
output = model(**tokens)
|
|
|
24 |
## Model Description
|
25 |
|
26 |
This model consists of a fine-tuned version of BgGPT-7B-Instruct-v0.2 for a propaganda detection task. It is effectively a binary classifier, determining wether propaganda is present in the output string.
|
27 |
+
This model was created by [`Identrics`](https://identrics.ai/), in the scope of the WASPer project. The detailed taxonomy of the full pipeline could be found [here](https://github.com/Identrics/wasper/).
|
28 |
|
29 |
|
30 |
## Uses
|
|
|
42 |
```py
|
43 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
44 |
|
45 |
+
model = AutoModelForSequenceClassification.from_pretrained("identrics/wasper_propaganda_detection_bg", num_labels=2)
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained("identrics/wasper_propaganda_detection_bg")
|
47 |
|
48 |
tokens = tokenizer("Газа евтин, американското ядрено гориво евтино, пълно с фотоволтаици а пък тока с 30% нагоре. Защо ?", return_tensors="pt")
|
49 |
output = model(**tokens)
|