Ubuntu
commited on
Commit
β’
07eb0e9
1
Parent(s):
e77b318
added Azure NER
Browse filesThis view is limited to 50 files because it contains too many changes. Β
See raw diff
- __pycache__/keys.cpython-310.pyc +0 -0
- data/wolf_cut_labelled.csv +3 -0
- data/wolf_cut_temp.csv +3 -0
- data_intent/intent_data.csv +2 -2
- data_intent/temp.csv +3 -0
- finetuned_entity_categorical_classification/checkpoint-1681/optimizer.pt +1 -1
- finetuned_entity_categorical_classification/checkpoint-1681/pytorch_model.bin +1 -1
- finetuned_entity_categorical_classification/checkpoint-1681/rng_state.pth +0 -0
- finetuned_entity_categorical_classification/checkpoint-1681/trainer_state.json +10 -10
- finetuned_entity_categorical_classification/checkpoint-1681/training_args.bin +1 -1
- finetuned_entity_categorical_classification/checkpoint-3362/optimizer.pt +1 -1
- finetuned_entity_categorical_classification/checkpoint-3362/pytorch_model.bin +1 -1
- finetuned_entity_categorical_classification/checkpoint-3362/rng_state.pth +0 -0
- finetuned_entity_categorical_classification/checkpoint-3362/trainer_state.json +18 -18
- finetuned_entity_categorical_classification/checkpoint-3362/training_args.bin +1 -1
- finetuned_entity_categorical_classification/runs/Oct13_10-29-55_ip-172-31-95-165/events.out.tfevents.1697192996.ip-172-31-95-165.139501.0 +0 -0
- intent_classification_model/{checkpoint-324 β checkpoint-1216}/added_tokens.json +0 -0
- intent_classification_model/{checkpoint-324 β checkpoint-1216}/config.json +0 -0
- intent_classification_model/{checkpoint-324 β checkpoint-1216}/optimizer.pt +1 -1
- intent_classification_model/{checkpoint-324 β checkpoint-1216}/pytorch_model.bin +1 -1
- intent_classification_model/checkpoint-1216/rng_state.pth +0 -0
- intent_classification_model/{checkpoint-324 β checkpoint-1216}/scheduler.pt +1 -1
- intent_classification_model/{checkpoint-324 β checkpoint-1216}/special_tokens_map.json +0 -0
- intent_classification_model/{checkpoint-324 β checkpoint-1216}/tokenizer.json +0 -0
- intent_classification_model/{checkpoint-324 β checkpoint-1216}/tokenizer_config.json +0 -0
- intent_classification_model/checkpoint-1216/trainer_state.json +175 -0
- intent_classification_model/{checkpoint-324 β checkpoint-1216}/training_args.bin +1 -1
- intent_classification_model/{checkpoint-324 β checkpoint-1216}/vocab.txt +0 -0
- intent_classification_model/checkpoint-1376/added_tokens.json +7 -0
- intent_classification_model/checkpoint-1376/config.json +39 -0
- intent_classification_model/checkpoint-1376/optimizer.pt +3 -0
- intent_classification_model/checkpoint-1376/pytorch_model.bin +3 -0
- intent_classification_model/{checkpoint-324 β checkpoint-1376}/rng_state.pth +0 -0
- intent_classification_model/checkpoint-1376/scheduler.pt +3 -0
- intent_classification_model/checkpoint-1376/special_tokens_map.json +7 -0
- intent_classification_model/checkpoint-1376/tokenizer.json +0 -0
- intent_classification_model/checkpoint-1376/tokenizer_config.json +56 -0
- intent_classification_model/checkpoint-1376/trainer_state.json +175 -0
- intent_classification_model/checkpoint-1376/training_args.bin +3 -0
- intent_classification_model/checkpoint-1376/vocab.txt +0 -0
- intent_classification_model/checkpoint-324/trainer_state.json +0 -73
- intent_classification_model/runs/Oct13_10-35-17_ip-172-31-95-165/events.out.tfevents.1697193318.ip-172-31-95-165.139816.0 +0 -0
- intent_classification_model/runs/Oct13_10-49-20_ip-172-31-95-165/events.out.tfevents.1697194161.ip-172-31-95-165.140238.0 +0 -0
- research/09_fine_tuning_for_datacategories.ipynb +122 -115
- research/11_evaluation.ipynb +258 -50
- research/11_intent_classification_using_distilbert.ipynb +255 -143
- research/12_text_analytics_using_azure.ipynb +407 -0
- research/13_data_categories.ipynb +0 -0
- utils/__pycache__/get_category.cpython-310.pyc +0 -0
- utils/__pycache__/get_intent.cpython-310.pyc +0 -0
__pycache__/keys.cpython-310.pyc
CHANGED
Binary files a/__pycache__/keys.cpython-310.pyc and b/__pycache__/keys.cpython-310.pyc differ
|
|
data/wolf_cut_labelled.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:809d5432ceb512c742171eaefe4862dcc283674b8eab13eacf17ff15595fc16a
|
3 |
+
size 278211
|
data/wolf_cut_temp.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7a72974667af5a81b8012edba66f761f6c6784d03658413c37db06b0e94f0fb
|
3 |
+
size 52781
|
data_intent/intent_data.csv
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ee34445e32b84ac258ad523d7c6b1c6babf326a6932ae05f4a9aeae01ae4366
|
3 |
+
size 72303
|
data_intent/temp.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c89381303aa0fec070d7141d2e3ad2699daf9d0fb0c2a99eec7625c41977b62
|
3 |
+
size 632216
|
finetuned_entity_categorical_classification/checkpoint-1681/optimizer.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 535881018
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ddb82ef6b7ce9d69183007173cd0480840f0e859a1284293e8d83debea834d5
|
3 |
size 535881018
|
finetuned_entity_categorical_classification/checkpoint-1681/pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 267932842
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1026e1cb049c206c60d220d76f2ad9cccabbb8a8e435bf46049bfcbb6b973a7f
|
3 |
size 267932842
|
finetuned_entity_categorical_classification/checkpoint-1681/rng_state.pth
CHANGED
Binary files a/finetuned_entity_categorical_classification/checkpoint-1681/rng_state.pth and b/finetuned_entity_categorical_classification/checkpoint-1681/rng_state.pth differ
|
|
finetuned_entity_categorical_classification/checkpoint-1681/trainer_state.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"best_metric": 0.
|
3 |
"best_model_checkpoint": "finetuned_entity_categorical_classification/checkpoint-1681",
|
4 |
"epoch": 1.0,
|
5 |
"eval_steps": 500,
|
@@ -11,28 +11,28 @@
|
|
11 |
{
|
12 |
"epoch": 0.3,
|
13 |
"learning_rate": 1.7025580011897683e-05,
|
14 |
-
"loss": 0.
|
15 |
"step": 500
|
16 |
},
|
17 |
{
|
18 |
"epoch": 0.59,
|
19 |
"learning_rate": 1.405116002379536e-05,
|
20 |
-
"loss": 0.
|
21 |
"step": 1000
|
22 |
},
|
23 |
{
|
24 |
"epoch": 0.89,
|
25 |
"learning_rate": 1.1076740035693041e-05,
|
26 |
-
"loss": 0.
|
27 |
"step": 1500
|
28 |
},
|
29 |
{
|
30 |
"epoch": 1.0,
|
31 |
-
"eval_accuracy": 0.
|
32 |
-
"eval_loss": 0.
|
33 |
-
"eval_runtime": 2.
|
34 |
-
"eval_samples_per_second":
|
35 |
-
"eval_steps_per_second":
|
36 |
"step": 1681
|
37 |
}
|
38 |
],
|
@@ -40,7 +40,7 @@
|
|
40 |
"max_steps": 3362,
|
41 |
"num_train_epochs": 2,
|
42 |
"save_steps": 500,
|
43 |
-
"total_flos":
|
44 |
"trial_name": null,
|
45 |
"trial_params": null
|
46 |
}
|
|
|
1 |
{
|
2 |
+
"best_metric": 0.07765195518732071,
|
3 |
"best_model_checkpoint": "finetuned_entity_categorical_classification/checkpoint-1681",
|
4 |
"epoch": 1.0,
|
5 |
"eval_steps": 500,
|
|
|
11 |
{
|
12 |
"epoch": 0.3,
|
13 |
"learning_rate": 1.7025580011897683e-05,
|
14 |
+
"loss": 0.1008,
|
15 |
"step": 500
|
16 |
},
|
17 |
{
|
18 |
"epoch": 0.59,
|
19 |
"learning_rate": 1.405116002379536e-05,
|
20 |
+
"loss": 0.1133,
|
21 |
"step": 1000
|
22 |
},
|
23 |
{
|
24 |
"epoch": 0.89,
|
25 |
"learning_rate": 1.1076740035693041e-05,
|
26 |
+
"loss": 0.1023,
|
27 |
"step": 1500
|
28 |
},
|
29 |
{
|
30 |
"epoch": 1.0,
|
31 |
+
"eval_accuracy": 0.9753086419753086,
|
32 |
+
"eval_loss": 0.07765195518732071,
|
33 |
+
"eval_runtime": 2.2887,
|
34 |
+
"eval_samples_per_second": 2937.427,
|
35 |
+
"eval_steps_per_second": 183.944,
|
36 |
"step": 1681
|
37 |
}
|
38 |
],
|
|
|
40 |
"max_steps": 3362,
|
41 |
"num_train_epochs": 2,
|
42 |
"save_steps": 500,
|
43 |
+
"total_flos": 106434534943386.0,
|
44 |
"trial_name": null,
|
45 |
"trial_params": null
|
46 |
}
|
finetuned_entity_categorical_classification/checkpoint-1681/training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4600
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38ca296b683b24f6f80d4f29a9a0c986a837732910bd0a31303095257578ddfb
|
3 |
size 4600
|
finetuned_entity_categorical_classification/checkpoint-3362/optimizer.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 535881018
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:167b28137ba8f1cd7b5e16c91eb0e53bf3273a77a9f450b8f88896a8fc0333a5
|
3 |
size 535881018
|
finetuned_entity_categorical_classification/checkpoint-3362/pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 267932842
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4394c17645f6749fa890492765494e6f6dcf094a971ee68dff1d187d6339a1d
|
3 |
size 267932842
|
finetuned_entity_categorical_classification/checkpoint-3362/rng_state.pth
CHANGED
Binary files a/finetuned_entity_categorical_classification/checkpoint-3362/rng_state.pth and b/finetuned_entity_categorical_classification/checkpoint-3362/rng_state.pth differ
|
|
finetuned_entity_categorical_classification/checkpoint-3362/trainer_state.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"best_metric": 0.
|
3 |
"best_model_checkpoint": "finetuned_entity_categorical_classification/checkpoint-1681",
|
4 |
"epoch": 2.0,
|
5 |
"eval_steps": 500,
|
@@ -11,55 +11,55 @@
|
|
11 |
{
|
12 |
"epoch": 0.3,
|
13 |
"learning_rate": 1.7025580011897683e-05,
|
14 |
-
"loss": 0.
|
15 |
"step": 500
|
16 |
},
|
17 |
{
|
18 |
"epoch": 0.59,
|
19 |
"learning_rate": 1.405116002379536e-05,
|
20 |
-
"loss": 0.
|
21 |
"step": 1000
|
22 |
},
|
23 |
{
|
24 |
"epoch": 0.89,
|
25 |
"learning_rate": 1.1076740035693041e-05,
|
26 |
-
"loss": 0.
|
27 |
"step": 1500
|
28 |
},
|
29 |
{
|
30 |
"epoch": 1.0,
|
31 |
-
"eval_accuracy": 0.
|
32 |
-
"eval_loss": 0.
|
33 |
-
"eval_runtime": 2.
|
34 |
-
"eval_samples_per_second":
|
35 |
-
"eval_steps_per_second":
|
36 |
"step": 1681
|
37 |
},
|
38 |
{
|
39 |
"epoch": 1.19,
|
40 |
"learning_rate": 8.10232004759072e-06,
|
41 |
-
"loss": 0.
|
42 |
"step": 2000
|
43 |
},
|
44 |
{
|
45 |
"epoch": 1.49,
|
46 |
"learning_rate": 5.1279000594884e-06,
|
47 |
-
"loss": 0.
|
48 |
"step": 2500
|
49 |
},
|
50 |
{
|
51 |
"epoch": 1.78,
|
52 |
"learning_rate": 2.1534800713860798e-06,
|
53 |
-
"loss": 0.
|
54 |
"step": 3000
|
55 |
},
|
56 |
{
|
57 |
"epoch": 2.0,
|
58 |
-
"eval_accuracy": 0.
|
59 |
-
"eval_loss": 0.
|
60 |
-
"eval_runtime": 2.
|
61 |
-
"eval_samples_per_second":
|
62 |
-
"eval_steps_per_second":
|
63 |
"step": 3362
|
64 |
}
|
65 |
],
|
@@ -67,7 +67,7 @@
|
|
67 |
"max_steps": 3362,
|
68 |
"num_train_epochs": 2,
|
69 |
"save_steps": 500,
|
70 |
-
"total_flos":
|
71 |
"trial_name": null,
|
72 |
"trial_params": null
|
73 |
}
|
|
|
1 |
{
|
2 |
+
"best_metric": 0.07765195518732071,
|
3 |
"best_model_checkpoint": "finetuned_entity_categorical_classification/checkpoint-1681",
|
4 |
"epoch": 2.0,
|
5 |
"eval_steps": 500,
|
|
|
11 |
{
|
12 |
"epoch": 0.3,
|
13 |
"learning_rate": 1.7025580011897683e-05,
|
14 |
+
"loss": 0.1008,
|
15 |
"step": 500
|
16 |
},
|
17 |
{
|
18 |
"epoch": 0.59,
|
19 |
"learning_rate": 1.405116002379536e-05,
|
20 |
+
"loss": 0.1133,
|
21 |
"step": 1000
|
22 |
},
|
23 |
{
|
24 |
"epoch": 0.89,
|
25 |
"learning_rate": 1.1076740035693041e-05,
|
26 |
+
"loss": 0.1023,
|
27 |
"step": 1500
|
28 |
},
|
29 |
{
|
30 |
"epoch": 1.0,
|
31 |
+
"eval_accuracy": 0.9753086419753086,
|
32 |
+
"eval_loss": 0.07765195518732071,
|
33 |
+
"eval_runtime": 2.2887,
|
34 |
+
"eval_samples_per_second": 2937.427,
|
35 |
+
"eval_steps_per_second": 183.944,
|
36 |
"step": 1681
|
37 |
},
|
38 |
{
|
39 |
"epoch": 1.19,
|
40 |
"learning_rate": 8.10232004759072e-06,
|
41 |
+
"loss": 0.0827,
|
42 |
"step": 2000
|
43 |
},
|
44 |
{
|
45 |
"epoch": 1.49,
|
46 |
"learning_rate": 5.1279000594884e-06,
|
47 |
+
"loss": 0.0702,
|
48 |
"step": 2500
|
49 |
},
|
50 |
{
|
51 |
"epoch": 1.78,
|
52 |
"learning_rate": 2.1534800713860798e-06,
|
53 |
+
"loss": 0.0834,
|
54 |
"step": 3000
|
55 |
},
|
56 |
{
|
57 |
"epoch": 2.0,
|
58 |
+
"eval_accuracy": 0.9747136694927859,
|
59 |
+
"eval_loss": 0.08629146963357925,
|
60 |
+
"eval_runtime": 2.3024,
|
61 |
+
"eval_samples_per_second": 2919.969,
|
62 |
+
"eval_steps_per_second": 182.851,
|
63 |
"step": 3362
|
64 |
}
|
65 |
],
|
|
|
67 |
"max_steps": 3362,
|
68 |
"num_train_epochs": 2,
|
69 |
"save_steps": 500,
|
70 |
+
"total_flos": 213673546900476.0,
|
71 |
"trial_name": null,
|
72 |
"trial_params": null
|
73 |
}
|
finetuned_entity_categorical_classification/checkpoint-3362/training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4600
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38ca296b683b24f6f80d4f29a9a0c986a837732910bd0a31303095257578ddfb
|
3 |
size 4600
|
finetuned_entity_categorical_classification/runs/Oct13_10-29-55_ip-172-31-95-165/events.out.tfevents.1697192996.ip-172-31-95-165.139501.0
ADDED
Binary file (7.68 kB). View file
|
|
intent_classification_model/{checkpoint-324 β checkpoint-1216}/added_tokens.json
RENAMED
File without changes
|
intent_classification_model/{checkpoint-324 β checkpoint-1216}/config.json
RENAMED
File without changes
|
intent_classification_model/{checkpoint-324 β checkpoint-1216}/optimizer.pt
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 535745722
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:97791790fb47e0d2262cfd6c379f3e36d956e7ef05ddcfcd905abba63c990209
|
3 |
size 535745722
|
intent_classification_model/{checkpoint-324 β checkpoint-1216}/pytorch_model.bin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 267865194
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d83acd64be6fc794a8e6c94f48eb095fd23679e7c612bd83712b5738588b1b8
|
3 |
size 267865194
|
intent_classification_model/checkpoint-1216/rng_state.pth
ADDED
Binary file (14.2 kB). View file
|
|
intent_classification_model/{checkpoint-324 β checkpoint-1216}/scheduler.pt
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1064
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a94db5976ef19e649b033b8c416b03f555990a66e540f81cc5eccc167168f1bc
|
3 |
size 1064
|
intent_classification_model/{checkpoint-324 β checkpoint-1216}/special_tokens_map.json
RENAMED
File without changes
|
intent_classification_model/{checkpoint-324 β checkpoint-1216}/tokenizer.json
RENAMED
File without changes
|
intent_classification_model/{checkpoint-324 β checkpoint-1216}/tokenizer_config.json
RENAMED
File without changes
|
intent_classification_model/checkpoint-1216/trainer_state.json
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.06275933235883713,
|
3 |
+
"best_model_checkpoint": "intent_classification_model/checkpoint-152",
|
4 |
+
"epoch": 16.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 1216,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 1.0,
|
13 |
+
"eval_accuracy": 0.9867549668874173,
|
14 |
+
"eval_loss": 0.20886486768722534,
|
15 |
+
"eval_runtime": 0.1475,
|
16 |
+
"eval_samples_per_second": 2048.099,
|
17 |
+
"eval_steps_per_second": 128.854,
|
18 |
+
"step": 76
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"epoch": 2.0,
|
22 |
+
"eval_accuracy": 0.9834437086092715,
|
23 |
+
"eval_loss": 0.06275933235883713,
|
24 |
+
"eval_runtime": 0.1586,
|
25 |
+
"eval_samples_per_second": 1904.103,
|
26 |
+
"eval_steps_per_second": 119.795,
|
27 |
+
"step": 152
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 3.0,
|
31 |
+
"eval_accuracy": 0.9867549668874173,
|
32 |
+
"eval_loss": 0.06509935110807419,
|
33 |
+
"eval_runtime": 0.1445,
|
34 |
+
"eval_samples_per_second": 2090.586,
|
35 |
+
"eval_steps_per_second": 131.527,
|
36 |
+
"step": 228
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"epoch": 4.0,
|
40 |
+
"eval_accuracy": 0.9768211920529801,
|
41 |
+
"eval_loss": 0.08112386614084244,
|
42 |
+
"eval_runtime": 0.1335,
|
43 |
+
"eval_samples_per_second": 2262.833,
|
44 |
+
"eval_steps_per_second": 142.364,
|
45 |
+
"step": 304
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 5.0,
|
49 |
+
"eval_accuracy": 0.9701986754966887,
|
50 |
+
"eval_loss": 0.11257749050855637,
|
51 |
+
"eval_runtime": 0.134,
|
52 |
+
"eval_samples_per_second": 2253.71,
|
53 |
+
"eval_steps_per_second": 141.79,
|
54 |
+
"step": 380
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 6.0,
|
58 |
+
"eval_accuracy": 0.9735099337748344,
|
59 |
+
"eval_loss": 0.11174333095550537,
|
60 |
+
"eval_runtime": 0.1339,
|
61 |
+
"eval_samples_per_second": 2255.512,
|
62 |
+
"eval_steps_per_second": 141.903,
|
63 |
+
"step": 456
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 6.58,
|
67 |
+
"learning_rate": 1.1776315789473684e-05,
|
68 |
+
"loss": 0.1883,
|
69 |
+
"step": 500
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 7.0,
|
73 |
+
"eval_accuracy": 0.9768211920529801,
|
74 |
+
"eval_loss": 0.10020075738430023,
|
75 |
+
"eval_runtime": 0.145,
|
76 |
+
"eval_samples_per_second": 2083.04,
|
77 |
+
"eval_steps_per_second": 131.052,
|
78 |
+
"step": 532
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"epoch": 8.0,
|
82 |
+
"eval_accuracy": 0.9735099337748344,
|
83 |
+
"eval_loss": 0.116866335272789,
|
84 |
+
"eval_runtime": 0.1348,
|
85 |
+
"eval_samples_per_second": 2240.912,
|
86 |
+
"eval_steps_per_second": 140.985,
|
87 |
+
"step": 608
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 9.0,
|
91 |
+
"eval_accuracy": 0.9701986754966887,
|
92 |
+
"eval_loss": 0.14152054488658905,
|
93 |
+
"eval_runtime": 0.1308,
|
94 |
+
"eval_samples_per_second": 2309.736,
|
95 |
+
"eval_steps_per_second": 145.314,
|
96 |
+
"step": 684
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"epoch": 10.0,
|
100 |
+
"eval_accuracy": 0.9735099337748344,
|
101 |
+
"eval_loss": 0.1344088315963745,
|
102 |
+
"eval_runtime": 0.1195,
|
103 |
+
"eval_samples_per_second": 2526.256,
|
104 |
+
"eval_steps_per_second": 158.937,
|
105 |
+
"step": 760
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 11.0,
|
109 |
+
"eval_accuracy": 0.9735099337748344,
|
110 |
+
"eval_loss": 0.13409321010112762,
|
111 |
+
"eval_runtime": 0.1399,
|
112 |
+
"eval_samples_per_second": 2159.267,
|
113 |
+
"eval_steps_per_second": 135.848,
|
114 |
+
