iddqd21 commited on
Commit
17cfcde
·
verified ·
1 Parent(s): c94a49d

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,441 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:78879
8
+ - loss:CosineSimilarityLoss
9
+ base_model: intfloat/multilingual-e5-base
10
+ widget:
11
+ - source_sentence: Somatotropin Ab
12
+ sentences:
13
+ - Desethylamiodarone
14
+ - Glucose^7H post XXX challenge
15
+ - Somatotropin Ab
16
+ - source_sentence: Erythrocytes.fetal/1000 erythrocytes
17
+ sentences:
18
+ - levoFLOXacin
19
+ - Pathologist interpretation
20
+ - Pepsinogen I
21
+ - source_sentence: Aggregazione piastrinica.arachidonato indotta
22
+ sentences:
23
+ - Epidermal growth factor
24
+ - Bilirubin.glucuronidated/Bilirubin.total
25
+ - Platelet aggregation.arachidonate induced
26
+ - source_sentence: Parathormoon.intact^5 min na uitsnijding in serum of plasma
27
+ sentences:
28
+ - Fatty acids.very long chain
29
+ - Estradiol^4th specimen post XXX challenge
30
+ - Parathyrin.intact^5M post excision
31
+ - source_sentence: Karboksühemoglobiin/hemoglobiin.üld
32
+ sentences:
33
+ - Ammonia
34
+ - Carboxyhemoglobin/Hemoglobin.total
35
+ - Procainamide+N-acetylprocainamide
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ ---
39
+
40
+ # SentenceTransformer based on intfloat/multilingual-e5-base
41
+
42
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** Sentence Transformer
48
+ - **Base model:** [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) <!-- at revision d13f1b27baf31030b7fd040960d60d909913633f -->
49
+ - **Maximum Sequence Length:** 512 tokens
50
+ - **Output Dimensionality:** 768 dimensions
51
+ - **Similarity Function:** Cosine Similarity
52
+ <!-- - **Training Dataset:** Unknown -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
59
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
60
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
61
+
62
+ ### Full Model Architecture
63
+
64
+ ```
65
+ SentenceTransformer(
66
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
67
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
68
+ (2): Normalize()
69
+ )
70
+ ```
71
+
72
+ ## Usage
73
+
74
+ ### Direct Usage (Sentence Transformers)
75
+
76
+ First install the Sentence Transformers library:
77
+
78
+ ```bash
79
+ pip install -U sentence-transformers
80
+ ```
81
+
82
+ Then you can load this model and run inference.
83
+ ```python
84
+ from sentence_transformers import SentenceTransformer
85
+
86
+ # Download from the 🤗 Hub
87
+ model = SentenceTransformer("iddqd21/fine-tuned-e5-semantic-similarity")
88
+ # Run inference
89
+ sentences = [
90
+ 'Karboksühemoglobiin/hemoglobiin.üld',
91
+ 'Carboxyhemoglobin/Hemoglobin.total',
92
+ 'Procainamide+N-acetylprocainamide',
93
+ ]
94
+ embeddings = model.encode(sentences)
95
+ print(embeddings.shape)
96
+ # [3, 768]
97
+
98
+ # Get the similarity scores for the embeddings
99
+ similarities = model.similarity(embeddings, embeddings)
100
+ print(similarities.shape)
101
+ # [3, 3]
102
+ ```
103
+
104
+ <!--
105
+ ### Direct Usage (Transformers)
106
+
107
+ <details><summary>Click to see the direct usage in Transformers</summary>
108
+
109
+ </details>
110
+ -->
111
+
112
+ <!--
113
+ ### Downstream Usage (Sentence Transformers)
114
+
115
+ You can finetune this model on your own dataset.
116
+
117
+ <details><summary>Click to expand</summary>
118
+
119
+ </details>
120
+ -->
121
+
122
+ <!--
123
+ ### Out-of-Scope Use
124
+
125
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
126
+ -->
127
+
128
+ <!--
129
+ ## Bias, Risks and Limitations
130
+
131
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
132
+ -->
133
+
134
+ <!--
135
+ ### Recommendations
136
+
137
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
138
+ -->
139
+
140
+ ## Training Details
141
+
142
+ ### Training Dataset
143
+
144
+ #### Unnamed Dataset
145
+
146
+
147
+ * Size: 78,879 training samples
148
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
149
+ * Approximate statistics based on the first 1000 samples:
150
+ | | sentence_0 | sentence_1 | label |
151
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
152
+ | type | string | string | float |
153
+ | details | <ul><li>min: 3 tokens</li><li>mean: 11.64 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 10.26 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.59</li><li>max: 1.0</li></ul> |
154
+ * Samples:
155
+ | sentence_0 | sentence_1 | label |
156
+ |:--------------------------------------------------|:-------------------------------------------------|:-----------------|
157
+ | <code>Rakud.CD3+HLA-DR+/100 raku kohta</code> | <code>Cells.CD3+HLA-DR+/100 cells</code> | <code>1.0</code> |
158
+ | <code>Zellen.FMC7/100 Zellen</code> | <code>Cells.FMC7/100 cells</code> | <code>1.0</code> |
159
+ | <code>Apolipoprotéine AI/apolipoprotéine B</code> | <code>Apolipoprotein A-I/Apolipoprotein B</code> | <code>1.0</code> |
160
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
161
+ ```json
162
+ {
163
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
164
+ }
165
+ ```
166
+
167
+ ### Training Hyperparameters
168
+ #### Non-Default Hyperparameters
169
+
170
+ - `per_device_train_batch_size`: 16
171
+ - `per_device_eval_batch_size`: 16
172
+ - `num_train_epochs`: 10
173
+ - `multi_dataset_batch_sampler`: round_robin
174
+
175
+ #### All Hyperparameters
176
+ <details><summary>Click to expand</summary>
177
+
178
+ - `overwrite_output_dir`: False
179
+ - `do_predict`: False
180
+ - `eval_strategy`: no
181
+ - `prediction_loss_only`: True
182
+ - `per_device_train_batch_size`: 16
183
+ - `per_device_eval_batch_size`: 16
184
+ - `per_gpu_train_batch_size`: None
185
+ - `per_gpu_eval_batch_size`: None
186
+ - `gradient_accumulation_steps`: 1
187
+ - `eval_accumulation_steps`: None
188
+ - `torch_empty_cache_steps`: None
189
+ - `learning_rate`: 5e-05
190
+ - `weight_decay`: 0.0
191
+ - `adam_beta1`: 0.9
192
+ - `adam_beta2`: 0.999
193
+ - `adam_epsilon`: 1e-08
194
+ - `max_grad_norm`: 1
195
+ - `num_train_epochs`: 10
196
+ - `max_steps`: -1
197
+ - `lr_scheduler_type`: linear
198
+ - `lr_scheduler_kwargs`: {}
199
+ - `warmup_ratio`: 0.0
200
+ - `warmup_steps`: 0
201
+ - `log_level`: passive
202
+ - `log_level_replica`: warning
203
+ - `log_on_each_node`: True
204
+ - `logging_nan_inf_filter`: True
205
+ - `save_safetensors`: True
206
+ - `save_on_each_node`: False
207
+ - `save_only_model`: False
208
+ - `restore_callback_states_from_checkpoint`: False
209
+ - `no_cuda`: False
210
+ - `use_cpu`: False
211
+ - `use_mps_device`: False
212
+ - `seed`: 42
213
+ - `data_seed`: None
214
+ - `jit_mode_eval`: False
215
+ - `use_ipex`: False
216
+ - `bf16`: False
217
+ - `fp16`: False
218
+ - `fp16_opt_level`: O1
219
+ - `half_precision_backend`: auto
220
+ - `bf16_full_eval`: False
221
+ - `fp16_full_eval`: False
222
+ - `tf32`: None
223
+ - `local_rank`: 0
224
+ - `ddp_backend`: None
225
+ - `tpu_num_cores`: None
226
+ - `tpu_metrics_debug`: False