"step": 836
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 12.0,
|
118 |
+
"eval_accuracy": 0.9735099337748344,
|
119 |
+
"eval_loss": 0.12705937027931213,
|
120 |
+
"eval_runtime": 0.1366,
|
121 |
+
"eval_samples_per_second": 2210.321,
|
122 |
+
"eval_steps_per_second": 139.06,
|
123 |
+
"step": 912
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 13.0,
|
127 |
+
"eval_accuracy": 0.9735099337748344,
|
128 |
+
"eval_loss": 0.13874845206737518,
|
129 |
+
"eval_runtime": 0.1374,
|
130 |
+
"eval_samples_per_second": 2197.254,
|
131 |
+
"eval_steps_per_second": 138.238,
|
132 |
+
"step": 988
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"epoch": 13.16,
|
136 |
+
"learning_rate": 3.5526315789473687e-06,
|
137 |
+
"loss": 0.018,
|
138 |
+
"step": 1000
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"epoch": 14.0,
|
142 |
+
"eval_accuracy": 0.9735099337748344,
|
143 |
+
"eval_loss": 0.13716736435890198,
|
144 |
+
"eval_runtime": 0.1193,
|
145 |
+
"eval_samples_per_second": 2530.546,
|
146 |
+
"eval_steps_per_second": 159.207,
|
147 |
+
"step": 1064
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 15.0,
|
151 |
+
"eval_accuracy": 0.9735099337748344,
|
152 |
+
"eval_loss": 0.13588877022266388,
|
153 |
+
"eval_runtime": 0.1396,
|
154 |
+
"eval_samples_per_second": 2163.789,
|
155 |
+
"eval_steps_per_second": 136.132,
|
156 |
+
"step": 1140
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 16.0,
|
160 |
+
"eval_accuracy": 0.9735099337748344,
|
161 |
+
"eval_loss": 0.13579562306404114,
|
162 |
+
"eval_runtime": 0.1288,
|
163 |
+
"eval_samples_per_second": 2345.226,
|
164 |
+
"eval_steps_per_second": 147.547,
|
165 |
+
"step": 1216
|
166 |
+
}
|
167 |
+
],
|
168 |
+
"logging_steps": 500,
|
169 |
+
"max_steps": 1216,
|
170 |
+
"num_train_epochs": 16,
|
171 |
+
"save_steps": 500,
|
172 |
+
"total_flos": 62384098266840.0,
|
173 |
+
"trial_name": null,
|
174 |
+
"trial_params": null
|
175 |
+
}
|
intent_classification_model/{checkpoint-324 β checkpoint-1216}/training_args.bin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4536
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40b975e2b309584fec6c9097bbbfc4736c3bbe492681259866398911daf0ae0c
|
3 |
size 4536
|
intent_classification_model/{checkpoint-324 β checkpoint-1216}/vocab.txt
RENAMED
File without changes
|
intent_classification_model/checkpoint-1376/added_tokens.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[CLS]": 101,
|
3 |
+
"[MASK]": 103,
|
4 |
+
"[PAD]": 0,
|
5 |
+
"[SEP]": 102,
|
6 |
+
"[UNK]": 100
|
7 |
+
}
|
intent_classification_model/checkpoint-1376/config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "distilbert-base-uncased",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertForSequenceClassification"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"id2label": {
|
12 |
+
"0": "Commercial",
|
13 |
+
"1": "Informational",
|
14 |
+
"2": "Navigational",
|
15 |
+
"3": "Local",
|
16 |
+
"4": "Transactional"
|
17 |
+
},
|
18 |
+
"initializer_range": 0.02,
|
19 |
+
"label2id": {
|
20 |
+
"Commercial": 0,
|
21 |
+
"Informational": 1,
|
22 |
+
"Local": 3,
|
23 |
+
"Navigational": 2,
|
24 |
+
"Transactional": 4
|
25 |
+
},
|
26 |
+
"max_position_embeddings": 512,
|
27 |
+
"model_type": "distilbert",
|
28 |
+
"n_heads": 12,
|
29 |
+
"n_layers": 6,
|
30 |
+
"pad_token_id": 0,
|
31 |
+
"problem_type": "single_label_classification",
|
32 |
+
"qa_dropout": 0.1,
|
33 |
+
"seq_classif_dropout": 0.2,
|
34 |
+
"sinusoidal_pos_embds": false,
|
35 |
+
"tie_weights_": true,
|
36 |
+
"torch_dtype": "float32",
|
37 |
+
"transformers_version": "4.34.0",
|
38 |
+
"vocab_size": 30522
|
39 |
+
}
|
intent_classification_model/checkpoint-1376/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f2ed586c32f48dd2cece37baf89590cc951fda221ec175eadd3034e996abe25
|
3 |
+
size 535745722
|
intent_classification_model/checkpoint-1376/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:153cb325de818e493f8a0a7aa1fbcc5cf3d8fa27d07339fbfd1d8e238d8cb38b
|
3 |
+
size 267865194
|
intent_classification_model/{checkpoint-324 β checkpoint-1376}/rng_state.pth
RENAMED
Binary files a/intent_classification_model/checkpoint-324/rng_state.pth and b/intent_classification_model/checkpoint-1376/rng_state.pth differ
|
|
intent_classification_model/checkpoint-1376/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c80c9f7b843dea09bd3b8739eafa7b84f67f346b13150be7548d804af238e2c
|
3 |
+
size 1064
|
intent_classification_model/checkpoint-1376/special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
intent_classification_model/checkpoint-1376/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
intent_classification_model/checkpoint-1376/tokenizer_config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"additional_special_tokens": [],
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "[PAD]",
|
51 |
+
"sep_token": "[SEP]",
|
52 |
+
"strip_accents": null,
|
53 |
+
"tokenize_chinese_chars": true,
|
54 |
+
"tokenizer_class": "DistilBertTokenizer",
|
55 |
+
"unk_token": "[UNK]"
|
56 |
+
}
|
intent_classification_model/checkpoint-1376/trainer_state.json
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.10133440792560577,
|
3 |
+
"best_model_checkpoint": "intent_classification_model/checkpoint-344",
|
4 |
+
"epoch": 16.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 1376,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 1.0,
|
13 |
+
"eval_accuracy": 0.956140350877193,
|
14 |
+
"eval_loss": 0.24781915545463562,
|
15 |
+
"eval_runtime": 0.1669,
|
16 |
+
"eval_samples_per_second": 2049.176,
|
17 |
+
"eval_steps_per_second": 131.818,
|
18 |
+
"step": 86
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"epoch": 2.0,
|
22 |
+
"eval_accuracy": 0.9766081871345029,
|
23 |
+
"eval_loss": 0.10303749144077301,
|
24 |
+
"eval_runtime": 0.2792,
|
25 |
+
"eval_samples_per_second": 1224.804,
|
26 |
+
"eval_steps_per_second": 78.789,
|
27 |
+
"step": 172
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 3.0,
|
31 |
+
"eval_accuracy": 0.9736842105263158,
|
32 |
+
"eval_loss": 0.12486349791288376,
|
33 |
+
"eval_runtime": 0.1527,
|
34 |
+
"eval_samples_per_second": 2239.207,
|
35 |
+
"eval_steps_per_second": 144.043,
|
36 |
+
"step": 258
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"epoch": 4.0,
|
40 |
+
"eval_accuracy": 0.9766081871345029,
|
41 |
+
"eval_loss": 0.10133440792560577,
|
42 |
+
"eval_runtime": 0.1513,
|
43 |
+
"eval_samples_per_second": 2260.581,
|
44 |
+
"eval_steps_per_second": 145.418,
|
45 |
+
"step": 344
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 5.0,
|
49 |
+
"eval_accuracy": 0.9766081871345029,
|
50 |
+
"eval_loss": 0.11906354874372482,
|
51 |
+
"eval_runtime": 0.1397,
|
52 |
+
"eval_samples_per_second": 2448.535,
|
53 |
+
"eval_steps_per_second": 157.508,
|
54 |
+
"step": 430
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 5.81,
|
58 |
+
"learning_rate": 1.2732558139534886e-05,
|
59 |
+
"loss": 0.1903,
|
60 |
+
"step": 500
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"epoch": 6.0,
|
64 |
+
"eval_accuracy": 0.9678362573099415,
|
65 |
+
"eval_loss": 0.14922283589839935,
|
66 |
+
"eval_runtime": 0.1511,
|
67 |
+
"eval_samples_per_second": 2264.082,
|
68 |
+
"eval_steps_per_second": 145.643,
|
69 |
+
"step": 516
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 7.0,
|
73 |
+
"eval_accuracy": 0.9736842105263158,
|
74 |
+
"eval_loss": 0.10685376077890396,
|
75 |
+
"eval_runtime": 0.1562,
|
76 |
+
"eval_samples_per_second": 2189.014,
|
77 |
+
"eval_steps_per_second": 140.814,
|
78 |
+
"step": 602
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"epoch": 8.0,
|
82 |
+
"eval_accuracy": 0.9736842105263158,
|
83 |
+
"eval_loss": 0.12596090137958527,
|
84 |
+
"eval_runtime": 0.1543,
|
85 |
+
"eval_samples_per_second": 2216.873,
|
86 |
+
"eval_steps_per_second": 142.606,
|
87 |
+
"step": 688
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 9.0,
|
91 |
+
"eval_accuracy": 0.9707602339181286,
|
92 |
+
"eval_loss": 0.129041388630867,
|
93 |
+
"eval_runtime": 0.1334,
|
94 |
+
"eval_samples_per_second": 2563.696,
|
95 |
+
"eval_steps_per_second": 164.916,
|
96 |
+
"step": 774
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"epoch": 10.0,
|
100 |
+
"eval_accuracy": 0.9736842105263158,
|
101 |
+
"eval_loss": 0.12375017255544662,
|
102 |
+
"eval_runtime": 0.1513,
|
103 |
+
"eval_samples_per_second": 2261.041,
|
104 |
+
"eval_steps_per_second": 145.447,
|
105 |
+
"step": 860
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 11.0,
|
109 |
+
"eval_accuracy": 0.9736842105263158,
|
110 |
+
"eval_loss": 0.12813875079154968,
|
111 |
+
"eval_runtime": 0.1546,
|
112 |
+
"eval_samples_per_second": 2212.042,
|
113 |
+
"eval_steps_per_second": 142.295,
|
114 |
+
"step": 946
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 11.63,
|
118 |
+
"learning_rate": 5.465116279069767e-06,
|
119 |
+
"loss": 0.0258,
|
120 |
+
"step": 1000
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"epoch": 12.0,
|
124 |
+
"eval_accuracy": 0.9736842105263158,
|
125 |
+
"eval_loss": 0.13388033211231232,
|
126 |
+
"eval_runtime": 0.1607,
|
127 |
+
"eval_samples_per_second": 2128.444,
|
128 |
+
"eval_steps_per_second": 136.917,
|
129 |
+
"step": 1032
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 13.0,
|
133 |
+
"eval_accuracy": 0.9736842105263158,
|
134 |
+
"eval_loss": 0.1308409869670868,
|
135 |
+
"eval_runtime": 0.1401,
|
136 |
+
"eval_samples_per_second": 2441.546,
|
137 |
+
"eval_steps_per_second": 157.058,
|
138 |
+
"step": 1118
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"epoch": 14.0,
|
142 |
+
"eval_accuracy": 0.9736842105263158,
|
143 |
+
"eval_loss": 0.13211463391780853,
|
144 |
+
"eval_runtime": 0.1539,
|
145 |
+
"eval_samples_per_second": 2222.296,
|
146 |
+
"eval_steps_per_second": 142.955,
|
147 |
+
"step": 1204
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 15.0,
|
151 |
+
"eval_accuracy": 0.9736842105263158,
|
152 |
+
"eval_loss": 0.13366281986236572,
|
153 |
+
"eval_runtime": 0.1507,
|
154 |
+
"eval_samples_per_second": 2269.433,
|
155 |
+
"eval_steps_per_second": 145.987,
|
156 |
+
"step": 1290
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 16.0,
|
160 |
+
"eval_accuracy": 0.9736842105263158,
|
161 |
+
"eval_loss": 0.13524049520492554,
|
162 |
+
"eval_runtime": 0.1603,
|
163 |
+
"eval_samples_per_second": 2133.42,
|
164 |
+
"eval_steps_per_second": 137.238,
|
165 |
+
"step": 1376
|
166 |
+
}
|
167 |
+
],
|
168 |
+
"logging_steps": 500,
|
169 |
+
"max_steps": 1376,
|
170 |
+
"num_train_epochs": 16,
|
171 |
+
"save_steps": 500,
|
172 |
+
"total_flos": 70181981180580.0,
|
173 |
+
"trial_name": null,
|
174 |
+
"trial_params": null
|
175 |
+
}
|
intent_classification_model/checkpoint-1376/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0b92fcfbb60dcd18505e69a8641e67a12b1dbb1bb4cf8cf1817bb473e3ed0dc
|
3 |
+
size 4536
|
intent_classification_model/checkpoint-1376/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
intent_classification_model/checkpoint-324/trainer_state.json
DELETED
@@ -1,73 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"best_metric": 0.16397738456726074,
|
3 |
-
"best_model_checkpoint": "intent_classification_model/checkpoint-270",
|
4 |
-
"epoch": 6.0,
|
5 |
-
"eval_steps": 500,
|
6 |
-
"global_step": 324,
|
7 |
-
"is_hyper_param_search": false,
|
8 |
-
"is_local_process_zero": true,
|
9 |
-
"is_world_process_zero": true,
|
10 |
-
"log_history": [
|
11 |
-
{
|
12 |
-
"epoch": 1.0,
|
13 |
-
"eval_accuracy": 0.9488372093023256,
|
14 |
-
"eval_loss": 0.4676927328109741,
|
15 |
-
"eval_runtime": 0.1185,
|
16 |
-
"eval_samples_per_second": 1814.083,
|
17 |
-
"eval_steps_per_second": 118.126,
|
18 |
-
"step": 54
|
19 |
-
},
|
20 |
-
{
|
21 |
-
"epoch": 2.0,
|
22 |
-
"eval_accuracy": 0.9534883720930233,
|
23 |
-
"eval_loss": 0.20428764820098877,
|
24 |
-
"eval_runtime": 0.0972,
|
25 |
-
"eval_samples_per_second": 2210.83,
|
26 |
-
"eval_steps_per_second": 143.961,
|
27 |
-
"step": 108
|
28 |
-
},
|
29 |
-
{
|
30 |
-
"epoch": 3.0,
|
31 |
-
"eval_accuracy": 0.9674418604651163,
|
32 |
-
"eval_loss": 0.16401757299900055,
|
33 |
-
"eval_runtime": 0.1015,
|
34 |
-
"eval_samples_per_second": 2118.828,
|
35 |
-
"eval_steps_per_second": 137.97,
|
36 |
-
"step": 162
|
37 |
-
},
|
38 |
-
{
|
39 |
-
"epoch": 4.0,
|
40 |
-
"eval_accuracy": 0.9674418604651163,
|
41 |
-
"eval_loss": 0.16496841609477997,
|
42 |
-
"eval_runtime": 0.0941,
|
43 |
-
"eval_samples_per_second": 2284.398,
|
44 |
-
"eval_steps_per_second": 148.752,
|
45 |
-
"step": 216
|
46 |
-
},
|
47 |
-
{
|
48 |
-
"epoch": 5.0,
|
49 |
-
"eval_accuracy": 0.9674418604651163,
|
50 |
-
"eval_loss": 0.16397738456726074,
|
51 |
-
"eval_runtime": 0.0975,
|
52 |
-
"eval_samples_per_second": 2204.851,
|
53 |
-
"eval_steps_per_second": 143.572,
|
54 |
-
"step": 270
|
55 |
-
},
|
56 |
-
{
|
57 |
-
"epoch": 6.0,
|
58 |
-
"eval_accuracy": 0.9674418604651163,
|
59 |
-
"eval_loss": 0.16553252935409546,
|
60 |
-
"eval_runtime": 0.0947,
|
61 |
-
"eval_samples_per_second": 2271.063,
|
62 |
-
"eval_steps_per_second": 147.883,
|
63 |
-
"step": 324
|
64 |
-
}
|
65 |
-
],
|
66 |
-
"logging_steps": 500,
|
67 |
-
"max_steps": 324,
|
68 |
-
"num_train_epochs": 6,
|
69 |
-
"save_steps": 500,
|
70 |
-
"total_flos": 13032177536640.0,
|
71 |
-
"trial_name": null,
|
72 |
-
"trial_params": null
|
73 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
intent_classification_model/runs/Oct13_10-35-17_ip-172-31-95-165/events.out.tfevents.1697193318.ip-172-31-95-165.139816.0
ADDED
Binary file (10.2 kB). View file
|
|
intent_classification_model/runs/Oct13_10-49-20_ip-172-31-95-165/events.out.tfevents.1697194161.ip-172-31-95-165.140238.0
ADDED
Binary file (10.2 kB). View file
|
|
research/09_fine_tuning_for_datacategories.ipynb
CHANGED
@@ -62,93 +62,93 @@
|
|
62 |
" </thead>\n",
|
63 |
" <tbody>\n",
|
64 |
" <tr>\n",
|
65 |
-
" <th>
|
66 |
-
" <td>
|
67 |
-
" <td>
|
68 |
-
" <td>
|
69 |
" </tr>\n",
|
70 |
" <tr>\n",
|
71 |
-
" <th>
|
72 |
-
" <td>
|
73 |
-
" <td>People_and_Society</td>\n",
|
74 |
-
" <td>10</td>\n",
|
75 |
-
" </tr>\n",
|
76 |
-
" <tr>\n",
|
77 |
-
" <th>23191</th>\n",
|
78 |
-
" <td>Nanomaterials engineering</td>\n",
|
79 |
" <td>Science</td>\n",
|
80 |
" <td>2</td>\n",
|
81 |
" </tr>\n",
|
82 |
" <tr>\n",
|
83 |
-
" <th>
|
84 |
-
" <td>
|
85 |
-
" <td>
|
86 |
-
" <td>
|
87 |
" </tr>\n",
|
88 |
" <tr>\n",
|
89 |
-
" <th>
|
90 |
-
" <td>
|
91 |
-
" <td>
|
92 |
-
" <td>
|
93 |
" </tr>\n",
|
94 |
" <tr>\n",
|
95 |
-
" <th>
|
96 |
-
" <td>
|
97 |
-
" <td>
|
98 |
-
" <td>
|
99 |
" </tr>\n",
|
100 |
" <tr>\n",
|
101 |
-
" <th>
|
102 |
-
" <td>
|
103 |
-
" <td>
|
104 |
-
" <td>
|
105 |
" </tr>\n",
|
106 |
" <tr>\n",
|
107 |
-
" <th>
|
108 |
-
" <td>
|
109 |
-
" <td>
|
110 |
-
" <td>
|
111 |
" </tr>\n",
|
112 |
" <tr>\n",
|
113 |
-
" <th>
|
114 |
-
" <td>
|
115 |
-
" <td>
|
116 |
-
" <td>
|
117 |
" </tr>\n",
|
118 |
" <tr>\n",
|
119 |
-
" <th>
|
120 |
-
" <td>
|
121 |
-
" <td>
|
122 |
-
" <td>
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
" </tr>\n",
|
124 |
" </tbody>\n",
|
125 |
"</table>\n",
|
126 |
"</div>"
|
127 |
],
|
128 |
"text/plain": [
|
129 |
-
"
|
130 |
-
"
|
131 |
-
"
|
132 |
-
"
|
133 |
-
"
|
134 |
-
"
|
135 |
-
"
|
136 |
-
"
|
137 |
-
"
|
138 |
-
"
|
139 |
-
"
|
140 |
"\n",
|
141 |
-
"
|
142 |
-
"
|
143 |
-
"
|
144 |
-
"
|
145 |
-
"
|
146 |
-
"
|
147 |
-
"
|
148 |
-
"
|
149 |
-
"
|
150 |
-
"
|
151 |
-
"
|
152 |
]
|
153 |
},
|
154 |
"execution_count": 3,
|
@@ -273,7 +273,7 @@
|
|
273 |
"name": "stderr",
|
274 |
"output_type": "stream",
|
275 |
"text": [
|
276 |
-
"/tmp/
|
277 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
278 |
"\n",
|
279 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
@@ -307,71 +307,71 @@
|
|
307 |
" </thead>\n",
|
308 |
" <tbody>\n",
|
309 |
" <tr>\n",
|
310 |
-
" <th>
|
311 |
-
" <td>
|
312 |
-
" <td>
|
313 |
" </tr>\n",
|
314 |
" <tr>\n",
|
315 |
-
" <th>
|
316 |
-
" <td>
|
317 |
-
" <td>
|
318 |
" </tr>\n",
|
319 |
" <tr>\n",
|
320 |
-
" <th>
|
321 |
-
" <td>
|
322 |
" <td>1</td>\n",
|
323 |
" </tr>\n",
|
324 |
" <tr>\n",
|
325 |
-
" <th>
|
326 |
-
" <td>
|
327 |
-
" <td>
|
328 |
" </tr>\n",
|
329 |
" <tr>\n",
|
330 |
-
" <th>
|
331 |
-
" <td>
|
332 |
-
" <td>
|
333 |
" </tr>\n",
|
334 |
" <tr>\n",
|
335 |
-
" <th>
|
336 |
-
" <td>
|
337 |
-
" <td>
|
338 |
" </tr>\n",
|
339 |
" <tr>\n",
|
340 |
-
" <th>
|
341 |
-
" <td>
|
342 |
-
" <td>
|
343 |
" </tr>\n",
|
344 |
" <tr>\n",
|
345 |
-
" <th>
|
346 |
-
" <td>
|
347 |
-
" <td>
|
348 |
" </tr>\n",
|
349 |
" <tr>\n",
|
350 |
-
" <th>
|
351 |
-
" <td>
|
352 |
-
" <td>
|
353 |
" </tr>\n",
|
354 |
" <tr>\n",
|
355 |
-
" <th>
|
356 |
-
" <td>
|
357 |
-
" <td>
|
358 |
" </tr>\n",
|
359 |
" </tbody>\n",
|
360 |
"</table>\n",
|
361 |
"</div>"
|
362 |
],
|
363 |
"text/plain": [
|
364 |
-
"
|
365 |
-
"
|
366 |
-
"
|
367 |
-
"
|
368 |
-
"
|
369 |
-
"
|
370 |
-
"
|
371 |
-
"
|
372 |
-
"
|
373 |
-
"
|
374 |
-
"
|
375 |
]
|
376 |
},
|
377 |
"execution_count": 6,
|
@@ -483,8 +483,15 @@
|
|
483 |
"name": "stderr",
|
484 |
"output_type": "stream",
|
485 |
"text": [
|
486 |
-
"Map:
|
487 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
488 |
]
|
489 |
}
|
490 |
],
|
@@ -501,9 +508,9 @@
|
|
501 |
"name": "stderr",
|
502 |
"output_type": "stream",
|
503 |
"text": [
|
504 |
-
"2023-10-
|
505 |
"To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
|
506 |
-
"2023-10-
|
507 |
]
|
508 |
}
|
509 |
],
|
@@ -686,7 +693,7 @@
|
|
686 |
" <div>\n",
|
687 |
" \n",
|
688 |
" <progress value='3362' max='3362' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
689 |
-
" [3362/3362 01:
|
690 |
" </div>\n",
|
691 |
" <table border=\"1\" class=\"dataframe\">\n",
|
692 |
" <thead>\n",
|
@@ -700,15 +707,15 @@
|
|
700 |
" <tbody>\n",
|
701 |
" <tr>\n",
|
702 |
" <td>1</td>\n",
|
703 |
-
" <td>0.
|
704 |
-
" <td>0.
|
705 |
-
" <td>0.
|
706 |
" </tr>\n",
|
707 |
" <tr>\n",
|
708 |
" <td>2</td>\n",
|
709 |
-
" <td>0.
|
710 |
-
" <td>0.
|
711 |
-
" <td>0.
|
712 |
" </tr>\n",
|
713 |
" </tbody>\n",
|
714 |
"</table><p>"
|
@@ -723,7 +730,7 @@
|
|
723 |
{
|
724 |
"data": {
|
725 |
"text/plain": [
|
726 |
-
"TrainOutput(global_step=3362, training_loss=0.
|
727 |
]
|
728 |
},
|
729 |
"execution_count": 19,
|
|
|
62 |
" </thead>\n",
|
63 |
" <tbody>\n",
|
64 |
" <tr>\n",
|
65 |
+
" <th>3982</th>\n",
|
66 |
+
" <td>Citation context relevance assessment platforms</td>\n",
|
67 |
+
" <td>Reference</td>\n",
|
68 |
+
" <td>12</td>\n",
|
69 |
" </tr>\n",
|
70 |
" <tr>\n",
|
71 |
+
" <th>24651</th>\n",
|
72 |
+
" <td>Geology fieldwork</td>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
" <td>Science</td>\n",
|
74 |
" <td>2</td>\n",
|
75 |
" </tr>\n",
|
76 |
" <tr>\n",
|
77 |
+
" <th>28113</th>\n",
|
78 |
+
" <td>Password management for individuals</td>\n",
|
79 |
+
" <td>Computers_and_Electronics</td>\n",
|
80 |
+
" <td>7</td>\n",
|
81 |
" </tr>\n",
|
82 |
" <tr>\n",
|
83 |
+
" <th>10999</th>\n",
|
84 |
+
" <td>Real estate market statistics</td>\n",
|
85 |
+
" <td>Real Estate</td>\n",
|
86 |
+
" <td>24</td>\n",
|
87 |
" </tr>\n",
|
88 |
" <tr>\n",
|
89 |
+
" <th>17096</th>\n",
|
90 |
+
" <td>Running gear for women</td>\n",
|
91 |
+
" <td>Beauty_and_Fitness</td>\n",
|
92 |
+
" <td>9</td>\n",
|
93 |
" </tr>\n",
|
94 |
" <tr>\n",
|
95 |
+
" <th>2374</th>\n",
|
96 |
+
" <td>Sports Team Fan Pride</td>\n",
|
97 |
+
" <td>Sports</td>\n",
|
98 |
+
" <td>26</td>\n",
|
99 |
" </tr>\n",
|
100 |
" <tr>\n",
|
101 |
+
" <th>9932</th>\n",
|
102 |
+
" <td>Wine and food events</td>\n",
|
103 |
+
" <td>Food_and_Drink</td>\n",
|
104 |
+
" <td>15</td>\n",
|
105 |
" </tr>\n",
|
106 |
" <tr>\n",
|
107 |
+
" <th>2953</th>\n",
|
108 |
+
" <td>College admissions for aspiring dancers</td>\n",
|
109 |
+
" <td>Jobs_and_Education</td>\n",
|
110 |
+
" <td>21</td>\n",
|
111 |
" </tr>\n",
|
112 |
" <tr>\n",
|
113 |
+
" <th>25038</th>\n",
|
114 |
+
" <td>Software development best practices forums</td>\n",
|
115 |
+
" <td>Online Communities</td>\n",
|
116 |
+
" <td>8</td>\n",
|
117 |
+
" </tr>\n",
|
118 |
+
" <tr>\n",
|
119 |
+
" <th>29703</th>\n",
|
120 |
+
" <td>Quantum physics theories</td>\n",
|
121 |
+
" <td>Science</td>\n",
|
122 |
+
" <td>2</td>\n",
|
123 |
" </tr>\n",
|
124 |
" </tbody>\n",
|
125 |
"</table>\n",
|
126 |
"</div>"
|
127 |
],
|
128 |
"text/plain": [
|
129 |
+
" category \\\n",
|
130 |
+
"3982 Citation context relevance assessment platforms \n",
|
131 |
+
"24651 Geology fieldwork \n",
|
132 |
+
"28113 Password management for individuals \n",
|
133 |
+
"10999 Real estate market statistics \n",
|
134 |
+
"17096 Running gear for women \n",
|
135 |
+
"2374 Sports Team Fan Pride \n",
|
136 |
+
"9932 Wine and food events \n",
|
137 |
+
"2953 College admissions for aspiring dancers \n",
|
138 |
+
"25038 Software development best practices forums \n",
|
139 |
+
"29703 Quantum physics theories \n",
|
140 |
"\n",
|
141 |
+
" label label_id \n",
|
142 |
+
"3982 Reference 12 \n",
|
143 |
+
"24651 Science 2 \n",
|
144 |
+
"28113 Computers_and_Electronics 7 \n",
|
145 |
+
"10999 Real Estate 24 \n",
|
146 |
+
"17096 Beauty_and_Fitness 9 \n",
|
147 |
+
"2374 Sports 26 \n",
|
148 |
+
"9932 Food_and_Drink 15 \n",
|
149 |
+
"2953 Jobs_and_Education 21 \n",
|
150 |
+
"25038 Online Communities 8 \n",
|
151 |
+
"29703 Science 2 "
|
152 |
]
|
153 |
},
|
154 |
"execution_count": 3,
|
|
|
273 |
"name": "stderr",
|
274 |
"output_type": "stream",
|
275 |
"text": [
|
276 |
+
"/tmp/ipykernel_139501/984288843.py:1: SettingWithCopyWarning: \n",
|
277 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
278 |
"\n",
|
279 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
|
|
307 |
" </thead>\n",
|
308 |
" <tbody>\n",
|
309 |
" <tr>\n",
|
310 |
+
" <th>2925</th>\n",
|
311 |
+
" <td>Kids' toy stores online</td>\n",
|
312 |
+
" <td>13</td>\n",
|
313 |
" </tr>\n",
|
314 |
" <tr>\n",
|
315 |
+
" <th>31108</th>\n",
|
316 |
+
" <td>Birdwatching apps for bird behavior</td>\n",
|
317 |
+
" <td>5</td>\n",
|
318 |
" </tr>\n",
|
319 |
" <tr>\n",
|
320 |
+
" <th>6817</th>\n",
|
321 |
+
" <td>Legal developments</td>\n",
|
322 |
" <td>1</td>\n",
|
323 |
" </tr>\n",
|
324 |
" <tr>\n",
|
325 |
+
" <th>20037</th>\n",
|
326 |
+
" <td>Citation context relevance assessment tools</td>\n",
|
327 |
+
" <td>12</td>\n",
|
328 |
" </tr>\n",
|
329 |
" <tr>\n",
|
330 |
+
" <th>18928</th>\n",
|
331 |
+
" <td>Orchid care guide</td>\n",
|
332 |
+
" <td>20</td>\n",
|
333 |
" </tr>\n",
|
334 |
" <tr>\n",
|
335 |
+
" <th>33358</th>\n",
|
336 |
+
" <td>Scientific publications and journals</td>\n",
|
337 |
+
" <td>2</td>\n",
|
338 |
" </tr>\n",
|
339 |
" <tr>\n",
|
340 |
+
" <th>16499</th>\n",
|
341 |
+
" <td>Service dog etiquette</td>\n",
|
342 |
+
" <td>5</td>\n",
|
343 |
" </tr>\n",
|
344 |
" <tr>\n",
|
345 |
+
" <th>26484</th>\n",
|
346 |
+
" <td>Social media trends analysis</td>\n",
|
347 |
+
" <td>25</td>\n",
|
348 |
" </tr>\n",
|
349 |
" <tr>\n",
|
350 |
+
" <th>15543</th>\n",
|
351 |
+
" <td>Troubleshooting computer issues</td>\n",
|
352 |
+
" <td>7</td>\n",
|
353 |
" </tr>\n",
|
354 |
" <tr>\n",
|
355 |
+
" <th>15854</th>\n",
|
356 |
+
" <td>large</td>\n",
|
357 |
+
" <td>23</td>\n",
|
358 |
" </tr>\n",
|
359 |
" </tbody>\n",
|
360 |
"</table>\n",
|
361 |
"</div>"
|
362 |
],
|
363 |
"text/plain": [
|
364 |
+
" text label\n",
|
365 |
+
"2925 Kids' toy stores online 13\n",
|
366 |
+
"31108 Birdwatching apps for bird behavior 5\n",
|
367 |
+
"6817 Legal developments 1\n",
|
368 |
+
"20037 Citation context relevance assessment tools 12\n",
|
369 |
+
"18928 Orchid care guide 20\n",
|
370 |
+
"33358 Scientific publications and journals 2\n",
|
371 |
+
"16499 Service dog etiquette 5\n",
|
372 |
+
"26484 Social media trends analysis 25\n",
|
373 |
+
"15543 Troubleshooting computer issues 7\n",
|
374 |
+
"15854 large 23"
|
375 |
]
|
376 |
},
|
377 |
"execution_count": 6,
|
|
|
483 |
"name": "stderr",
|
484 |
"output_type": "stream",
|
485 |
"text": [
|
486 |
+
"Map: 48%|βββββ | 13000/26889 [00:00<00:00, 32226.42 examples/s]"
|
487 |
+
]
|
488 |
+
},
|
489 |
+
{
|
490 |
+
"name": "stderr",
|
491 |
+
"output_type": "stream",
|
492 |
+
"text": [
|
493 |
+
"Map: 100%|ββββββββββ| 26889/26889 [00:00<00:00, 34388.34 examples/s]\n",
|
494 |
+
"Map: 100%|ββββββββββ| 6723/6723 [00:00<00:00, 41978.69 examples/s]\n"
|
495 |
]
|
496 |
}
|
497 |
],
|
|
|
508 |
"name": "stderr",
|
509 |
"output_type": "stream",
|
510 |
"text": [
|
511 |
+
"2023-10-13 10:29:49.212220: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
|
512 |
"To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
|
513 |
+
"2023-10-13 10:29:50.573292: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n"
|
514 |
]
|
515 |
}
|
516 |
],
|
|
|
693 |
" <div>\n",
|
694 |
" \n",
|
695 |
" <progress value='3362' max='3362' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
696 |
+
" [3362/3362 01:52, Epoch 2/2]\n",
|
697 |
" </div>\n",
|
698 |
" <table border=\"1\" class=\"dataframe\">\n",
|
699 |
" <thead>\n",
|
|
|
707 |
" <tbody>\n",
|
708 |
" <tr>\n",
|
709 |
" <td>1</td>\n",
|
710 |
+
" <td>0.102300</td>\n",
|
711 |
+
" <td>0.077652</td>\n",
|
712 |
+
" <td>0.975309</td>\n",
|
713 |
" </tr>\n",
|
714 |
" <tr>\n",
|
715 |
" <td>2</td>\n",
|
716 |
+
" <td>0.083400</td>\n",
|
717 |
+
" <td>0.086291</td>\n",
|
718 |
+
" <td>0.974714</td>\n",
|
719 |
" </tr>\n",
|
720 |
" </tbody>\n",
|
721 |
"</table><p>"
|
|
|
730 |
{
|
731 |
"data": {
|
732 |
"text/plain": [
|
733 |
+
"TrainOutput(global_step=3362, training_loss=0.08880683540376008, metrics={'train_runtime': 113.5357, 'train_samples_per_second': 473.666, 'train_steps_per_second': 29.612, 'total_flos': 213673546900476.0, 'train_loss': 0.08880683540376008, 'epoch': 2.0})"
|
734 |
]
|
735 |
},
|
736 |
"execution_count": 19,
|
research/11_evaluation.ipynb
CHANGED
@@ -13,7 +13,17 @@
|
|
13 |
"cell_type": "code",
|
14 |
"execution_count": 2,
|
15 |
"metadata": {},
|
16 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
"source": [
|
18 |
"from utils.get_intent import get_top_intent"
|
19 |
]
|
@@ -26,11 +36,11 @@
|
|
26 |
{
|
27 |
"data": {
|
28 |
"text/plain": [
|
29 |
-
"[('Commercial', 0.
|
30 |
-
" ('Transactional', 0.
|
31 |
-
" ('
|
32 |
-
" ('Navigational', 0.
|
33 |
-
" ('
|
34 |
]
|
35 |
},
|
36 |
"execution_count": 3,
|
@@ -50,11 +60,11 @@
|
|
50 |
{
|
51 |
"data": {
|
52 |
"text/plain": [
|
53 |
-
"[('Transactional', 0.
|
54 |
-
" ('
|
55 |
-
" ('
|
56 |
-
" ('
|
57 |
-
" ('
|
58 |
]
|
59 |
},
|
60 |
"execution_count": 4,
|
@@ -74,11 +84,11 @@
|
|
74 |
{
|
75 |
"data": {
|
76 |
"text/plain": [
|
77 |
-
"[('Informational', 0.
|
78 |
-
" ('
|
79 |
-
" ('
|
80 |
-
" ('
|
81 |
-
" ('Navigational', 0.
|
82 |
]
|
83 |
},
|
84 |
"execution_count": 5,
|
@@ -98,11 +108,11 @@
|
|
98 |
{
|
99 |
"data": {
|
100 |
"text/plain": [
|
101 |
-
"[('Local', 0.
|
102 |
-
" ('
|
103 |
-
" ('
|
104 |
-
" ('Navigational', 0.
|
105 |
-
" ('Transactional', 0.
|
106 |
]
|
107 |
},
|
108 |
"execution_count": 6,
|
@@ -122,11 +132,11 @@
|
|
122 |
{
|
123 |
"data": {
|
124 |
"text/plain": [
|
125 |
-
"[('Informational', 0.
|
126 |
-
" ('
|
127 |
-
" ('
|
128 |
-
" ('Commercial', 0.
|
129 |
-
" ('Local', 0.
|
130 |
]
|
131 |
},
|
132 |
"execution_count": 7,
|
@@ -146,11 +156,11 @@
|
|
146 |
{
|
147 |
"data": {
|
148 |
"text/plain": [
|
149 |
-
"[('
|
150 |
-
" ('
|
151 |
-
" ('
|
152 |
-
" ('
|
153 |
-
" ('
|
154 |
]
|
155 |
},
|
156 |
"execution_count": 8,
|
@@ -170,11 +180,11 @@
|
|
170 |
{
|
171 |
"data": {
|
172 |
"text/plain": [
|
173 |
-
"[('Navigational', 0.
|
174 |
-
" ('Transactional', 0.
|
175 |
-
" ('Local', 0.
|
176 |
-
" ('
|
177 |
-
" ('
|
178 |
]
|
179 |
},
|
180 |
"execution_count": 9,
|
@@ -194,11 +204,11 @@
|
|
194 |
{
|
195 |
"data": {
|
196 |
"text/plain": [
|
197 |
-
"[('Navigational', 0.
|
198 |
" ('Transactional', 0.256),\n",
|
199 |
-
" ('
|
200 |
-
" ('
|
201 |
-
" ('Commercial', 0.
|
202 |
]
|
203 |
},
|
204 |
"execution_count": 10,
|
@@ -218,11 +228,11 @@
|
|
218 |
{
|
219 |
"data": {
|
220 |
"text/plain": [
|
221 |
-
"[('Local', 0.
|
222 |
-
" ('
|
223 |
-
" ('
|
224 |
-
" ('
|
225 |
-
" ('
|
226 |
]
|
227 |
},
|
228 |
"execution_count": 11,
|
@@ -242,11 +252,11 @@
|
|
242 |
{
|
243 |
"data": {
|
244 |
"text/plain": [
|
245 |
-
"[('Informational', 0.
|
246 |
-
" ('
|
247 |
-
" ('
|
248 |
-
" ('
|
249 |
-
" ('Navigational', 0.