227
+ - `debug`: []
228
+ - `dataloader_drop_last`: False
229
+ - `dataloader_num_workers`: 0
230
+ - `dataloader_prefetch_factor`: None
231
+ - `past_index`: -1
232
+ - `disable_tqdm`: False
233
+ - `remove_unused_columns`: True
234
+ - `label_names`: None
235
+ - `load_best_model_at_end`: False
236
+ - `ignore_data_skip`: False
237
+ - `fsdp`: []
238
+ - `fsdp_min_num_params`: 0
239
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
240
+ - `fsdp_transformer_layer_cls_to_wrap`: None
241
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
242
+ - `deepspeed`: None
243
+ - `label_smoothing_factor`: 0.0
244
+ - `optim`: adamw_torch
245
+ - `optim_args`: None
246
+ - `adafactor`: False
247
+ - `group_by_length`: False
248
+ - `length_column_name`: length
249
+ - `ddp_find_unused_parameters`: None
250
+ - `ddp_bucket_cap_mb`: None
251
+ - `ddp_broadcast_buffers`: False
252
+ - `dataloader_pin_memory`: True
253
+ - `dataloader_persistent_workers`: False
254
+ - `skip_memory_metrics`: True
255
+ - `use_legacy_prediction_loop`: False
256
+ - `push_to_hub`: False
257
+ - `resume_from_checkpoint`: None
258
+ - `hub_model_id`: None
259
+ - `hub_strategy`: every_save
260
+ - `hub_private_repo`: None
261
+ - `hub_always_push`: False
262
+ - `gradient_checkpointing`: False
263
+ - `gradient_checkpointing_kwargs`: None
264
+ - `include_inputs_for_metrics`: False
265
+ - `include_for_metrics`: []
266
+ - `eval_do_concat_batches`: True
267
+ - `fp16_backend`: auto
268
+ - `push_to_hub_model_id`: None
269
+ - `push_to_hub_organization`: None
270
+ - `mp_parameters`:
271
+ - `auto_find_batch_size`: False
272
+ - `full_determinism`: False
273
+ - `torchdynamo`: None
274
+ - `ray_scope`: last
275
+ - `ddp_timeout`: 1800
276
+ - `torch_compile`: False
277
+ - `torch_compile_backend`: None
278
+ - `torch_compile_mode`: None
279
+ - `dispatch_batches`: None
280
+ - `split_batches`: None
281
+ - `include_tokens_per_second`: False
282
+ - `include_num_input_tokens_seen`: False
283
+ - `neftune_noise_alpha`: None
284
+ - `optim_target_modules`: None
285
+ - `batch_eval_metrics`: False
286
+ - `eval_on_start`: False
287
+ - `use_liger_kernel`: False
288
+ - `eval_use_gather_object`: False
289
+ - `average_tokens_across_devices`: False
290
+ - `prompts`: None
291
+ - `batch_sampler`: batch_sampler
292
+ - `multi_dataset_batch_sampler`: round_robin
293
+
294
+ </details>
295
+
296
+ ### Training Logs
297
+ | Epoch | Step | Training Loss |
298
+ |:------:|:-----:|:-------------:|
299
+ | 0.1014 | 500 | 0.0633 |
300
+ | 0.2028 | 1000 | 0.0332 |
301
+ | 0.3043 | 1500 | 0.0296 |
302
+ | 0.4057 | 2000 | 0.0266 |
303
+ | 0.5071 | 2500 | 0.024 |
304
+ | 0.6085 | 3000 | 0.0239 |
305
+ | 0.7099 | 3500 | 0.0216 |
306
+ | 0.8114 | 4000 | 0.0205 |
307
+ | 0.9128 | 4500 | 0.0187 |
308
+ | 1.0142 | 5000 | 0.0185 |
309
+ | 1.1156 | 5500 | 0.0149 |
310
+ | 1.2170 | 6000 | 0.015 |
311
+ | 1.3185 | 6500 | 0.0142 |
312
+ | 1.4199 | 7000 | 0.0152 |
313
+ | 1.5213 | 7500 | 0.0138 |
314
+ | 1.6227 | 8000 | 0.0131 |
315
+ | 1.7241 | 8500 | 0.014 |
316
+ | 1.8256 | 9000 | 0.0133 |
317
+ | 1.9270 | 9500 | 0.0125 |
318
+ | 2.0284 | 10000 | 0.0128 |
319
+ | 2.1298 | 10500 | 0.0093 |
320
+ | 2.2312 | 11000 | 0.0091 |
321
+ | 2.3327 | 11500 | 0.0097 |
322
+ | 2.4341 | 12000 | 0.0096 |
323
+ | 2.5355 | 12500 | 0.0097 |
324
+ | 2.6369 | 13000 | 0.0093 |
325
+ | 2.7383 | 13500 | 0.0099 |
326
+ | 2.8398 | 14000 | 0.0104 |
327
+ | 2.9412 | 14500 | 0.009 |
328
+ | 3.0426 | 15000 | 0.0084 |
329
+ | 3.1440 | 15500 | 0.0065 |
330
+ | 3.2454 | 16000 | 0.0062 |
331
+ | 3.3469 | 16500 | 0.0062 |
332
+ | 3.4483 | 17000 | 0.0068 |
333
+ | 3.5497 | 17500 | 0.0076 |