|
250 |
]
|
251 |
},
|
252 |
"execution_count": 12,
|
@@ -258,6 +268,204 @@
|
|
258 |
"get_top_intent(\"how to wear headphones\")"
|
259 |
]
|
260 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
{
|
262 |
"cell_type": "code",
|
263 |
"execution_count": null,
|
|
|
13 |
"cell_type": "code",
|
14 |
"execution_count": 2,
|
15 |
"metadata": {},
|
16 |
+
"outputs": [
|
17 |
+
{
|
18 |
+
"name": "stderr",
|
19 |
+
"output_type": "stream",
|
20 |
+
"text": [
|
21 |
+
"/home/ubuntu/SentenceStructureComparision/venv/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
22 |
+
" from .autonotebook import tqdm as notebook_tqdm\n",
|
23 |
+
"Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n"
|
24 |
+
]
|
25 |
+
}
|
26 |
+
],
|
27 |
"source": [
|
28 |
"from utils.get_intent import get_top_intent"
|
29 |
]
|
|
|
36 |
{
|
37 |
"data": {
|
38 |
"text/plain": [
|
39 |
+
"[('Commercial', 0.997),\n",
|
40 |
+
" ('Transactional', 0.199),\n",
|
41 |
+
" ('Local', 0.132),\n",
|
42 |
+
" ('Navigational', 0.099),\n",
|
43 |
+
" ('Informational', 0.088)]"
|
44 |
]
|
45 |
},
|
46 |
"execution_count": 3,
|
|
|
60 |
{
|
61 |
"data": {
|
62 |
"text/plain": [
|
63 |
+
"[('Transactional', 0.996),\n",
|
64 |
+
" ('Commercial', 0.315),\n",
|
65 |
+
" ('Navigational', 0.149),\n",
|
66 |
+
" ('Local', 0.146),\n",
|
67 |
+
" ('Informational', 0.133)]"
|
68 |
]
|
69 |
},
|
70 |
"execution_count": 4,
|
|
|
84 |
{
|
85 |
"data": {
|
86 |
"text/plain": [
|
87 |
+
"[('Informational', 0.999),\n",
|
88 |
+
" ('Transactional', 0.116),\n",
|
89 |
+
" ('Local', 0.094),\n",
|
90 |
+
" ('Commercial', 0.075),\n",
|
91 |
+
" ('Navigational', 0.075)]"
|
92 |
]
|
93 |
},
|
94 |
"execution_count": 5,
|
|
|
108 |
{
|
109 |
"data": {
|
110 |
"text/plain": [
|
111 |
+
"[('Local', 0.997),\n",
|
112 |
+
" ('Commercial', 0.134),\n",
|
113 |
+
" ('Informational', 0.122),\n",
|
114 |
+
" ('Navigational', 0.121),\n",
|
115 |
+
" ('Transactional', 0.12)]"
|
116 |
]
|
117 |
},
|
118 |
"execution_count": 6,
|
|
|
132 |
{
|
133 |
"data": {
|
134 |
"text/plain": [
|
135 |
+
"[('Informational', 0.892),\n",
|
136 |
+
" ('Transactional', 0.685),\n",
|
137 |
+
" ('Navigational', 0.533),\n",
|
138 |
+
" ('Commercial', 0.123),\n",
|
139 |
+
" ('Local', 0.072)]"
|
140 |
]
|
141 |
},
|
142 |
"execution_count": 7,
|
|
|
156 |
{
|
157 |
"data": {
|
158 |
"text/plain": [
|
159 |
+
"[('Informational', 0.993),\n",
|
160 |
+
" ('Commercial', 0.183),\n",
|
161 |
+
" ('Transactional', 0.173),\n",
|
162 |
+
" ('Local', 0.123),\n",
|
163 |
+
" ('Navigational', 0.082)]"
|
164 |
]
|
165 |
},
|
166 |
"execution_count": 8,
|
|
|
180 |
{
|
181 |
"data": {
|
182 |
"text/plain": [
|
183 |
+
"[('Navigational', 0.998),\n",
|
184 |
+
" ('Transactional', 0.271),\n",
|
185 |
+
" ('Local', 0.164),\n",
|
186 |
+
" ('Commercial', 0.134),\n",
|
187 |
+
" ('Informational', 0.129)]"
|
188 |
]
|
189 |
},
|
190 |
"execution_count": 9,
|
|
|
204 |
{
|
205 |
"data": {
|
206 |
"text/plain": [
|
207 |
+
"[('Navigational', 0.998),\n",
|
208 |
" ('Transactional', 0.256),\n",
|
209 |
+
" ('Local', 0.171),\n",
|
210 |
+
" ('Informational', 0.151),\n",
|
211 |
+
" ('Commercial', 0.127)]"
|
212 |
]
|
213 |
},
|
214 |
"execution_count": 10,
|
|
|
228 |
{
|
229 |
"data": {
|
230 |
"text/plain": [
|
231 |
+
"[('Local', 0.997),\n",
|
232 |
+
" ('Commercial', 0.136),\n",
|
233 |
+
" ('Transactional', 0.124),\n",
|
234 |
+
" ('Informational', 0.119),\n",
|
235 |
+
" ('Navigational', 0.118)]"
|
236 |
]
|
237 |
},
|
238 |
"execution_count": 11,
|
|
|
252 |
{
|
253 |
"data": {
|
254 |
"text/plain": [
|
255 |
+
"[('Informational', 0.999),\n",
|
256 |
+
" ('Transactional', 0.131),\n",
|
257 |
+
" ('Local', 0.09),\n",
|
258 |
+
" ('Commercial', 0.072),\n",
|
259 |
+
" ('Navigational', 0.069)]"
|
260 |
]
|
261 |
},
|
262 |
"execution_count": 12,
|
|
|
268 |
"get_top_intent(\"how to wear headphones\")"
|
269 |
]
|
270 |
},
|
271 |
+
{
|
272 |
+
"cell_type": "code",
|
273 |
+
"execution_count": 13,
|
274 |
+
"metadata": {},
|
275 |
+
"outputs": [
|
276 |
+
{
|
277 |
+
"data": {
|
278 |
+
"text/plain": [
|
279 |
+
"[('Navigational', 0.997),\n",
|
280 |
+
" ('Transactional', 0.452),\n",
|
281 |
+
" ('Local', 0.127),\n",
|
282 |
+
" ('Informational', 0.126),\n",
|
283 |
+
" ('Commercial', 0.12)]"
|
284 |
+
]
|
285 |
+
},
|
286 |
+
"execution_count": 13,
|
287 |
+
"metadata": {},
|
288 |
+
"output_type": "execute_result"
|
289 |
+
}
|
290 |
+
],
|
291 |
+
"source": [
|
292 |
+
"get_top_intent(\"receiptify\")"
|
293 |
+
]
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"cell_type": "code",
|
297 |
+
"execution_count": 14,
|
298 |
+
"metadata": {},
|
299 |
+
"outputs": [
|
300 |
+
{
|
301 |
+
"data": {
|
302 |
+
"text/plain": [
|
303 |
+
"[('Transactional', 0.995),\n",
|
304 |
+
" ('Commercial', 0.27),\n",
|
305 |
+
" ('Informational', 0.181),\n",
|
306 |
+
" ('Local', 0.162),\n",
|
307 |
+
" ('Navigational', 0.133)]"
|
308 |
+
]
|
309 |
+
},
|
310 |
+
"execution_count": 14,
|
311 |
+
"metadata": {},
|
312 |
+
"output_type": "execute_result"
|
313 |
+
}
|
314 |
+
],
|
315 |
+
"source": [
|
316 |
+
"get_top_intent(\"cat ear headphones\")"
|
317 |
+
]
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"cell_type": "code",
|
321 |
+
"execution_count": 15,
|
322 |
+
"metadata": {},
|
323 |
+
"outputs": [
|
324 |
+
{
|
325 |
+
"data": {
|
326 |
+
"text/plain": [
|
327 |
+
"[('Transactional', 0.977),\n",
|
328 |
+
" ('Navigational', 0.808),\n",
|
329 |
+
" ('Commercial', 0.254),\n",
|
330 |
+
" ('Informational', 0.107),\n",
|
331 |
+
" ('Local', 0.081)]"
|
332 |
+
]
|
333 |
+
},
|
334 |
+
"execution_count": 15,
|
335 |
+
"metadata": {},
|
336 |
+
"output_type": "execute_result"
|
337 |
+
}
|
338 |
+
],
|
339 |
+
"source": [
|
340 |
+
"get_top_intent(\"sony headphones guide\")"
|
341 |
+
]
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"cell_type": "code",
|
345 |
+
"execution_count": 16,
|
346 |
+
"metadata": {},
|
347 |
+
"outputs": [
|
348 |
+
{
|
349 |
+
"data": {
|
350 |
+
"text/plain": [
|
351 |
+
"[('Navigational', 0.949),\n",
|
352 |
+
" ('Transactional', 0.89),\n",
|
353 |
+
" ('Informational', 0.328),\n",
|
354 |
+
" ('Commercial', 0.113),\n",
|
355 |
+
" ('Local', 0.069)]"
|
356 |
+
]
|
357 |
+
},
|
358 |
+
"execution_count": 16,
|
359 |
+
"metadata": {},
|
360 |
+
"output_type": "execute_result"
|
361 |
+
}
|
362 |
+
],
|
363 |
+
"source": [
|
364 |
+
"get_top_intent(\"wolf cut\") # informational"
|
365 |
+
]
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"cell_type": "code",
|
369 |
+
"execution_count": 17,
|
370 |
+
"metadata": {},
|
371 |
+
"outputs": [
|
372 |
+
{
|
373 |
+
"data": {
|
374 |
+
"text/plain": [
|
375 |
+
"[('Transactional', 0.996),\n",
|
376 |
+
" ('Commercial', 0.217),\n",
|
377 |
+
" ('Informational', 0.199),\n",
|
378 |
+
" ('Navigational', 0.17),\n",
|
379 |
+
" ('Local', 0.136)]"
|
380 |
+
]
|
381 |
+
},
|
382 |
+
"execution_count": 17,
|
383 |
+
"metadata": {},
|
384 |
+
"output_type": "execute_result"
|
385 |
+
}
|
386 |
+
],
|
387 |
+
"source": [
|
388 |
+
"get_top_intent(\"help plumbing supply\") # informational"
|
389 |
+
]
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"cell_type": "code",
|
393 |
+
"execution_count": 18,
|
394 |
+
"metadata": {},
|
395 |
+
"outputs": [
|
396 |
+
{
|
397 |
+
"data": {
|
398 |
+
"text/plain": [
|
399 |
+
"[('Informational', 0.969),\n",
|
400 |
+
" ('Commercial', 0.677),\n",
|
401 |
+
" ('Transactional', 0.276),\n",
|
402 |
+
" ('Local', 0.071),\n",
|
403 |
+
" ('Navigational', 0.035)]"
|
404 |
+
]
|
405 |
+
},
|
406 |
+
"execution_count": 18,
|
407 |
+
"metadata": {},
|
408 |
+
"output_type": "execute_result"
|
409 |
+
}
|
410 |
+
],
|
411 |
+
"source": [
|
412 |
+
"get_top_intent('yoga purpose') # informational"
|
413 |
+
]
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"cell_type": "code",
|
417 |
+
"execution_count": null,
|
418 |
+
"metadata": {},
|
419 |
+
"outputs": [],
|
420 |
+
"source": []
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"cell_type": "code",
|
424 |
+
"execution_count": null,
|
425 |
+
"metadata": {},
|
426 |
+
"outputs": [],
|
427 |
+
"source": []
|
428 |
+
},
|
429 |
+
{
|
430 |
+
"cell_type": "code",
|
431 |
+
"execution_count": 1,
|
432 |
+
"metadata": {},
|
433 |
+
"outputs": [],
|
434 |
+
"source": [
|
435 |
+
"import os; os.chdir('..')"
|
436 |
+
]
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"cell_type": "code",
|
440 |
+
"execution_count": 2,
|
441 |
+
"metadata": {},
|
442 |
+
"outputs": [],
|
443 |
+
"source": [
|
444 |
+
"from utils.get_category import get_top_labels"
|
445 |
+
]
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"cell_type": "code",
|
449 |
+
"execution_count": 3,
|
450 |
+
"metadata": {},
|
451 |
+
"outputs": [
|
452 |
+
{
|
453 |
+
"data": {
|
454 |
+
"text/plain": [
|
455 |
+
"[('Computers_and_Electronics', 1.0), ('Shopping', 0.182)]"
|
456 |
+
]
|
457 |
+
},
|
458 |
+
"execution_count": 3,
|
459 |
+
"metadata": {},
|
460 |
+
"output_type": "execute_result"
|
461 |
+
}
|
462 |
+
],
|
463 |
+
"source": [
|
464 |
+
"get_top_labels(\n",
|
465 |
+
" \"best cat ear headphones\"\n",
|
466 |
+
")"
|
467 |
+
]
|
468 |
+
},
|
469 |
{
|
470 |
"cell_type": "code",
|
471 |
"execution_count": null,
|
research/11_intent_classification_using_distilbert.ipynb
CHANGED
@@ -20,7 +20,7 @@
|
|
20 |
},
|
21 |
{
|
22 |
"cell_type": "code",
|
23 |
-
"execution_count":
|
24 |
"metadata": {},
|
25 |
"outputs": [
|
26 |
{
|
@@ -87,7 +87,7 @@
|
|
87 |
"4 tech crunch Navigational"
|
88 |
]
|
89 |
},
|
90 |
-
"execution_count":
|
91 |
"metadata": {},
|
92 |
"output_type": "execute_result"
|
93 |
}
|
@@ -99,7 +99,59 @@
|
|
99 |
},
|
100 |
{
|
101 |
"cell_type": "code",
|
102 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
"metadata": {},
|
104 |
"outputs": [],
|
105 |
"source": [
|
@@ -108,7 +160,7 @@
|
|
108 |
},
|
109 |
{
|
110 |
"cell_type": "code",
|
111 |
-
"execution_count":
|
112 |
"metadata": {},
|
113 |
"outputs": [],
|
114 |
"source": [
|
@@ -121,7 +173,7 @@
|
|
121 |
},
|
122 |
{
|
123 |
"cell_type": "code",
|
124 |
-
"execution_count":
|
125 |
"metadata": {},
|
126 |
"outputs": [
|
127 |
{
|
@@ -134,7 +186,7 @@
|
|
134 |
" 4: 'Transactional'}"
|
135 |
]
|
136 |
},
|
137 |
-
"execution_count":
|
138 |
"metadata": {},
|
139 |
"output_type": "execute_result"
|
140 |
}
|
@@ -145,7 +197,7 @@
|
|
145 |
},
|
146 |
{
|
147 |
"cell_type": "code",
|
148 |
-
"execution_count":
|
149 |
"metadata": {},
|
150 |
"outputs": [
|
151 |
{
|
@@ -158,7 +210,7 @@
|
|
158 |
" 'Transactional': 4}"
|
159 |
]
|
160 |
},
|
161 |
-
"execution_count":
|
162 |
"metadata": {},
|
163 |
"output_type": "execute_result"
|
164 |
}
|
@@ -169,7 +221,7 @@
|
|
169 |
},
|
170 |
{
|
171 |
"cell_type": "code",
|
172 |
-
"execution_count":
|
173 |
"metadata": {},
|
174 |
"outputs": [],
|
175 |
"source": [
|
@@ -179,7 +231,7 @@
|
|
179 |
},
|
180 |
{
|
181 |
"cell_type": "code",
|
182 |
-
"execution_count":
|
183 |
"metadata": {},
|
184 |
"outputs": [
|
185 |
{
|
@@ -246,58 +298,58 @@
|
|
246 |
" <td>...</td>\n",
|
247 |
" </tr>\n",
|
248 |
" <tr>\n",
|
249 |
-
" <th>
|
250 |
-
" <td>How to make
|
251 |
" <td>Informational</td>\n",
|
252 |
" <td>1</td>\n",
|
253 |
" </tr>\n",
|
254 |
" <tr>\n",
|
255 |
-
" <th>
|
256 |
-
" <td>
|
257 |
" <td>Informational</td>\n",
|
258 |
" <td>1</td>\n",
|
259 |
" </tr>\n",
|
260 |
" <tr>\n",
|
261 |
-
" <th>
|
262 |
-
" <td>
|
263 |
" <td>Informational</td>\n",
|
264 |
" <td>1</td>\n",
|
265 |
" </tr>\n",
|
266 |
" <tr>\n",
|
267 |
-
" <th>
|
268 |
-
" <td>
|
269 |
" <td>Informational</td>\n",
|
270 |
" <td>1</td>\n",
|
271 |
" </tr>\n",
|
272 |
" <tr>\n",
|
273 |
-
" <th>
|
274 |
-
" <td>
|
275 |
" <td>Informational</td>\n",
|
276 |
" <td>1</td>\n",
|
277 |
" </tr>\n",
|
278 |
" </tbody>\n",
|
279 |
"</table>\n",
|
280 |
-
"<p>
|
281 |
"</div>"
|
282 |
],
|
283 |
"text/plain": [
|
284 |
-
"
|
285 |
-
"0
|
286 |
-
"1
|
287 |
-
"2
|
288 |
-
"3
|
289 |
-
"4
|
290 |
-
"...
|
291 |
-
"
|
292 |
-
"
|
293 |
-
"
|
294 |
-
"
|
295 |
-
"
|
296 |
"\n",
|
297 |
-
"[
|
298 |
]
|
299 |
},
|
300 |
-
"execution_count":
|
301 |
"metadata": {},
|
302 |
"output_type": "execute_result"
|
303 |
}
|
@@ -309,7 +361,7 @@
|
|
309 |
},
|
310 |
{
|
311 |
"cell_type": "code",
|
312 |
-
"execution_count":
|
313 |
"metadata": {},
|
314 |
"outputs": [
|
315 |
{
|
@@ -369,53 +421,53 @@
|
|
369 |
" <td>...</td>\n",
|
370 |
" </tr>\n",
|
371 |
" <tr>\n",
|
372 |
-
" <th>
|
373 |
-
" <td>How to make
|
374 |
" <td>1</td>\n",
|
375 |
" </tr>\n",
|
376 |
" <tr>\n",
|
377 |
-
" <th>
|
378 |
-
" <td>
|
379 |
" <td>1</td>\n",
|
380 |
" </tr>\n",
|
381 |
" <tr>\n",
|
382 |
-
" <th>
|
383 |
-
" <td>
|
384 |
" <td>1</td>\n",
|
385 |
" </tr>\n",
|
386 |
" <tr>\n",
|
387 |
-
" <th>
|
388 |
-
" <td>
|
389 |
" <td>1</td>\n",
|
390 |
" </tr>\n",
|
391 |
" <tr>\n",
|
392 |
-
" <th>
|
393 |
-
" <td>
|
394 |
" <td>1</td>\n",
|
395 |
" </tr>\n",
|
396 |
" </tbody>\n",
|
397 |
"</table>\n",
|
398 |
-
"<p>
|
399 |
"</div>"
|
400 |
],
|
401 |
"text/plain": [
|
402 |
-
"
|
403 |
-
"0
|
404 |
-
"1
|
405 |
-
"2
|
406 |
-
"3
|
407 |
-
"4
|
408 |
-
"...
|
409 |
-
"
|
410 |
-
"
|
411 |
-
"
|
412 |
-
"
|
413 |
-
"
|
414 |
"\n",
|
415 |
-
"[
|
416 |
]
|
417 |
},
|
418 |
-
"execution_count":
|
419 |
"metadata": {},
|
420 |
"output_type": "execute_result"
|
421 |
}
|
@@ -427,7 +479,7 @@
|
|
427 |
},
|
428 |
{
|
429 |
"cell_type": "code",
|
430 |
-
"execution_count":
|
431 |
"metadata": {},
|
432 |
"outputs": [
|
433 |
{
|
@@ -445,14 +497,14 @@
|
|
445 |
},
|
446 |
{
|
447 |
"cell_type": "code",
|
448 |
-
"execution_count":
|
449 |
"metadata": {},
|
450 |
"outputs": [
|
451 |
{
|
452 |
"name": "stderr",
|
453 |
"output_type": "stream",
|
454 |
"text": [
|
455 |
-
"/tmp/
|
456 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
457 |
"\n",
|
458 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
@@ -486,74 +538,74 @@
|
|
486 |
" </thead>\n",
|
487 |
" <tbody>\n",
|
488 |
" <tr>\n",
|
489 |
-
" <th>
|
490 |
-
" <td>
|
491 |
" <td>4</td>\n",
|
492 |
" </tr>\n",
|
493 |
" <tr>\n",
|
494 |
-
" <th>
|
495 |
-
" <td>
|
496 |
-
" <td>
|
497 |
" </tr>\n",
|
498 |
" <tr>\n",
|
499 |
-
" <th>
|
500 |
-
" <td>Purchase
|
501 |
" <td>4</td>\n",
|
502 |
" </tr>\n",
|
503 |
" <tr>\n",
|
504 |
-
" <th>
|
505 |
-
" <td>
|
506 |
-
" <td>
|
507 |
" </tr>\n",
|
508 |
" <tr>\n",
|
509 |
-
" <th>
|
510 |
-
" <td>
|
511 |
-
" <td>
|
512 |
" </tr>\n",
|
513 |
" <tr>\n",
|
514 |
-
" <th>
|
515 |
-
" <td>
|
516 |
-
" <td>
|
517 |
" </tr>\n",
|
518 |
" <tr>\n",
|
519 |
-
" <th>
|
520 |
-
" <td>
|
521 |
-
" <td>
|
522 |
" </tr>\n",
|
523 |
" <tr>\n",
|
524 |
-
" <th>
|
525 |
-
" <td>
|
526 |
-
" <td>
|
527 |
" </tr>\n",
|
528 |
" <tr>\n",
|
529 |
-
" <th>
|
530 |
-
" <td>
|
531 |
" <td>1</td>\n",
|
532 |
" </tr>\n",
|
533 |
" <tr>\n",
|
534 |
-
" <th>
|
535 |
-
" <td>
|
536 |
-
" <td>
|
537 |
" </tr>\n",
|
538 |
" </tbody>\n",
|
539 |
"</table>\n",
|
540 |
"</div>"
|
541 |
],
|
542 |
"text/plain": [
|
543 |
-
"
|
544 |
-
"
|
545 |
-
"
|
546 |
-
"
|
547 |
-
"
|
548 |
-
"
|
549 |
-
"
|
550 |
-
"
|
551 |
-
"
|
552 |
-
"
|
553 |
-
"
|
554 |
]
|
555 |
},
|
556 |
-
"execution_count":
|
557 |
"metadata": {},
|
558 |
"output_type": "execute_result"
|
559 |
}
|
@@ -571,7 +623,7 @@
|
|
571 |
},
|
572 |
{
|
573 |
"cell_type": "code",
|
574 |
-
"execution_count":
|
575 |
"metadata": {},
|
576 |
"outputs": [
|
577 |
{
|
@@ -586,12 +638,12 @@
|
|
586 |
"data": {
|
587 |
"text/plain": [
|
588 |
"Dataset({\n",
|
589 |
-
" features: ['text', 'label'],\n",
|
590 |
-
" num_rows:
|
591 |
"})"
|
592 |
]
|
593 |
},
|
594 |
-
"execution_count":
|
595 |
"metadata": {},
|
596 |
"output_type": "execute_result"
|
597 |
}
|
@@ -603,7 +655,7 @@
|
|
603 |
},
|
604 |
{
|
605 |
"cell_type": "code",
|
606 |
-
"execution_count":
|
607 |
"metadata": {},
|
608 |
"outputs": [
|
609 |
{
|
@@ -611,17 +663,17 @@
|
|
611 |
"text/plain": [
|
612 |
"DatasetDict({\n",
|
613 |
" train: Dataset({\n",
|
614 |
-
" features: ['text', 'label'],\n",
|
615 |
-
" num_rows:
|
616 |
" })\n",
|
617 |
" test: Dataset({\n",
|
618 |
-
" features: ['text', 'label'],\n",
|
619 |
-
" num_rows:
|
620 |
" })\n",
|
621 |
"})"
|
622 |
]
|
623 |
},
|
624 |
-
"execution_count":
|
625 |
"metadata": {},
|
626 |
"output_type": "execute_result"
|
627 |
}
|
@@ -633,7 +685,7 @@
|
|
633 |
},
|
634 |
{
|
635 |
"cell_type": "code",
|
636 |
-
"execution_count":
|
637 |
"metadata": {},
|
638 |
"outputs": [],
|
639 |
"source": [
|
@@ -644,7 +696,7 @@
|
|
644 |
},
|
645 |
{
|
646 |
"cell_type": "code",
|
647 |
-
"execution_count":
|
648 |
"metadata": {},
|
649 |
"outputs": [],
|
650 |
"source": [
|
@@ -654,15 +706,15 @@
|
|
654 |
},
|
655 |
{
|
656 |
"cell_type": "code",
|
657 |
-
"execution_count":
|
658 |
"metadata": {},
|
659 |
"outputs": [
|
660 |
{
|
661 |
"name": "stderr",
|
662 |
"output_type": "stream",
|
663 |
"text": [
|
664 |
-
"Map: 100%|ββββββββββ|
|
665 |
-
"Map: 100%|ββββββββββ|
|
666 |
]
|
667 |
}
|
668 |
],
|
@@ -672,16 +724,16 @@
|
|
672 |
},
|
673 |
{
|
674 |
"cell_type": "code",
|
675 |
-
"execution_count":
|
676 |
"metadata": {},
|
677 |
"outputs": [
|
678 |
{
|
679 |
"name": "stderr",
|
680 |
"output_type": "stream",
|
681 |
"text": [
|
682 |
-
"2023-10-13
|
683 |
"To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
|
684 |
-
"2023-10-13
|
685 |
]
|
686 |
}
|
687 |
],
|
@@ -700,7 +752,7 @@
|
|
700 |
},
|
701 |
{
|
702 |
"cell_type": "code",
|
703 |
-
"execution_count":
|
704 |
"metadata": {},
|
705 |
"outputs": [],
|
706 |
"source": [
|
@@ -711,7 +763,7 @@
|
|
711 |
},
|
712 |
{
|
713 |
"cell_type": "code",
|
714 |
-
"execution_count":
|
715 |
"metadata": {},
|
716 |
"outputs": [],
|
717 |
"source": [
|
@@ -726,14 +778,14 @@
|
|
726 |
},
|
727 |
{
|
728 |
"cell_type": "code",
|
729 |
-
"execution_count":
|
730 |
"metadata": {},
|
731 |
"outputs": [
|
732 |
{
|
733 |
"name": "stderr",
|
734 |
"output_type": "stream",
|
735 |
"text": [
|
736 |
-
"Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.
|
737 |
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
738 |
]
|
739 |
}
|
@@ -748,7 +800,7 @@
|
|
748 |
},
|
749 |
{
|
750 |
"cell_type": "code",
|
751 |
-
"execution_count":
|
752 |
"metadata": {},
|
753 |
"outputs": [
|
754 |
{
|
@@ -764,8 +816,8 @@
|
|
764 |
"\n",
|
765 |
" <div>\n",
|
766 |
" \n",
|
767 |
-
" <progress value='
|
768 |
-
" [
|
769 |
" </div>\n",
|
770 |
" <table border=\"1\" class=\"dataframe\">\n",
|
771 |
" <thead>\n",
|
@@ -780,38 +832,98 @@
|
|
780 |
" <tr>\n",
|
781 |
" <td>1</td>\n",
|
782 |
" <td>No log</td>\n",
|
783 |
-
" <td>0.
|
784 |
-
" <td>0.
|
785 |
" </tr>\n",
|
786 |
" <tr>\n",
|
787 |
" <td>2</td>\n",
|
788 |
" <td>No log</td>\n",
|
789 |
-
" <td>0.
|
790 |
-
" <td>0.
|
791 |
" </tr>\n",
|
792 |
" <tr>\n",
|
793 |
" <td>3</td>\n",
|
794 |
" <td>No log</td>\n",
|
795 |
-
" <td>0.
|
796 |
-
" <td>0.
|
797 |
" </tr>\n",
|
798 |
" <tr>\n",
|
799 |
" <td>4</td>\n",
|
800 |
" <td>No log</td>\n",
|
801 |
-
" <td>0.
|
802 |
-
" <td>0.
|
803 |
" </tr>\n",
|
804 |
" <tr>\n",
|
805 |
" <td>5</td>\n",
|
806 |
" <td>No log</td>\n",
|
807 |
-
" <td>0.
|
808 |
-
" <td>0.
|
809 |
" </tr>\n",
|
810 |
" <tr>\n",
|
811 |
" <td>6</td>\n",
|
812 |
" <td>No log</td>\n",
|
813 |
-
" <td>0.
|
814 |
-
" <td>0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
815 |
" </tr>\n",
|
816 |
" </tbody>\n",
|
817 |
"</table><p>"
|
@@ -826,10 +938,10 @@
|
|
826 |
{
|
827 |
"data": {
|
828 |
"text/plain": [
|
829 |
-
"TrainOutput(global_step=
|
830 |
]
|
831 |
},
|
832 |
-
"execution_count":
|
833 |
"metadata": {},
|
834 |
"output_type": "execute_result"
|
835 |
}
|
@@ -840,7 +952,7 @@
|
|
840 |
" learning_rate=2e-5,\n",
|
841 |
" per_device_train_batch_size=16,\n",
|
842 |
" per_device_eval_batch_size=16,\n",
|
843 |
-
" num_train_epochs=
|
844 |
" weight_decay=0.01,\n",
|
845 |
" evaluation_strategy=\"epoch\",\n",
|
846 |
" save_strategy=\"epoch\",\n",
|
|
|
20 |
},
|
21 |
{
|
22 |
"cell_type": "code",
|
23 |
+
"execution_count": 10,
|
24 |
"metadata": {},
|
25 |
"outputs": [
|
26 |
{
|
|
|
87 |
"4 tech crunch Navigational"
|
88 |
]
|
89 |
},
|
90 |
+
"execution_count": 10,
|
91 |
"metadata": {},
|
92 |
"output_type": "execute_result"
|
93 |
}
|
|
|
99 |
},
|
100 |
{
|
101 |
"cell_type": "code",
|
102 |
+
"execution_count": 16,
|
103 |
+
"metadata": {},
|
104 |
+
"outputs": [
|
105 |
+
{
|
106 |
+
"data": {
|
107 |
+
"text/plain": [
|
108 |
+
"False 1506\n",
|
109 |
+
"True 202\n",
|
110 |
+
"Name: count, dtype: int64"
|
111 |
+
]
|
112 |
+
},
|
113 |
+
"execution_count": 16,
|
114 |
+
"metadata": {},
|
115 |
+
"output_type": "execute_result"
|
116 |
+
}
|
117 |
+
],
|
118 |
+
"source": [
|
119 |
+
"original_df.duplicated().value_counts()"
|
120 |
+
]
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"cell_type": "code",
|
124 |
+
"execution_count": 17,
|
125 |
+
"metadata": {},
|
126 |
+
"outputs": [],
|
127 |
+
"source": [
|
128 |
+
"original_df.drop_duplicates(inplace=True)"
|
129 |
+
]
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"cell_type": "code",
|
133 |
+
"execution_count": 18,
|
134 |
+
"metadata": {},
|
135 |
+
"outputs": [
|
136 |
+
{
|
137 |
+
"data": {
|
138 |
+
"text/plain": [
|
139 |
+
"False 1506\n",
|
140 |
+
"Name: count, dtype: int64"
|
141 |
+
]
|
142 |
+
},
|
143 |
+
"execution_count": 18,
|
144 |
+
"metadata": {},
|
145 |
+
"output_type": "execute_result"
|
146 |
+
}
|
147 |
+
],
|
148 |
+
"source": [
|
149 |
+
"original_df.duplicated().value_counts()"
|
150 |
+
]
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"cell_type": "code",
|
154 |
+
"execution_count": 19,
|
155 |
"metadata": {},
|
156 |
"outputs": [],
|
157 |
"source": [
|
|
|
160 |
},
|
161 |
{
|
162 |
"cell_type": "code",
|
163 |
+
"execution_count": 20,
|
164 |
"metadata": {},
|
165 |
"outputs": [],
|
166 |
"source": [
|
|
|
173 |
},
|
174 |
{
|
175 |
"cell_type": "code",
|
176 |
+
"execution_count": 21,
|
177 |
"metadata": {},
|
178 |
"outputs": [
|
179 |
{
|
|
|
186 |
" 4: 'Transactional'}"
|
187 |
]
|
188 |
},
|
189 |
+
"execution_count": 21,
|
190 |
"metadata": {},
|
191 |
"output_type": "execute_result"
|
192 |
}
|
|
|
197 |
},
|
198 |
{
|
199 |
"cell_type": "code",
|
200 |
+
"execution_count": 22,
|
201 |
"metadata": {},
|
202 |
"outputs": [
|
203 |
{
|
|
|
210 |
" 'Transactional': 4}"
|
211 |
]
|
212 |
},
|
213 |
+
"execution_count": 22,
|
214 |
"metadata": {},
|
215 |
"output_type": "execute_result"
|
216 |
}
|
|
|
221 |
},
|
222 |
{
|
223 |
"cell_type": "code",
|
224 |
+
"execution_count": 23,
|
225 |
"metadata": {},
|
226 |
"outputs": [],
|
227 |
"source": [
|
|
|
231 |
},
|
232 |
{
|
233 |
"cell_type": "code",
|
234 |
+
"execution_count": 24,
|
235 |
"metadata": {},
|
236 |
"outputs": [
|
237 |
{
|
|
|
298 |
" <td>...</td>\n",
|
299 |
" </tr>\n",
|
300 |
" <tr>\n",
|
301 |
+
" <th>1703</th>\n",
|
302 |
+
" <td>How to make homemade pet accessories from recy...</td>\n",
|
303 |
" <td>Informational</td>\n",
|
304 |
" <td>1</td>\n",
|
305 |
" </tr>\n",
|
306 |
" <tr>\n",
|
307 |
+
" <th>1704</th>\n",
|
308 |
+
" <td>Top 10 science fiction book series that take r...</td>\n",
|
309 |
" <td>Informational</td>\n",
|
310 |
" <td>1</td>\n",
|
311 |
" </tr>\n",
|
312 |
" <tr>\n",
|
313 |
+
" <th>1705</th>\n",
|
314 |
+
" <td>How to start a car restoration and customizati...</td>\n",
|
315 |
" <td>Informational</td>\n",
|
316 |
" <td>1</td>\n",
|
317 |
" </tr>\n",
|
318 |
" <tr>\n",
|
319 |
+
" <th>1706</th>\n",
|
320 |
+
" <td>Ancient Mesopotamian architecture and its infl...</td>\n",
|
321 |
" <td>Informational</td>\n",
|
322 |
" <td>1</td>\n",
|
323 |
" </tr>\n",
|
324 |
" <tr>\n",
|
325 |
+
" <th>1707</th>\n",
|
326 |
+
" <td>Benefits of a flexitarian diet for those seeki...</td>\n",
|
327 |
" <td>Informational</td>\n",
|
328 |
" <td>1</td>\n",
|
329 |
" </tr>\n",
|
330 |
" </tbody>\n",
|
331 |
"</table>\n",
|
332 |
+
"<p>1506 rows Γ 3 columns</p>\n",
|
333 |
"</div>"
|
334 |
],
|
335 |
"text/plain": [
|
336 |
+
" keyword intent id\n",
|
337 |
+
"0 citalopram vs prozac Commercial 0\n",
|
338 |
+
"1 who is the oldest football player Informational 1\n",
|
339 |
+
"2 t mobile town east Navigational 2\n",
|
340 |
+
"3 starbucks Navigational 2\n",
|
341 |
+
"4 tech crunch Navigational 2\n",
|
342 |
+
"... ... ... ..\n",
|
343 |
+
"1703 How to make homemade pet accessories from recy... Informational 1\n",
|
344 |
+
"1704 Top 10 science fiction book series that take r... Informational 1\n",
|
345 |
+
"1705 How to start a car restoration and customizati... Informational 1\n",
|
346 |
+
"1706 Ancient Mesopotamian architecture and its infl... Informational 1\n",
|
347 |
+
"1707 Benefits of a flexitarian diet for those seeki... Informational 1\n",
|
348 |
"\n",
|
349 |
+
"[1506 rows x 3 columns]"
|
350 |
]
|
351 |
},
|
352 |
+
"execution_count": 24,
|
353 |
"metadata": {},
|
354 |
"output_type": "execute_result"
|
355 |
}
|
|
|
361 |
},
|
362 |
{
|
363 |
"cell_type": "code",
|
364 |
+
"execution_count": 25,
|
365 |
"metadata": {},
|
366 |
"outputs": [
|
367 |
{
|
|
|
421 |
" <td>...</td>\n",
|
422 |
" </tr>\n",
|
423 |
" <tr>\n",
|
424 |
+
" <th>1703</th>\n",
|
425 |
+
" <td>How to make homemade pet accessories from recy...</td>\n",
|
426 |
" <td>1</td>\n",
|
427 |
" </tr>\n",
|
428 |
" <tr>\n",
|
429 |
+
" <th>1704</th>\n",
|
430 |
+
" <td>Top 10 science fiction book series that take r...</td>\n",
|
431 |
" <td>1</td>\n",
|
432 |
" </tr>\n",
|
433 |
" <tr>\n",
|
434 |
+
" <th>1705</th>\n",
|
435 |
+
" <td>How to start a car restoration and customizati...</td>\n",
|
436 |
" <td>1</td>\n",
|
437 |
" </tr>\n",
|
438 |
" <tr>\n",
|
439 |
+
" <th>1706</th>\n",
|
440 |
+
" <td>Ancient Mesopotamian architecture and its infl...</td>\n",
|
441 |
" <td>1</td>\n",
|
442 |
" </tr>\n",
|
443 |
" <tr>\n",
|
444 |
+
" <th>1707</th>\n",
|
445 |
+
" <td>Benefits of a flexitarian diet for those seeki...</td>\n",
|
446 |
" <td>1</td>\n",
|
447 |
" </tr>\n",
|
448 |
" </tbody>\n",
|
449 |
"</table>\n",
|
450 |
+
"<p>1506 rows Γ 2 columns</p>\n",
|
451 |
"</div>"
|
452 |
],
|
453 |
"text/plain": [
|
454 |
+
" keyword id\n",
|
455 |
+
"0 citalopram vs prozac 0\n",
|
456 |
+
"1 who is the oldest football player 1\n",
|
457 |
+
"2 t mobile town east 2\n",
|
458 |
+
"3 starbucks 2\n",
|
459 |
+
"4 tech crunch 2\n",
|
460 |
+
"... ... ..\n",
|
461 |
+
"1703 How to make homemade pet accessories from recy... 1\n",
|
462 |
+
"1704 Top 10 science fiction book series that take r... 1\n",
|
463 |
+
"1705 How to start a car restoration and customizati... 1\n",
|
464 |
+
"1706 Ancient Mesopotamian architecture and its infl... 1\n",
|
465 |
+
"1707 Benefits of a flexitarian diet for those seeki... 1\n",
|
466 |
"\n",
|
467 |
+
"[1506 rows x 2 columns]"
|
468 |
]
|
469 |
},
|
470 |
+
"execution_count": 25,
|
471 |
"metadata": {},
|
472 |
"output_type": "execute_result"
|
473 |
}
|
|
|
479 |
},
|
480 |
{
|
481 |
"cell_type": "code",
|
482 |
+
"execution_count": 26,
|
483 |
"metadata": {},
|
484 |
"outputs": [
|
485 |
{
|
|
|
497 |
},
|
498 |
{
|
499 |
"cell_type": "code",
|
500 |
+
"execution_count": 27,
|
501 |
"metadata": {},
|
502 |
"outputs": [
|
503 |
{
|
504 |
"name": "stderr",
|
505 |
"output_type": "stream",
|
506 |
"text": [
|
507 |
+
"/tmp/ipykernel_140238/1635098052.py:1: SettingWithCopyWarning: \n",
|
508 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
509 |
"\n",
|
510 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
|
|
538 |
" </thead>\n",
|
539 |
" <tbody>\n",
|
540 |
" <tr>\n",
|
541 |
+
" <th>26</th>\n",
|
542 |
+
" <td>Iphone 13 prices</td>\n",
|
543 |
" <td>4</td>\n",
|
544 |
" </tr>\n",
|
545 |
" <tr>\n",
|
546 |
+
" <th>1604</th>\n",
|
547 |
+
" <td>Basics of string theory and its applications</td>\n",
|
548 |
+
" <td>1</td>\n",
|
549 |
" </tr>\n",
|
550 |
" <tr>\n",
|
551 |
+
" <th>622</th>\n",
|
552 |
+
" <td>Purchase air purifier</td>\n",
|
553 |
" <td>4</td>\n",
|
554 |
" </tr>\n",
|
555 |
" <tr>\n",
|
556 |
+
" <th>841</th>\n",
|
557 |
+
" <td>Art studios in Asheville</td>\n",
|
558 |
+
" <td>3</td>\n",
|
559 |
" </tr>\n",
|
560 |
" <tr>\n",
|
561 |
+
" <th>1504</th>\n",
|
562 |
+
" <td>What is epigenetic inheritance?</td>\n",
|
563 |
+
" <td>1</td>\n",
|
564 |
" </tr>\n",
|
565 |
" <tr>\n",
|
566 |
+
" <th>311</th>\n",
|
567 |
+
" <td>Target Business login</td>\n",
|
568 |
+
" <td>2</td>\n",
|
569 |
" </tr>\n",
|
570 |
" <tr>\n",
|
571 |
+
" <th>61</th>\n",
|
572 |
+
" <td>How to get Spotify Premium</td>\n",
|
573 |
+
" <td>1</td>\n",
|
574 |
" </tr>\n",
|
575 |
" <tr>\n",
|
576 |
+
" <th>980</th>\n",
|
577 |
+
" <td>How to meditate?</td>\n",
|
578 |
+
" <td>1</td>\n",
|
579 |
" </tr>\n",
|
580 |
" <tr>\n",
|
581 |
+
" <th>1428</th>\n",
|
582 |
+
" <td>Basics of black holes</td>\n",
|
583 |
" <td>1</td>\n",
|
584 |
" </tr>\n",
|
585 |
" <tr>\n",
|
586 |
+
" <th>1266</th>\n",
|
587 |
+
" <td>Ancient Chinese dynasties</td>\n",
|
588 |
+
" <td>1</td>\n",
|
589 |
" </tr>\n",
|
590 |
" </tbody>\n",
|
591 |
"</table>\n",
|
592 |
"</div>"
|
593 |
],
|
594 |
"text/plain": [
|
595 |
+
" text label\n",
|
596 |
+
"26 Iphone 13 prices 4\n",
|
597 |
+
"1604 Basics of string theory and its applications 1\n",
|
598 |
+
"622 Purchase air purifier 4\n",
|
599 |
+
"841 Art studios in Asheville 3\n",
|
600 |
+
"1504 What is epigenetic inheritance? 1\n",
|
601 |
+
"311 Target Business login 2\n",
|
602 |
+
"61 How to get Spotify Premium 1\n",
|
603 |
+
"980 How to meditate? 1\n",
|
604 |
+
"1428 Basics of black holes 1\n",
|
605 |
+
"1266 Ancient Chinese dynasties 1"
|
606 |
]
|
607 |
},
|
608 |
+
"execution_count": 27,
|
609 |
"metadata": {},
|
610 |
"output_type": "execute_result"
|
611 |
}
|
|
|
623 |
},
|
624 |
{
|
625 |
"cell_type": "code",
|
626 |
+
"execution_count": 28,
|
627 |
"metadata": {},
|
628 |
"outputs": [
|
629 |
{
|
|
|
638 |
"data": {
|
639 |
"text/plain": [
|
640 |
"Dataset({\n",
|
641 |
+
" features: ['text', 'label', '__index_level_0__'],\n",
|
642 |
+
" num_rows: 1506\n",
|
643 |
"})"
|
644 |
]
|
645 |
},
|
646 |
+
"execution_count": 28,
|
647 |
"metadata": {},
|
648 |
"output_type": "execute_result"
|
649 |
}
|
|
|
655 |
},
|
656 |
{
|
657 |
"cell_type": "code",
|
658 |
+
"execution_count": 29,
|
659 |
"metadata": {},
|
660 |
"outputs": [
|
661 |
{
|
|
|
663 |
"text/plain": [
|
664 |
"DatasetDict({\n",
|
665 |
" train: Dataset({\n",
|
666 |
+
" features: ['text', 'label', '__index_level_0__'],\n",
|
667 |
+
" num_rows: 1204\n",
|
668 |
" })\n",
|
669 |
" test: Dataset({\n",
|
670 |
+
" features: ['text', 'label', '__index_level_0__'],\n",
|
671 |
+
" num_rows: 302\n",
|
672 |
" })\n",
|
673 |
"})"
|
674 |
]
|
675 |
},
|
676 |
+
"execution_count": 29,
|
677 |
"metadata": {},
|
678 |
"output_type": "execute_result"
|
679 |
}
|
|
|
685 |
},
|
686 |
{
|
687 |
"cell_type": "code",
|
688 |
+
"execution_count": 30,
|
689 |
"metadata": {},
|
690 |
"outputs": [],
|
691 |
"source": [
|
|
|
696 |
},
|
697 |
{
|
698 |
"cell_type": "code",
|
699 |
+
"execution_count": 31,
|
700 |
"metadata": {},
|
701 |
"outputs": [],
|
702 |
"source": [
|
|
|
706 |
},
|
707 |
{
|
708 |
"cell_type": "code",
|
709 |
+
"execution_count": 32,
|
710 |
"metadata": {},
|
711 |
"outputs": [
|
712 |
{
|
713 |
"name": "stderr",
|
714 |
"output_type": "stream",
|
715 |
"text": [
|
716 |
+
"Map: 100%|ββββββββββ| 1204/1204 [00:00<00:00, 14009.91 examples/s]\n",
|
717 |
+
"Map: 100%|ββββββββββ| 302/302 [00:00<00:00, 24935.62 examples/s]\n"
|
718 |
]
|
719 |
}
|
720 |
],
|
|
|
724 |
},
|
725 |
{
|
726 |
"cell_type": "code",
|
727 |
+
"execution_count": 33,
|
728 |
"metadata": {},
|
729 |
"outputs": [
|
730 |
{
|
731 |
"name": "stderr",
|
732 |
"output_type": "stream",
|
733 |
"text": [
|
734 |
+
"2023-10-13 10:49:11.199157: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
|
735 |
"To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
|
736 |
+
"2023-10-13 10:49:12.962522: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n"
|
737 |
]
|
738 |
}
|
739 |
],
|
|
|
752 |
},
|
753 |
{
|
754 |
"cell_type": "code",
|
755 |
+
"execution_count": 34,
|
756 |
"metadata": {},
|
757 |
"outputs": [],
|
758 |
"source": [
|
|
|
763 |
},
|
764 |
{
|
765 |
"cell_type": "code",
|
766 |
+
"execution_count": 35,
|
767 |
"metadata": {},
|
768 |
"outputs": [],
|
769 |
"source": [
|
|
|
778 |
},
|
779 |
{
|
780 |
"cell_type": "code",
|
781 |
+
"execution_count": 36,
|
782 |
"metadata": {},
|
783 |
"outputs": [
|
784 |
{
|
785 |
"name": "stderr",
|
786 |
"output_type": "stream",
|
787 |
"text": [
|
788 |
+
"Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'pre_classifier.weight', 'classifier.weight', 'pre_classifier.bias']\n",
|
789 |
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
790 |
]
|
791 |
}
|
|
|
800 |
},
|
801 |
{
|
802 |
"cell_type": "code",
|
803 |
+
"execution_count": 37,
|
804 |
"metadata": {},
|
805 |
"outputs": [
|
806 |
{
|
|
|
816 |
"\n",
|
817 |
" <div>\n",
|
818 |
" \n",
|
819 |
+
" <progress value='1216' max='1216' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
820 |
+
" [1216/1216 02:51, Epoch 16/16]\n",
|
821 |
" </div>\n",
|
822 |
" <table border=\"1\" class=\"dataframe\">\n",
|
823 |
" <thead>\n",
|
|
|
832 |
" <tr>\n",
|
833 |
" <td>1</td>\n",
|
834 |
" <td>No log</td>\n",
|
835 |
+
" <td>0.208865</td>\n",
|
836 |
+
" <td>0.986755</td>\n",
|
837 |
" </tr>\n",
|
838 |
" <tr>\n",
|
839 |
" <td>2</td>\n",
|
840 |
" <td>No log</td>\n",
|
841 |
+
" <td>0.062759</td>\n",
|
842 |
+
" <td>0.983444</td>\n",
|
843 |
" </tr>\n",
|
844 |
" <tr>\n",
|
845 |
" <td>3</td>\n",
|
846 |
" <td>No log</td>\n",
|
847 |
+
" <td>0.065099</td>\n",
|
848 |
+
" <td>0.986755</td>\n",
|
849 |
" </tr>\n",
|
850 |
" <tr>\n",
|
851 |
" <td>4</td>\n",
|
852 |
" <td>No log</td>\n",
|
853 |
+
" <td>0.081124</td>\n",
|
854 |
+
" <td>0.976821</td>\n",
|
855 |
" </tr>\n",
|
856 |
" <tr>\n",
|
857 |
" <td>5</td>\n",
|
858 |
" <td>No log</td>\n",
|
859 |
+
" <td>0.112577</td>\n",
|
860 |
+
" <td>0.970199</td>\n",
|
861 |
" </tr>\n",
|
862 |
" <tr>\n",
|
863 |
" <td>6</td>\n",
|
864 |
" <td>No log</td>\n",
|
865 |
+
" <td>0.111743</td>\n",
|
866 |
+
" <td>0.973510</td>\n",
|
867 |
+
" </tr>\n",
|
868 |
+
" <tr>\n",
|
869 |
+
" <td>7</td>\n",
|
870 |
+
" <td>0.188300</td>\n",
|
871 |
+
" <td>0.100201</td>\n",
|
872 |
+
" <td>0.976821</td>\n",
|
873 |
+
" </tr>\n",
|
874 |
+
" <tr>\n",
|
875 |
+
" <td>8</td>\n",
|
876 |
+
" <td>0.188300</td>\n",
|
877 |
+
" <td>0.116866</td>\n",
|
878 |
+
" <td>0.973510</td>\n",
|
879 |
+
" </tr>\n",
|
880 |
+
" <tr>\n",
|
881 |
+
" <td>9</td>\n",
|
882 |
+
" <td>0.188300</td>\n",
|
883 |
+
" <td>0.141521</td>\n",
|
884 |
+
" <td>0.970199</td>\n",
|
885 |
+
" </tr>\n",
|
886 |
+
" <tr>\n",
|
887 |
+
" <td>10</td>\n",
|
888 |
+
" <td>0.188300</td>\n",
|
889 |
+
" <td>0.134409</td>\n",
|
890 |
+
" <td>0.973510</td>\n",
|
891 |
+
" </tr>\n",
|
892 |
+
" <tr>\n",
|
893 |
+
" <td>11</td>\n",
|
894 |
+
" <td>0.188300</td>\n",
|
895 |
+
" <td>0.134093</td>\n",
|
896 |
+
" <td>0.973510</td>\n",
|
897 |
+
" </tr>\n",
|
898 |
+
" <tr>\n",
|
899 |
+
" <td>12</td>\n",
|
900 |
+
" <td>0.188300</td>\n",
|
901 |
+
" <td>0.127059</td>\n",
|
902 |
+
" <td>0.973510</td>\n",
|
903 |
+
" </tr>\n",
|
904 |
+
" <tr>\n",
|
905 |
+
" <td>13</td>\n",
|
906 |
+
" <td>0.188300</td>\n",
|
907 |
+
" <td>0.138748</td>\n",
|
908 |
+
" <td>0.973510</td>\n",
|
909 |
+
" </tr>\n",
|
910 |
+
" <tr>\n",
|
911 |
+
" <td>14</td>\n",
|
912 |
+
" <td>0.018000</td>\n",
|
913 |
+
" <td>0.137167</td>\n",
|
914 |
+
" <td>0.973510</td>\n",
|
915 |
+
" </tr>\n",
|
916 |
+
" <tr>\n",
|
917 |
+
" <td>15</td>\n",
|
918 |
+
" <td>0.018000</td>\n",
|
919 |
+
" <td>0.135889</td>\n",
|
920 |
+
" <td>0.973510</td>\n",
|
921 |
+
" </tr>\n",
|
922 |
+
" <tr>\n",
|
923 |
+
" <td>16</td>\n",
|
924 |
+
" <td>0.018000</td>\n",
|
925 |
+
" <td>0.135796</td>\n",
|
926 |
+
" <td>0.973510</td>\n",
|
927 |
" </tr>\n",
|
928 |
" </tbody>\n",
|
929 |
"</table><p>"
|
|
|
938 |
{
|
939 |
"data": {
|
940 |
"text/plain": [
|
941 |
+
"TrainOutput(global_step=1216, training_loss=0.08689324734242339, metrics={'train_runtime': 172.7465, 'train_samples_per_second': 111.516, 'train_steps_per_second': 7.039, 'total_flos': 62384098266840.0, 'train_loss': 0.08689324734242339, 'epoch': 16.0})"
|
942 |
]
|
943 |
},
|
944 |
+
"execution_count": 37,
|
945 |
"metadata": {},
|
946 |
"output_type": "execute_result"
|
947 |
}
|
|
|
952 |
" learning_rate=2e-5,\n",
|
953 |
" per_device_train_batch_size=16,\n",
|
954 |
" per_device_eval_batch_size=16,\n",
|
955 |
+
" num_train_epochs=16,\n",
|
956 |
" weight_decay=0.01,\n",
|
957 |
" evaluation_strategy=\"epoch\",\n",
|
958 |
" save_strategy=\"epoch\",\n",
|
research/12_text_analytics_using_azure.ipynb
ADDED
@@ -0,0 +1,407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 15,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"# ! pip install --upgrade azure-ai-textanalytics"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "code",
|
14 |
+
"execution_count": 16,
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"key = \"198414c4d7e54bde91ec77bf776d5211\"\n",
|
19 |
+
"endpoint = \"https://new-entity.cognitiveservices.azure.com/\"\n",
|
20 |
+
"# endpoint = \"https://eastus.api.cognitive.microsoft.com/\"\n",
|
21 |
+
"\n",
|
22 |
+
"from azure.ai.textanalytics import TextAnalyticsClient\n",
|
23 |
+
"from azure.core.credentials import AzureKeyCredential\n",
|
24 |
+
"\n",
|
25 |
+
"# Authenticate the client using your key and endpoint \n",
|
26 |
+
"def authenticate_client():\n",
|
27 |
+
" ta_credential = AzureKeyCredential(key)\n",
|
28 |
+
" text_analytics_client = TextAnalyticsClient(\n",
|
29 |
+
" endpoint=endpoint, \n",
|
30 |
+
" credential=ta_credential)\n",
|
31 |
+
" return text_analytics_client\n",
|
32 |
+
"\n",
|
33 |
+
"client = authenticate_client()\n"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"execution_count": 21,
|
39 |
+
"metadata": {},
|
40 |
+
"outputs": [
|
41 |
+
{
|
42 |
+
"name": "stdout",
|
43 |
+
"output_type": "stream",
|
44 |
+
"text": [
|
45 |
+
"Named Entities:\n",
|
46 |
+
"\n",
|
47 |
+
"\tText: \t razor kraken \tCategory: \t Organization \tSubCategory: \t None \n",
|
48 |
+
"\tConfidence Score: \t 0.54 \tLength: \t 12 \tOffset: \t 0 \n",
|
49 |
+
"\n",
|
50 |
+
"\tText: \t headphones \tCategory: \t Product \tSubCategory: \t None \n",
|
51 |
+
"\tConfidence Score: \t 0.5 \tLength: \t 10 \tOffset: \t 13 \n",
|
52 |
+
"\n"
|
53 |
+
]
|
54 |
+
}
|
55 |
+
],
|
56 |
+
"source": [
|
57 |
+
"key = \"2fd114e7967a4da58854be231fd766a3\"\n",
|
58 |
+
"endpoint = \"https://entity-collection.cognitiveservices.azure.com/\"\n",
|
59 |
+
"# endpoint = \"https://eastus.api.cognitive.microsoft.com/\"\n",
|
60 |
+
"\n",
|
61 |
+
"from azure.ai.textanalytics import TextAnalyticsClient\n",
|
62 |
+
"from azure.core.credentials import AzureKeyCredential\n",
|
63 |
+
"\n",
|
64 |
+
"# Authenticate the client using your key and endpoint \n",
|
65 |
+
"def authenticate_client():\n",
|
66 |
+
" ta_credential = AzureKeyCredential(key)\n",
|
67 |
+
" text_analytics_client = TextAnalyticsClient(\n",
|
68 |
+
" endpoint=endpoint, \n",
|
69 |
+
" credential=ta_credential)\n",
|
70 |
+
" return text_analytics_client\n",
|
71 |
+
"\n",
|
72 |
+
"client = authenticate_client()\n",
|
73 |
+
"\n",
|
74 |
+
"# Example function for recognizing entities from text\n",
|
75 |
+
"def entity_recognition_example(client):\n",
|
76 |
+
"\n",
|
77 |
+
" try:\n",
|
78 |
+
" documents = [\"razor kraken headphones\"]\n",
|
79 |
+
" result = client.recognize_entities(documents = documents)[0]\n",
|
80 |
+
"\n",
|
81 |
+
" print(\"Named Entities:\\n\")\n",
|
82 |
+
" for entity in result.entities:\n",
|
83 |
+
" print(\"\\tText: \\t\", entity.text, \"\\tCategory: \\t\", entity.category, \"\\tSubCategory: \\t\", entity.subcategory,\n",
|
84 |
+
" \"\\n\\tConfidence Score: \\t\", round(entity.confidence_score, 2), \"\\tLength: \\t\", entity.length, \"\\tOffset: \\t\", entity.offset, \"\\n\")\n",
|
85 |
+
"\n",
|
86 |
+
" except Exception as err:\n",
|
87 |
+
" print(\"Encountered exception. {}\".format(err))\n",
|
88 |
+
"entity_recognition_example(client)"
|
89 |
+
]
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"cell_type": "code",
|
93 |
+
"execution_count": 25,
|
94 |
+
"metadata": {},
|
95 |
+
"outputs": [],
|
96 |
+
"source": [
|
97 |
+
"def replace_original_text(original_text:str):\n",
|
98 |
+
" try:\n",
|
99 |
+
" result = client.recognize_entities(documents = [original_text])[0]\n",
|
100 |
+
"\n",
|
101 |
+
" for entity in result.entities:\n",
|
102 |
+
" # print(\"\\tText: \\t\", entity.text, \"\\tCategory: \\t\", entity.category, \"\\tSubCategory: \\t\", entity.subcategory,\n",
|
103 |
+
" # \"\\n\\tConfidence Score: \\t\", round(entity.confidence_score, 2), \"\\tLength: \\t\", entity.length, \"\\tOffset: \\t\", entity.offset, \"\\n\")\n",
|
104 |
+
" original_text= original_text.replace(\n",
|
105 |
+
" entity.text, \n",
|
106 |
+
" entity.text+ f' ({entity.category}) '\n",
|
107 |
+
" )\n",
|
108 |
+
" return original_text\n",
|
109 |
+
"\n",
|
110 |
+
" except Exception as err:\n",
|
111 |
+
" \n",
|
112 |
+
" print(\"Encountered exception. {}\".format(err))\n",
|
113 |
+
" return original_text\n",
|
114 |
+
" "
|
115 |
+
]
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"cell_type": "code",
|
119 |
+
"execution_count": 26,
|
120 |
+
"metadata": {},
|
121 |
+
"outputs": [
|
122 |
+
{
|
123 |
+
"data": {
|
124 |
+
"text/plain": [
|
125 |
+
"'best cat ear headphones (Product) '"
|
126 |
+
]
|
127 |
+
},
|
128 |
+
"execution_count": 26,
|
129 |
+
"metadata": {},
|
130 |
+
"output_type": "execute_result"
|
131 |
+
}
|
132 |
+
],
|
133 |
+
"source": [
|
134 |
+
"replace_original_text(original_text=\"best cat ear headphones\")"
|
135 |
+
]
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"cell_type": "code",
|
139 |
+
"execution_count": 29,
|
140 |
+
"metadata": {},
|
141 |
+
"outputs": [
|
142 |
+
{
|
143 |
+
"data": {
|
144 |
+
"text/plain": [
|
145 |
+
"'Barack Obama (Person) in the White House (Location) '"
|
146 |
+
]
|
147 |
+
},
|
148 |
+
"execution_count": 29,
|
149 |
+
"metadata": {},
|
150 |
+
"output_type": "execute_result"
|
151 |
+
}
|
152 |
+
],
|
153 |
+
"source": [
|
154 |
+
"replace_original_text(\n",
|
155 |
+
" 'Barack Obama in the White House'\n",
|
156 |
+
")"
|
157 |
+
]
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"cell_type": "code",
|
161 |
+
"execution_count": null,
|
162 |
+
"metadata": {},
|
163 |
+
"outputs": [],
|
164 |
+
"source": []
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"cell_type": "code",
|
168 |
+
"execution_count": null,
|
169 |
+
"metadata": {},
|
170 |
+
"outputs": [],
|
171 |
+
"source": []
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"cell_type": "code",
|
175 |
+
"execution_count": null,
|
176 |
+
"metadata": {},
|
177 |
+
"outputs": [],
|
178 |
+
"source": []
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"cell_type": "code",
|
182 |
+
"execution_count": 1,
|
183 |
+
"metadata": {},
|
184 |
+
"outputs": [],
|
185 |
+
"source": [
|
186 |
+
"from azure.core.credentials import AzureKeyCredential\n",
|
187 |
+
"from azure.ai.textanalytics import TextAnalyticsClient\n",
|
188 |
+
"\n",
|
189 |
+
"credential = AzureKeyCredential(\"c8b849064d6649ea87cbd8fbbd39f708\")\n",
|
190 |
+
"text_analytics_client = TextAnalyticsClient(endpoint=\"https://entity-retrieval.cognitiveservices.azure.com/\", credential=credential)\n",
|
191 |
+
"# text_analytics_client = TextAnalyticsClient(endpoint=\"https://ktitji5.eastus.cognitiveservices.azure.com/\", credential=credential)"
|
192 |
+
]
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"cell_type": "code",
|
196 |
+
"execution_count": 2,
|
197 |
+
"metadata": {},
|
198 |
+
"outputs": [],
|
199 |
+
"source": [
|
200 |
+
"# Get the endpoint for the Language service resource\n",
|
201 |
+
"# ! az cognitiveservices account show --name \"resource-name\" --resource-group \"resource-group-name\" --query \"properties.endpoint\""
|
202 |
+
]
|
203 |
+
},
|
204 |
+
{
|
205 |
+
"cell_type": "code",
|
206 |
+
"execution_count": 3,
|
207 |
+
"metadata": {},
|
208 |
+
"outputs": [],
|
209 |
+
"source": [
|
210 |
+
"documents = [\n",
|
211 |
+
" {\"id\": \"1\", \"language\": \"en\", \"text\": \"I hated the movie. It was so slow!\"},\n",
|
212 |
+
" {\"id\": \"2\", \"language\": \"en\", \"text\": \"The movie made it into my top ten favorites. What a great movie!\"},\n",
|
213 |
+
"]"
|
214 |
+
]
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"cell_type": "code",
|
218 |
+
"execution_count": 4,
|
219 |
+
"metadata": {},
|
220 |
+
"outputs": [
|
221 |
+
{
|
222 |
+
"ename": "ClientAuthenticationError",
|
223 |
+
"evalue": "(401) Access denied due to invalid subscription key or wrong API endpoint. Make sure to provide a valid key for an active subscription and use a correct regional API endpoint for your resource.\nCode: 401\nMessage: Access denied due to invalid subscription key or wrong API endpoint. Make sure to provide a valid key for an active subscription and use a correct regional API endpoint for your resource.",
|
224 |
+
"output_type": "error",
|
225 |
+
"traceback": [
|
226 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
227 |
+
"\u001b[0;31mClientAuthenticationError\u001b[0m Traceback (most recent call last)",
|
228 |
+
"File \u001b[0;32m~/SentenceStructureComparision/venv/lib/python3.10/site-packages/azure/ai/textanalytics/_text_analytics_client.py:991\u001b[0m, in \u001b[0;36mTextAnalyticsClient.analyze_sentiment\u001b[0;34m(self, documents, **kwargs)\u001b[0m\n\u001b[1;32m 988\u001b[0m models \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_client\u001b[39m.\u001b[39mmodels(api_version\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_api_version)\n\u001b[1;32m 989\u001b[0m \u001b[39mreturn\u001b[39;00m cast(\n\u001b[1;32m 990\u001b[0m List[Union[AnalyzeSentimentResult, DocumentError]],\n\u001b[0;32m--> 991\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_client\u001b[39m.\u001b[39;49manalyze_text(\n\u001b[1;32m 992\u001b[0m body\u001b[39m=\u001b[39;49mmodels\u001b[39m.\u001b[39;49mAnalyzeTextSentimentAnalysisInput(\n\u001b[1;32m 993\u001b[0m analysis_input\u001b[39m=\u001b[39;49m{\u001b[39m\"\u001b[39;49m\u001b[39mdocuments\u001b[39;49m\u001b[39m\"\u001b[39;49m: docs},\n\u001b[1;32m 994\u001b[0m parameters\u001b[39m=\u001b[39;49mmodels\u001b[39m.\u001b[39;49mSentimentAnalysisTaskParameters(\n\u001b[1;32m 995\u001b[0m logging_opt_out\u001b[39m=\u001b[39;49mdisable_service_logs,\n\u001b[1;32m 996\u001b[0m model_version\u001b[39m=\u001b[39;49mmodel_version,\n\u001b[1;32m 997\u001b[0m string_index_type\u001b[39m=\u001b[39;49mstring_index_type_compatibility(string_index_type),\n\u001b[1;32m 998\u001b[0m opinion_mining\u001b[39m=\u001b[39;49mshow_opinion_mining,\n\u001b[1;32m 999\u001b[0m )\n\u001b[1;32m 1000\u001b[0m ),\n\u001b[1;32m 1001\u001b[0m show_stats\u001b[39m=\u001b[39;49mshow_stats,\n\u001b[1;32m 1002\u001b[0m \u001b[39mcls\u001b[39;49m\u001b[39m=\u001b[39;49mkwargs\u001b[39m.\u001b[39;49mpop(\u001b[39m\"\u001b[39;49m\u001b[39mcls\u001b[39;49m\u001b[39m\"\u001b[39;49m, sentiment_result),\n\u001b[1;32m 1003\u001b[0m \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs\n\u001b[1;32m 1004\u001b[0m )\n\u001b[1;32m 1005\u001b[0m )\n\u001b[1;32m 1007\u001b[0m \u001b[39m# api_versions 3.0, 3.1\u001b[39;00m\n",
|
229 |
+
"File \u001b[0;32m~/SentenceStructureComparision/venv/lib/python3.10/site-packages/azure/ai/textanalytics/_generated/_operations_mixin.py:109\u001b[0m, in \u001b[0;36mTextAnalyticsClientOperationsMixin.analyze_text\u001b[0;34m(self, body, show_stats, **kwargs)\u001b[0m\n\u001b[1;32m 108\u001b[0m mixin_instance\u001b[39m.\u001b[39m_deserialize \u001b[39m=\u001b[39m Deserializer(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_models_dict(api_version))\n\u001b[0;32m--> 109\u001b[0m \u001b[39mreturn\u001b[39;00m mixin_instance\u001b[39m.\u001b[39;49manalyze_text(body, show_stats, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n",
|
230 |
+
"File \u001b[0;32m~/SentenceStructureComparision/venv/lib/python3.10/site-packages/azure/core/tracing/decorator.py:78\u001b[0m, in \u001b[0;36mdistributed_trace.<locals>.decorator.<locals>.wrapper_use_tracer\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 77\u001b[0m \u001b[39mif\u001b[39;00m span_impl_type \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m---> 78\u001b[0m \u001b[39mreturn\u001b[39;00m func(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 80\u001b[0m \u001b[39m# Merge span is parameter is set, but only if no explicit parent are passed\u001b[39;00m\n",
|
231 |
+
"File \u001b[0;32m~/SentenceStructureComparision/venv/lib/python3.10/site-packages/azure/ai/textanalytics/_generated/v2022_05_01/operations/_text_analytics_client_operations.py:299\u001b[0m, in \u001b[0;36mTextAnalyticsClientOperationsMixin.analyze_text\u001b[0;34m(self, body, show_stats, **kwargs)\u001b[0m\n\u001b[1;32m 298\u001b[0m \u001b[39mif\u001b[39;00m response\u001b[39m.\u001b[39mstatus_code \u001b[39mnot\u001b[39;00m \u001b[39min\u001b[39;00m [\u001b[39m200\u001b[39m]:\n\u001b[0;32m--> 299\u001b[0m map_error(status_code\u001b[39m=\u001b[39;49mresponse\u001b[39m.\u001b[39;49mstatus_code, response\u001b[39m=\u001b[39;49mresponse, error_map\u001b[39m=\u001b[39;49merror_map)\n\u001b[1;32m 300\u001b[0m error \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_deserialize\u001b[39m.\u001b[39mfailsafe_deserialize(_models\u001b[39m.\u001b[39mErrorResponse, pipeline_response)\n",
|
232 |
+
"File \u001b[0;32m~/SentenceStructureComparision/venv/lib/python3.10/site-packages/azure/core/exceptions.py:165\u001b[0m, in \u001b[0;36mmap_error\u001b[0;34m(status_code, response, error_map)\u001b[0m\n\u001b[1;32m 164\u001b[0m error \u001b[39m=\u001b[39m error_type(response\u001b[39m=\u001b[39mresponse)\n\u001b[0;32m--> 165\u001b[0m \u001b[39mraise\u001b[39;00m error\n",
|
233 |
+
"\u001b[0;31mClientAuthenticationError\u001b[0m: (401) Access denied due to invalid subscription key or wrong API endpoint. Make sure to provide a valid key for an active subscription and use a correct regional API endpoint for your resource.\nCode: 401\nMessage: Access denied due to invalid subscription key or wrong API endpoint. Make sure to provide a valid key for an active subscription and use a correct regional API endpoint for your resource.",
|
234 |
+
"\nThe above exception was the direct cause of the following exception:\n",
|
235 |
+
"\u001b[0;31mClientAuthenticationError\u001b[0m Traceback (most recent call last)",
|
236 |
+
"\u001b[1;32m/home/ubuntu/SentenceStructureComparision/research/12_text_analytics_using_azure.ipynb Cell 12\u001b[0m line \u001b[0;36m1\n\u001b[0;32m----> <a href='vscode-notebook-cell://ssh-remote%2B7b22686f73744e616d65223a22456d62656464696e6773227d/home/ubuntu/SentenceStructureComparision/research/12_text_analytics_using_azure.ipynb#W4sdnNjb2RlLXJlbW90ZQ%3D%3D?line=0'>1</a>\u001b[0m response \u001b[39m=\u001b[39m text_analytics_client\u001b[39m.\u001b[39;49manalyze_sentiment(documents)\n\u001b[1;32m <a href='vscode-notebook-cell://ssh-remote%2B7b22686f73744e616d65223a22456d62656464696e6773227d/home/ubuntu/SentenceStructureComparision/research/12_text_analytics_using_azure.ipynb#W4sdnNjb2RlLXJlbW90ZQ%3D%3D?line=1'>2</a>\u001b[0m successful_responses \u001b[39m=\u001b[39m [doc \u001b[39mfor\u001b[39;00m doc \u001b[39min\u001b[39;00m response \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m doc\u001b[39m.\u001b[39mis_error]\n",
|
237 |
+
"File \u001b[0;32m~/SentenceStructureComparision/venv/lib/python3.10/site-packages/azure/core/tracing/decorator.py:78\u001b[0m, in \u001b[0;36mdistributed_trace.<locals>.decorator.<locals>.wrapper_use_tracer\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 76\u001b[0m span_impl_type \u001b[39m=\u001b[39m settings\u001b[39m.\u001b[39mtracing_implementation()\n\u001b[1;32m 77\u001b[0m \u001b[39mif\u001b[39;00m span_impl_type \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m---> 78\u001b[0m \u001b[39mreturn\u001b[39;00m func(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 80\u001b[0m \u001b[39m# Merge span is parameter is set, but only if no explicit parent are passed\u001b[39;00m\n\u001b[1;32m 81\u001b[0m \u001b[39mif\u001b[39;00m merge_span \u001b[39mand\u001b[39;00m \u001b[39mnot\u001b[39;00m passed_in_parent:\n",
|
238 |
+
"File \u001b[0;32m~/SentenceStructureComparision/venv/lib/python3.10/site-packages/azure/ai/textanalytics/_validate.py:74\u001b[0m, in \u001b[0;36mvalidate_multiapi_args.<locals>.decorator.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 72\u001b[0m \u001b[39m# the latest version is selected, we assume all features supported\u001b[39;00m\n\u001b[1;32m 73\u001b[0m \u001b[39mif\u001b[39;00m selected_api_version \u001b[39m==\u001b[39m VERSIONS_SUPPORTED[\u001b[39m-\u001b[39m\u001b[39m1\u001b[39m]:\n\u001b[0;32m---> 74\u001b[0m \u001b[39mreturn\u001b[39;00m func(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 76\u001b[0m \u001b[39mif\u001b[39;00m version_method_added \u001b[39mand\u001b[39;00m version_method_added \u001b[39m!=\u001b[39m selected_api_version \u001b[39mand\u001b[39;00m \\\n\u001b[1;32m 77\u001b[0m VERSIONS_SUPPORTED\u001b[39m.\u001b[39mindex(selected_api_version) \u001b[39m<\u001b[39m VERSIONS_SUPPORTED\u001b[39m.\u001b[39mindex(version_method_added):\n\u001b[1;32m 78\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[1;32m 79\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m'\u001b[39m\u001b[39m{\u001b[39;00mclient\u001b[39m.\u001b[39m\u001b[39m__class__\u001b[39m\u001b[39m.\u001b[39m\u001b[39m__name__\u001b[39m\u001b[39m}\u001b[39;00m\u001b[39m.\u001b[39m\u001b[39m{\u001b[39;00mfunc\u001b[39m.\u001b[39m\u001b[39m__name__\u001b[39m\u001b[39m}\u001b[39;00m\u001b[39m'\u001b[39m\u001b[39m is not available in API version \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 80\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m{\u001b[39;00mselected_api_version\u001b[39m}\u001b[39;00m\u001b[39m. Use service API version \u001b[39m\u001b[39m{\u001b[39;00mversion_method_added\u001b[39m}\u001b[39;00m\u001b[39m or newer.\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 81\u001b[0m )\n",
|
239 |
+
"File \u001b[0;32m~/SentenceStructureComparision/venv/lib/python3.10/site-packages/azure/ai/textanalytics/_text_analytics_client.py:1022\u001b[0m, in \u001b[0;36mTextAnalyticsClient.analyze_sentiment\u001b[0;34m(self, documents, **kwargs)\u001b[0m\n\u001b[1;32m 1008\u001b[0m \u001b[39mreturn\u001b[39;00m cast(\n\u001b[1;32m 1009\u001b[0m List[Union[AnalyzeSentimentResult, DocumentError]],\n\u001b[1;32m 1010\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_client\u001b[39m.\u001b[39msentiment(\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1019\u001b[0m )\n\u001b[1;32m 1020\u001b[0m )\n\u001b[1;32m 1021\u001b[0m \u001b[39mexcept\u001b[39;00m HttpResponseError \u001b[39mas\u001b[39;00m error:\n\u001b[0;32m-> 1022\u001b[0m \u001b[39mreturn\u001b[39;00m process_http_response_error(error)\n",
|
240 |
+
"File \u001b[0;32m~/SentenceStructureComparision/venv/lib/python3.10/site-packages/azure/ai/textanalytics/_response_handlers.py:60\u001b[0m, in \u001b[0;36mprocess_http_response_error\u001b[0;34m(error)\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[39mif\u001b[39;00m error\u001b[39m.\u001b[39mstatus_code \u001b[39m==\u001b[39m \u001b[39m404\u001b[39m:\n\u001b[1;32m 59\u001b[0m raise_error \u001b[39m=\u001b[39m ResourceNotFoundError\n\u001b[0;32m---> 60\u001b[0m \u001b[39mraise\u001b[39;00m raise_error(response\u001b[39m=\u001b[39merror\u001b[39m.\u001b[39mresponse, error_format\u001b[39m=\u001b[39mCSODataV4Format) \u001b[39mfrom\u001b[39;00m \u001b[39merror\u001b[39;00m\n",
|
241 |
+
"\u001b[0;31mClientAuthenticationError\u001b[0m: (401) Access denied due to invalid subscription key or wrong API endpoint. Make sure to provide a valid key for an active subscription and use a correct regional API endpoint for your resource.\nCode: 401\nMessage: Access denied due to invalid subscription key or wrong API endpoint. Make sure to provide a valid key for an active subscription and use a correct regional API endpoint for your resource."
|
242 |
+
]
|
243 |
+
}
|
244 |
+
],
|
245 |
+
"source": [
|
246 |
+
"response = text_analytics_client.analyze_sentiment(documents)\n",
|
247 |
+
"successful_responses = [doc for doc in response if not doc.is_error]"
|
248 |
+
]
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"cell_type": "code",
|
252 |
+
"execution_count": null,
|
253 |
+
"metadata": {},
|
254 |
+
"outputs": [],
|
255 |
+
"source": []
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"cell_type": "code",
|
259 |
+
"execution_count": null,
|
260 |
+
"metadata": {},
|
261 |
+
"outputs": [],
|
262 |
+
"source": []
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"cell_type": "code",
|
266 |
+
"execution_count": 4,
|
267 |
+
"metadata": {},
|
268 |
+
"outputs": [
|
269 |
+
{
|
270 |
+
"name": "stdout",
|
271 |
+
"output_type": "stream",
|
272 |
+
"text": [
|
273 |
+
"In this sample, we want to find the articles that mention Microsoft to read.\n"
|
274 |
+
]
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"ename": "ClientAuthenticationError",
|
278 |
+
"evalue": "(401) Access denied due to invalid subscription key or wrong API endpoint. Make sure to provide a valid key for an active subscription and use a correct regional API endpoint for your resource.\nCode: 401\nMessage: Access denied due to invalid subscription key or wrong API endpoint. Make sure to provide a valid key for an active subscription and use a correct regional API endpoint for your resource.",
|
279 |
+
"output_type": "error",
|
280 |
+
"traceback": [
|
281 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
282 |
+
"\u001b[0;31mClientAuthenticationError\u001b[0m Traceback (most recent call last)",
|
283 |
+
"File \u001b[0;32m~/SentenceStructureComparision/venv/lib/python3.10/site-packages/azure/ai/textanalytics/_text_analytics_client.py:900\u001b[0m, in \u001b[0;36mTextAnalyticsClient.extract_key_phrases\u001b[0;34m(self, documents, disable_service_logs, language, model_version, show_stats, **kwargs)\u001b[0m\n\u001b[1;32m 897\u001b[0m models \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_client\u001b[39m.\u001b[39mmodels(api_version\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_api_version)\n\u001b[1;32m 898\u001b[0m \u001b[39mreturn\u001b[39;00m cast(\n\u001b[1;32m 899\u001b[0m List[Union[ExtractKeyPhrasesResult, DocumentError]],\n\u001b[0;32m--> 900\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_client\u001b[39m.\u001b[39;49manalyze_text(\n\u001b[1;32m 901\u001b[0m body\u001b[39m=\u001b[39;49mmodels\u001b[39m.\u001b[39;49mAnalyzeTextKeyPhraseExtractionInput(\n\u001b[1;32m 902\u001b[0m analysis_input\u001b[39m=\u001b[39;49m{\u001b[39m\"\u001b[39;49m\u001b[39mdocuments\u001b[39;49m\u001b[39m\"\u001b[39;49m: docs},\n\u001b[1;32m 903\u001b[0m parameters\u001b[39m=\u001b[39;49mmodels\u001b[39m.\u001b[39;49mKeyPhraseTaskParameters(\n\u001b[1;32m 904\u001b[0m logging_opt_out\u001b[39m=\u001b[39;49mdisable_service_logs,\n\u001b[1;32m 905\u001b[0m model_version\u001b[39m=\u001b[39;49mmodel_version,\n\u001b[1;32m 906\u001b[0m )\n\u001b[1;32m 907\u001b[0m ),\n\u001b[1;32m 908\u001b[0m show_stats\u001b[39m=\u001b[39;49mshow_stats,\n\u001b[1;32m 909\u001b[0m \u001b[39mcls\u001b[39;49m\u001b[39m=\u001b[39;49mkwargs\u001b[39m.\u001b[39;49mpop(\u001b[39m\"\u001b[39;49m\u001b[39mcls\u001b[39;49m\u001b[39m\"\u001b[39;49m, key_phrases_result),\n\u001b[1;32m 910\u001b[0m \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs\n\u001b[1;32m 911\u001b[0m )\n\u001b[1;32m 912\u001b[0m )\n\u001b[1;32m 914\u001b[0m \u001b[39m# api_versions 3.0, 3.1\u001b[39;00m\n",
|
284 |
+
"File \u001b[0;32m~/SentenceStructureComparision/venv/lib/python3.10/site-packages/azure/ai/textanalytics/_generated/_operations_mixin.py:111\u001b[0m, in \u001b[0;36mTextAnalyticsClientOperationsMixin.analyze_text\u001b[0;34m(self, body, show_stats, **kwargs)\u001b[0m\n\u001b[1;32m 110\u001b[0m mixin_instance\u001b[39m.\u001b[39m_deserialize \u001b[39m=\u001b[39m Deserializer(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_models_dict(api_version))\n\u001b[0;32m--> 111\u001b[0m \u001b[39mreturn\u001b[39;00m mixin_instance\u001b[39m.\u001b[39;49manalyze_text(body, show_stats, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n",
|
285 |
+
"File \u001b[0;32m~/SentenceStructureComparision/venv/lib/python3.10/site-packages/azure/core/tracing/decorator.py:78\u001b[0m, in \u001b[0;36mdistributed_trace.<locals>.decorator.<locals>.wrapper_use_tracer\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 77\u001b[0m \u001b[39mif\u001b[39;00m span_impl_type \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m---> 78\u001b[0m \u001b[39mreturn\u001b[39;00m func(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 80\u001b[0m \u001b[39m# Merge span is parameter is set, but only if no explicit parent are passed\u001b[39;00m\n",
|
286 |
+
"File \u001b[0;32m~/SentenceStructureComparision/venv/lib/python3.10/site-packages/azure/ai/textanalytics/_generated/v2023_04_01/operations/_text_analytics_client_operations.py:299\u001b[0m, in \u001b[0;36mTextAnalyticsClientOperationsMixin.analyze_text\u001b[0;34m(self, body, show_stats, **kwargs)\u001b[0m\n\u001b[1;32m 298\u001b[0m \u001b[39mif\u001b[39;00m response\u001b[39m.\u001b[39mstatus_code \u001b[39mnot\u001b[39;00m \u001b[39min\u001b[39;00m [\u001b[39m200\u001b[39m]:\n\u001b[0;32m--> 299\u001b[0m map_error(status_code\u001b[39m=\u001b[39;49mresponse\u001b[39m.\u001b[39;49mstatus_code, response\u001b[39m=\u001b[39;49mresponse, error_map\u001b[39m=\u001b[39;49merror_map)\n\u001b[1;32m 300\u001b[0m error \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_deserialize\u001b[39m.\u001b[39mfailsafe_deserialize(_models\u001b[39m.\u001b[39mErrorResponse, pipeline_response)\n",
|
287 |
+
"File \u001b[0;32m~/SentenceStructureComparision/venv/lib/python3.10/site-packages/azure/core/exceptions.py:165\u001b[0m, in \u001b[0;36mmap_error\u001b[0;34m(status_code, response, error_map)\u001b[0m\n\u001b[1;32m 164\u001b[0m error \u001b[39m=\u001b[39m error_type(response\u001b[39m=\u001b[39mresponse)\n\u001b[0;32m--> 165\u001b[0m \u001b[39mraise\u001b[39;00m error\n",
|
288 |
+
"\u001b[0;31mClientAuthenticationError\u001b[0m: (401) Access denied due to invalid subscription key or wrong API endpoint. Make sure to provide a valid key for an active subscription and use a correct regional API endpoint for your resource.\nCode: 401\nMessage: Access denied due to invalid subscription key or wrong API endpoint. Make sure to provide a valid key for an active subscription and use a correct regional API endpoint for your resource.",
|
289 |
+
"\nThe above exception was the direct cause of the following exception:\n",
|
290 |
+
"\u001b[0;31mClientAuthenticationError\u001b[0m Traceback (most recent call last)",
|
291 |
+
"\u001b[1;32m/home/ubuntu/SentenceStructureComparision/research/12_text_analytics_using_azure.ipynb Cell 8\u001b[0m line \u001b[0;36m7\n\u001b[1;32m <a href='vscode-notebook-cell://ssh-remote%2B7b22686f73744e616d65223a22456d62656464696e6773227d/home/ubuntu/SentenceStructureComparision/research/12_text_analytics_using_azure.ipynb#W0sdnNjb2RlLXJlbW90ZQ%3D%3D?line=65'>66</a>\u001b[0m \u001b[39mprint\u001b[39m(\n\u001b[1;32m <a href='vscode-notebook-cell://ssh-remote%2B7b22686f73744e616d65223a22456d62656464696e6773227d/home/ubuntu/SentenceStructureComparision/research/12_text_analytics_using_azure.ipynb#W0sdnNjb2RlLXJlbW90ZQ%3D%3D?line=66'>67</a>\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mThe articles that mention Microsoft are articles number: \u001b[39m\u001b[39m{}\u001b[39;00m\u001b[39m. Those are the ones I\u001b[39m\u001b[39m'\u001b[39m\u001b[39mm interested in reading.\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m.\u001b[39mformat(\n\u001b[1;32m <a href='vscode-notebook-cell://ssh-remote%2B7b22686f73744e616d65223a22456d62656464696e6773227d/home/ubuntu/SentenceStructureComparision/research/12_text_analytics_using_azure.ipynb#W0sdnNjb2RlLXJlbW90ZQ%3D%3D?line=67'>68</a>\u001b[0m \u001b[39m\"\u001b[39m\u001b[39m, \u001b[39m\u001b[39m\"\u001b[39m\u001b[39m.\u001b[39mjoin(articles_that_mention_microsoft)\n\u001b[1;32m <a href='vscode-notebook-cell://ssh-remote%2B7b22686f73744e616d65223a22456d62656464696e6773227d/home/ubuntu/SentenceStructureComparision/research/12_text_analytics_using_azure.ipynb#W0sdnNjb2RlLXJlbW90ZQ%3D%3D?line=68'>69</a>\u001b[0m )\n\u001b[1;32m <a href='vscode-notebook-cell://ssh-remote%2B7b22686f73744e616d65223a22456d62656464696e6773227d/home/ubuntu/SentenceStructureComparision/research/12_text_analytics_using_azure.ipynb#W0sdnNjb2RlLXJlbW90ZQ%3D%3D?line=69'>70</a>\u001b[0m )\n\u001b[1;32m <a href='vscode-notebook-cell://ssh-remote%2B7b22686f73744e616d65223a22456d62656464696e6773227d/home/ubuntu/SentenceStructureComparision/research/12_text_analytics_using_azure.ipynb#W0sdnNjb2RlLXJlbW90ZQ%3D%3D?line=72'>73</a>\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39m__name__\u001b[39m \u001b[39m==\u001b[39m \u001b[39m'\u001b[39m\u001b[39m__main__\u001b[39m\u001b[39m'\u001b[39m:\n\u001b[0;32m---> <a href='vscode-notebook-cell://ssh-remote%2B7b22686f73744e616d65223a22456d62656464696e6773227d/home/ubuntu/SentenceStructureComparision/research/12_text_analytics_using_azure.ipynb#W0sdnNjb2RlLXJlbW90ZQ%3D%3D?line=73'>74</a>\u001b[0m sample_extract_key_phrases()\n",
|
292 |
+
"\u001b[1;32m/home/ubuntu/SentenceStructureComparision/research/12_text_analytics_using_azure.ipynb Cell 8\u001b[0m line \u001b[0;36m5\n\u001b[1;32m <a href='vscode-notebook-cell://ssh-remote%2B7b22686f73744e616d65223a22456d62656464696e6773227d/home/ubuntu/SentenceStructureComparision/research/12_text_analytics_using_azure.ipynb#W0sdnNjb2RlLXJlbW90ZQ%3D%3D?line=37'>38</a>\u001b[0m text_analytics_client \u001b[39m=\u001b[39m TextAnalyticsClient(endpoint\u001b[39m=\u001b[39mendpoint, credential\u001b[39m=\u001b[39mAzureKeyCredential(key))\n\u001b[1;32m <a href='vscode-notebook-cell://ssh-remote%2B7b22686f73744e616d65223a22456d62656464696e6773227d/home/ubuntu/SentenceStructureComparision/research/12_text_analytics_using_azure.ipynb#W0sdnNjb2RlLXJlbW90ZQ%3D%3D?line=38'>39</a>\u001b[0m articles \u001b[39m=\u001b[39m [\n\u001b[1;32m <a href='vscode-notebook-cell://ssh-remote%2B7b22686f73744e616d65223a22456d62656464696e6773227d/home/ubuntu/SentenceStructureComparision/research/12_text_analytics_using_azure.ipynb#W0sdnNjb2RlLXJlbW90ZQ%3D%3D?line=39'>40</a>\u001b[0m \u001b[39m \u001b[39m\u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m <a href='vscode-notebook-cell://ssh-remote%2B7b22686f73744e616d65223a22456d62656464696e6773227d/home/ubuntu/SentenceStructureComparision/research/12_text_analytics_using_azure.ipynb#W0sdnNjb2RlLXJlbW90ZQ%3D%3D?line=40'>41</a>\u001b[0m \u001b[39m Washington, D.C. Autumn in DC is a uniquely beautiful season. The leaves fall from the trees\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m <a href='vscode-notebook-cell://ssh-remote%2B7b22686f73744e616d65223a22456d62656464696e6773227d/home/ubuntu/SentenceStructureComparision/research/12_text_analytics_using_azure.ipynb#W0sdnNjb2RlLXJlbW90ZQ%3D%3D?line=51'>52</a>\u001b[0m \u001b[39m \"\"\"\u001b[39;00m\n\u001b[1;32m <a href='vscode-notebook-cell://ssh-remote%2B7b22686f73744e616d65223a22456d62656464696e6773227d/home/ubuntu/SentenceStructureComparision/research/12_text_analytics_using_azure.ipynb#W0sdnNjb2RlLXJlbW90ZQ%3D%3D?line=52'>53</a>\u001b[0m ]\n\u001b[0;32m---> <a href='vscode-notebook-cell://ssh-remote%2B7b22686f73744e616d65223a22456d62656464696e6773227d/home/ubuntu/SentenceStructureComparision/research/12_text_analytics_using_azure.ipynb#W0sdnNjb2RlLXJlbW90ZQ%3D%3D?line=54'>55</a>\u001b[0m result \u001b[39m=\u001b[39m text_analytics_client\u001b[39m.\u001b[39;49mextract_key_phrases(articles)\n\u001b[1;32m <a href='vscode-notebook-cell://ssh-remote%2B7b22686f73744e616d65223a22456d62656464696e6773227d/home/ubuntu/SentenceStructureComparision/research/12_text_analytics_using_azure.ipynb#W0sdnNjb2RlLXJlbW90ZQ%3D%3D?line=55'>56</a>\u001b[0m \u001b[39mfor\u001b[39;00m idx, doc \u001b[39min\u001b[39;00m \u001b[39menumerate\u001b[39m(result):\n\u001b[1;32m <a href='vscode-notebook-cell://ssh-remote%2B7b22686f73744e616d65223a22456d62656464696e6773227d/home/ubuntu/SentenceStructureComparision/research/12_text_analytics_using_azure.ipynb#W0sdnNjb2RlLXJlbW90ZQ%3D%3D?line=56'>57</a>\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m doc\u001b[39m.\u001b[39mis_error:\n",
|
293 |
+
"File \u001b[0;32m~/SentenceStructureComparision/venv/lib/python3.10/site-packages/azure/core/tracing/decorator.py:78\u001b[0m, in \u001b[0;36mdistributed_trace.<locals>.decorator.<locals>.wrapper_use_tracer\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 76\u001b[0m span_impl_type \u001b[39m=\u001b[39m settings\u001b[39m.\u001b[39mtracing_implementation()\n\u001b[1;32m 77\u001b[0m \u001b[39mif\u001b[39;00m span_impl_type \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m---> 78\u001b[0m \u001b[39mreturn\u001b[39;00m func(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 80\u001b[0m \u001b[39m# Merge span is parameter is set, but only if no explicit parent are passed\u001b[39;00m\n\u001b[1;32m 81\u001b[0m \u001b[39mif\u001b[39;00m merge_span \u001b[39mand\u001b[39;00m \u001b[39mnot\u001b[39;00m passed_in_parent:\n",
|
294 |
+
"File \u001b[0;32m~/SentenceStructureComparision/venv/lib/python3.10/site-packages/azure/ai/textanalytics/_validate.py:79\u001b[0m, in \u001b[0;36mvalidate_multiapi_args.<locals>.decorator.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 77\u001b[0m \u001b[39m# the latest version is selected, we assume all features supported\u001b[39;00m\n\u001b[1;32m 78\u001b[0m \u001b[39mif\u001b[39;00m selected_api_version \u001b[39m==\u001b[39m VERSIONS_SUPPORTED[\u001b[39m-\u001b[39m\u001b[39m1\u001b[39m]:\n\u001b[0;32m---> 79\u001b[0m \u001b[39mreturn\u001b[39;00m func(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 81\u001b[0m \u001b[39mif\u001b[39;00m version_method_added \u001b[39mand\u001b[39;00m version_method_added \u001b[39m!=\u001b[39m selected_api_version \u001b[39mand\u001b[39;00m \\\n\u001b[1;32m 82\u001b[0m VERSIONS_SUPPORTED\u001b[39m.\u001b[39mindex(selected_api_version) \u001b[39m<\u001b[39m VERSIONS_SUPPORTED\u001b[39m.\u001b[39mindex(version_method_added):\n\u001b[1;32m 83\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[1;32m 84\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m'\u001b[39m\u001b[39m{\u001b[39;00mclient\u001b[39m.\u001b[39m\u001b[39m__class__\u001b[39m\u001b[39m.\u001b[39m\u001b[39m__name__\u001b[39m\u001b[39m}\u001b[39;00m\u001b[39m.\u001b[39m\u001b[39m{\u001b[39;00mfunc\u001b[39m.\u001b[39m\u001b[39m__name__\u001b[39m\u001b[39m}\u001b[39;00m\u001b[39m'\u001b[39m\u001b[39m is not available in API version \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 85\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m{\u001b[39;00mselected_api_version\u001b[39m}\u001b[39;00m\u001b[39m. Use service API version \u001b[39m\u001b[39m{\u001b[39;00mversion_method_added\u001b[39m}\u001b[39;00m\u001b[39m or newer.\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 86\u001b[0m )\n",
|
295 |
+
"File \u001b[0;32m~/SentenceStructureComparision/venv/lib/python3.10/site-packages/azure/ai/textanalytics/_text_analytics_client.py:927\u001b[0m, in \u001b[0;36mTextAnalyticsClient.extract_key_phrases\u001b[0;34m(self, documents, disable_service_logs, language, model_version, show_stats, **kwargs)\u001b[0m\n\u001b[1;32m 915\u001b[0m \u001b[39mreturn\u001b[39;00m cast(\n\u001b[1;32m 916\u001b[0m List[Union[ExtractKeyPhrasesResult, DocumentError]],\n\u001b[1;32m 917\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_client\u001b[39m.\u001b[39mkey_phrases(\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 924\u001b[0m )\n\u001b[1;32m 925\u001b[0m )\n\u001b[1;32m 926\u001b[0m \u001b[39mexcept\u001b[39;00m HttpResponseError \u001b[39mas\u001b[39;00m error:\n\u001b[0;32m--> 927\u001b[0m \u001b[39mreturn\u001b[39;00m process_http_response_error(error)\n",
|
296 |
+
"File \u001b[0;32m~/SentenceStructureComparision/venv/lib/python3.10/site-packages/azure/ai/textanalytics/_response_handlers.py:63\u001b[0m, in \u001b[0;36mprocess_http_response_error\u001b[0;34m(error)\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[39mif\u001b[39;00m error\u001b[39m.\u001b[39mstatus_code \u001b[39m==\u001b[39m \u001b[39m404\u001b[39m:\n\u001b[1;32m 62\u001b[0m raise_error \u001b[39m=\u001b[39m ResourceNotFoundError\n\u001b[0;32m---> 63\u001b[0m \u001b[39mraise\u001b[39;00m raise_error(response\u001b[39m=\u001b[39merror\u001b[39m.\u001b[39mresponse, error_format\u001b[39m=\u001b[39mCSODataV4Format) \u001b[39mfrom\u001b[39;00m \u001b[39merror\u001b[39;00m\n",
|
297 |
+
"\u001b[0;31mClientAuthenticationError\u001b[0m: (401) Access denied due to invalid subscription key or wrong API endpoint. Make sure to provide a valid key for an active subscription and use a correct regional API endpoint for your resource.\nCode: 401\nMessage: Access denied due to invalid subscription key or wrong API endpoint. Make sure to provide a valid key for an active subscription and use a correct regional API endpoint for your resource."
|
298 |
+
]
|
299 |
+
}
|
300 |
+
],
|
301 |
+
"source": [
|
302 |
+
"# -------------------------------------------------------------------------\n",
|
303 |
+
"# Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
304 |
+
"# Licensed under the MIT License. See License.txt in the project root for\n",
|
305 |
+
"# license information.\n",
|
306 |
+
"# --------------------------------------------------------------------------\n",
|
307 |
+
"\n",
|
308 |
+
"\"\"\"\n",
|
309 |
+
"FILE: sample_extract_key_phrases.py\n",
|
310 |
+
"\n",
|
311 |
+
"DESCRIPTION:\n",
|
312 |
+
" This sample demonstrates how to extract key talking points from a batch of documents.\n",
|
313 |
+
"\n",
|
314 |
+
" In this sample, we want to go over articles and read the ones that mention Microsoft.\n",
|
315 |
+
" We're going to use the SDK to create a rudimentary search algorithm to find these articles.\n",
|
316 |
+
"\n",
|
317 |
+
"USAGE:\n",
|
318 |
+
" python sample_extract_key_phrases.py\n",
|
319 |
+
"\n",
|
320 |
+
" Set the environment variables with your own values before running the sample:\n",
|
321 |
+
" 1) AZURE_LANGUAGE_ENDPOINT - the endpoint to your Language resource.\n",
|
322 |
+
" 2) AZURE_LANGUAGE_KEY - your Language subscription key\n",
|
323 |
+
"\"\"\"\n",
|
324 |
+
"\n",
|
325 |
+
"\n",
|
326 |
+
"def sample_extract_key_phrases() -> None:\n",
|
327 |
+
" print(\n",
|
328 |
+
" \"In this sample, we want to find the articles that mention Microsoft to read.\"\n",
|
329 |
+
" )\n",
|
330 |
+
" articles_that_mention_microsoft = []\n",
|
331 |
+
" # [START extract_key_phrases]\n",
|
332 |
+
" import os\n",
|
333 |
+
" from azure.core.credentials import AzureKeyCredential\n",
|
334 |
+
" from azure.ai.textanalytics import TextAnalyticsClient\n",
|
335 |
+
"\n",
|
336 |
+
" endpoint = \"https://xouhou-1234.cognitiveservices.azure.com/\"\n",
|
337 |
+
" key = \"d7fcbf17455647adbca355b021334c83\"\n",
|
338 |
+
"\n",
|
339 |
+
" text_analytics_client = TextAnalyticsClient(endpoint=endpoint, credential=AzureKeyCredential(key))\n",
|
340 |
+
" articles = [\n",
|
341 |
+
" \"\"\"\n",
|
342 |
+
" Washington, D.C. Autumn in DC is a uniquely beautiful season. The leaves fall from the trees\n",
|
343 |
+
" in a city chock-full of forests, leaving yellow leaves on the ground and a clearer view of the\n",
|
344 |
+
" blue sky above...\n",
|
345 |
+
" \"\"\",\n",
|
346 |
+
" \"\"\"\n",
|
347 |
+
" Redmond, WA. In the past few days, Microsoft has decided to further postpone the start date of\n",
|
348 |
+
" its United States workers, due to the pandemic that rages with no end in sight...\n",
|
349 |
+
" \"\"\",\n",
|
350 |
+
" \"\"\"\n",
|
351 |
+
" Redmond, WA. Employees at Microsoft can be excited about the new coffee shop that will open on campus\n",
|
352 |
+
" once workers no longer have to work remotely...\n",
|
353 |
+
" \"\"\"\n",
|
354 |
+
" ]\n",
|
355 |
+
"\n",
|
356 |
+
" result = text_analytics_client.extract_key_phrases(articles)\n",
|
357 |
+
" for idx, doc in enumerate(result):\n",
|
358 |
+
" if not doc.is_error:\n",
|
359 |
+
" print(\"Key phrases in article #{}: {}\".format(\n",
|
360 |
+
" idx + 1,\n",
|
361 |
+
" \", \".join(doc.key_phrases)\n",
|
362 |
+
" ))\n",
|
363 |
+
" # [END extract_key_phrases]\n",
|
364 |
+
" if \"Microsoft\" in doc.key_phrases:\n",
|
365 |
+
" articles_that_mention_microsoft.append(str(idx + 1))\n",
|
366 |
+
"\n",
|
367 |
+
" print(\n",
|
368 |
+
" \"The articles that mention Microsoft are articles number: {}. Those are the ones I'm interested in reading.\".format(\n",
|
369 |
+
" \", \".join(articles_that_mention_microsoft)\n",
|
370 |
+
" )\n",
|
371 |
+
" )\n",
|
372 |
+
"\n",
|
373 |
+
"\n",
|
374 |
+
"if __name__ == '__main__':\n",
|
375 |
+
" sample_extract_key_phrases()"
|
376 |
+
]
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"cell_type": "code",
|
380 |
+
"execution_count": null,
|
381 |
+
"metadata": {},
|
382 |
+
"outputs": [],
|
383 |
+
"source": []
|
384 |
+
}
|
385 |
+
],
|
386 |
+
"metadata": {
|
387 |
+
"kernelspec": {
|
388 |
+
"display_name": "venv",
|
389 |
+
"language": "python",
|
390 |
+
"name": "python3"
|
391 |
+
},
|
392 |
+
"language_info": {
|
393 |
+
"codemirror_mode": {
|
394 |
+
"name": "ipython",
|
395 |
+
"version": 3
|
396 |
+
},
|
397 |
+
"file_extension": ".py",
|
398 |
+
"mimetype": "text/x-python",
|
399 |
+
"name": "python",
|
400 |
+
"nbconvert_exporter": "python",
|
401 |
+
"pygments_lexer": "ipython3",
|
402 |
+
"version": "3.10.12"
|
403 |
+
}
|
404 |
+
},
|
405 |
+
"nbformat": 4,
|
406 |
+
"nbformat_minor": 2
|
407 |
+
}
|
research/13_data_categories.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
utils/__pycache__/get_category.cpython-310.pyc
CHANGED
Binary files a/utils/__pycache__/get_category.cpython-310.pyc and b/utils/__pycache__/get_category.cpython-310.pyc differ
|
|
utils/__pycache__/get_intent.cpython-310.pyc
CHANGED
Binary files a/utils/__pycache__/get_intent.cpython-310.pyc and b/utils/__pycache__/get_intent.cpython-310.pyc differ
|
|