334
+ | 3.6511 | 18000 | 0.0078 |
335
+ | 3.7525 | 18500 | 0.0068 |
336
+ | 3.8540 | 19000 | 0.008 |
337
+ | 3.9554 | 19500 | 0.0076 |
338
+ | 4.0568 | 20000 | 0.0057 |
339
+ | 4.1582 | 20500 | 0.0054 |
340
+ | 4.2596 | 21000 | 0.0052 |
341
+ | 4.3611 | 21500 | 0.0052 |
342
+ | 4.4625 | 22000 | 0.0056 |
343
+ | 4.5639 | 22500 | 0.0055 |
344
+ | 4.6653 | 23000 | 0.0057 |
345
+ | 4.7667 | 23500 | 0.006 |
346
+ | 4.8682 | 24000 | 0.0054 |
347
+ | 4.9696 | 24500 | 0.0052 |
348
+ | 5.0710 | 25000 | 0.0045 |
349
+ | 5.1724 | 25500 | 0.0039 |
350
+ | 5.2738 | 26000 | 0.0043 |
351
+ | 5.3753 | 26500 | 0.004 |
352
+ | 5.4767 | 27000 | 0.0044 |
353
+ | 5.5781 | 27500 | 0.0045 |
354
+ | 5.6795 | 28000 | 0.0039 |
355
+ | 5.7809 | 28500 | 0.0043 |
356
+ | 5.8824 | 29000 | 0.0047 |
357
+ | 5.9838 | 29500 | 0.0049 |
358
+ | 6.0852 | 30000 | 0.003 |
359
+ | 6.1866 | 30500 | 0.0034 |
360
+ | 6.2880 | 31000 | 0.003 |
361
+ | 6.3895 | 31500 | 0.0031 |
362
+ | 6.4909 | 32000 | 0.0033 |
363
+ | 6.5923 | 32500 | 0.0035 |
364
+ | 6.6937 | 33000 | 0.0037 |
365
+ | 6.7951 | 33500 | 0.0039 |
366
+ | 6.8966 | 34000 | 0.004 |
367
+ | 6.9980 | 34500 | 0.003 |
368
+ | 7.0994 | 35000 | 0.0024 |
369
+ | 7.2008 | 35500 | 0.0026 |
370
+ | 7.3022 | 36000 | 0.0029 |
371
+ | 7.4037 | 36500 | 0.0029 |
372
+ | 7.5051 | 37000 | 0.0025 |
373
+ | 7.6065 | 37500 | 0.0026 |
374
+ | 7.7079 | 38000 | 0.0032 |
375
+ | 7.8093 | 38500 | 0.0032 |
376
+ | 7.9108 | 39000 | 0.0029 |
377
+ | 8.0122 | 39500 | 0.0028 |
378
+ | 8.1136 | 40000 | 0.0024 |
379
+ | 8.2150 | 40500 | 0.0021 |
380
+ | 8.3164 | 41000 | 0.0022 |
381
+ | 8.4178 | 41500 | 0.0022 |
382
+ | 8.5193 | 42000 | 0.0024 |
383
+ | 8.6207 | 42500 | 0.0025 |
384
+ | 8.7221 | 43000 | 0.0023 |
385
+ | 8.8235 | 43500 | 0.0021 |
386
+ | 8.9249 | 44000 | 0.0026 |
387
+ | 9.0264 | 44500 | 0.0025 |
388
+ | 9.1278 | 45000 | 0.0021 |
389
+ | 9.2292 | 45500 | 0.0017 |
390
+ | 9.3306 | 46000 | 0.0022 |
391
+ | 9.4320 | 46500 | 0.002 |
392
+ | 9.5335 | 47000 | 0.0021 |
393
+ | 9.6349 | 47500 | 0.0019 |
394
+ | 9.7363 | 48000 | 0.0021 |
395
+ | 9.8377 | 48500 | 0.002 |
396
+ | 9.9391 | 49000 | 0.0021 |
397
+
398
+
399
+ ### Framework Versions
400
+ - Python: 3.9.20
401
+ - Sentence Transformers: 3.3.1
402
+ - Transformers: 4.47.1
403
+ - PyTorch: 2.5.1+rocm6.2
404
+ - Accelerate: 1.2.1
405
+ - Datasets: 3.2.0
406
+ - Tokenizers: 0.21.0
407
+
408
+ ## Citation
409
+
410
+ ### BibTeX
411
+
412
+ #### Sentence Transformers
413
+ ```bibtex
414
+ @inproceedings{reimers-2019-sentence-bert,
415
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
416
+ author = "Reimers, Nils and Gurevych, Iryna",
417
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
418
+ month = "11",
419
+ year = "2019",
420
+ publisher = "Association for Computational Linguistics",
421
+ url = "https://arxiv.org/abs/1908.10084",
422
+ }
423
+ ```
424
+
425
+ <!--
426
+ ## Glossary
427
+
428
+ *Clearly define terms in order to be accessible across audiences.*
429
+ -->
430
+
431
+ <!--
432
+ ## Model Card Authors
433
+
434
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
435
+ -->
436
+
437
+ <!--
438
+ ## Model Card Contact
439
+
440
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
441
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-base",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.47.1",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1+rocm6.2"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:513a4f5efd9d804a97486757cec4b06fd09e02e4e40030a26f0b5056393ed564
3
+ size 1112197096
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 512,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }