ibrahimciko
commited on
Commit
•
7758e1f
1
Parent(s):
fea8996
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.14 +/- 0.10
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8b91edbccc0a594724338ea2050a1d41f6284460af1a6533aa1ac5c10b709d5
|
3 |
+
size 106915
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7af0f4817490>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7af0f480bac0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1693757668473963841,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA/QG8v6qYhz8QgpK/qkFOvxEIbr+QqLO/2WTGvTuN875bFGe+J8WXPr0OX7zpn94+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmZCKvxFg0T5mlme9aD06vifpjr4xYFy/Np8qvwPvZr4hIsW/opKmv5HyfL+et6q/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD9Aby/qpiHPxCCkr+HcaS/T9GRPhXUgr6qQU6/EQhuv5Cos79JgRe/iDqZPX5je7/ZZMa9O43zvlsUZ754bea/VvSov/CYqr8nxZc+vQ5fvOmf3j4rt/Y++4GVuafGyD6UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[-1.4688107 1.0593464 -1.1445942 ]\n [-0.80568945 -0.9298106 -1.4035816 ]\n [-0.09687204 -0.47568688 -0.22566359]\n [ 0.29642603 -0.01361435 0.43481377]]",
|
34 |
+
"desired_goal": "[[-1.0825378 0.40893605 -0.05653992]\n [-0.18187487 -0.27912256 -0.86084276]\n [-0.66649187 -0.22552113 -1.540104 ]\n [-1.3013499 -0.98807627 -1.3337286 ]]",
|
35 |
+
"observation": "[[-1.4688107e+00 1.0593464e+00 -1.1445942e+00 -1.2847146e+00\n 2.8480002e-01 -2.5552431e-01]\n [-8.0568945e-01 -9.2981058e-01 -1.4035816e+00 -5.9181648e-01\n 7.4818671e-02 -9.8198688e-01]\n [-9.6872039e-02 -4.7568688e-01 -2.2566359e-01 -1.8002157e+00\n -1.3199565e+00 -1.3327923e+00]\n [ 2.9642603e-01 -1.3614354e-02 4.3481377e-01 4.8186621e-01\n -2.8516338e-04 3.9214060e-01]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAj6fXvLtC/b29OTc82HeoPZQSGL4+hEc9v1CwPfcIC77jqnU9RCqdPehXa70KeKk9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[-0.02632502 -0.12366243 0.0111832 ]\n [ 0.08225983 -0.14850837 0.0487101 ]\n [ 0.08609151 -0.13577639 0.05997742]\n [ 0.07674077 -0.05745688 0.08274849]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9Tp6hQFcIKMAWyUSwOMAXSUR0Ck35bulXRxdX2UKGgGR7/CqXnhbW3CaAdLAmgIR0Ck30BUipvQdX2UKGgGR7/J7KJVKf4AaAdLA2gIR0Ck4FLPldTpdX2UKGgGR7+Xa8Hv+fh/aAdLAWgIR0Ck4Fc63iJgdX2UKGgGR7/Ks4DLbHp9aAdLA2gIR0Ck3+tnGsFMdX2UKGgGR7/RtqHoHLRsaAdLA2gIR0Ck36R5s0pFdX2UKGgGR7/RgvDgqEvkaAdLA2gIR0Ck302hRIjGdX2UKGgGR7+SXyAhB7eEaAdLAWgIR0Ck36tyYG+sdX2UKGgGR7+7s5XEIgNgaAdLAmgIR0Ck4GLhR64UdX2UKGgGR7+8495hScbzaAdLAmgIR0Ck31iml67edX2UKGgGR7/KURnOB19waAdLA2gIR0Ck3/sRQJokdX2UKGgGR7+z+tKZlWfcaAdLAmgIR0Ck4Gs6q815dX2UKGgGR7/SjFQ2uPmxaAdLA2gIR0Ck37hMzuWsdX2UKGgGR7+5K5CngpBpaAdLAmgIR0Ck32F/pdKNdX2UKGgGR7+ALeANG3F2aAdLAWgIR0Ck4HAogFHKdX2UKGgGR7+KVdHDrJKbaAdLAWgIR0Ck370R3/xUdX2UKGgGR7/KkO7QLNOeaAdLA2gIR0Ck4ArWRRuTdX2UKGgGR799O6/Zdv87aAdLAWgIR0Ck38PYFqzrdX2UKGgGR7/Qe1rqMWGiaAdLA2gIR0Ck33FLWZqmdX2UKGgGR7/CcLBsQ/X5aAdLAmgIR0Ck4BPuXu3MdX2UKGgGR7/T0Re1KGtZaAdLBGgIR0Ck4IQnx8UmdX2UKGgGR7/JcFhXr+o+aAdLA2gIR0Ck39Ei2UjcdX2UKGgGR7/Y6J66asp5aAdLA2gIR0Ck335TqB3BdX2UKGgGR7/DfoicG1QZaAdLA2gIR0Ck4CNhuwX7dX2UKGgGR7/P/S6UaAFxaAdLA2gIR0Ck3+B1cMVldX2UKGgGR7/b8qFyq+8HaAdLBGgIR0Ck4JgLqlgudX2UKGgGR7+1z/6wdKdyaAdLAmgIR0Ck4Cw7T2FndX2UKGgGR7/IoKD0163RaAdLA2gIR0Ck3447ihnKdX2UKGgGR7+6tLcsUZeiaAdLAmgIR0Ck4KFqzqrzdX2UKGgGR7/BEXtShrWRaAdLAmgIR0Ck4DXlKbrkdX2UKGgGR7/L5C4SYgJUaAdLA2gIR0Ck3+8a4tpVdX2UKGgGR7+zEAHVwxWUaAdLAmgIR0Ck35heHBUJdX2UKGgGR7/TAO8TSLIgaAdLA2gIR0Ck3/5CfHxSdX2UKGgGR7/ajHGS6lLwaAdLBGgIR0Ck4LZPEbYLdX2UKGgGR7/YbJfYzzmPaAdLBGgIR0Ck4EpwbVBldX2UKGgGR7/WDPWxyGSIaAdLBGgIR0Ck36xlpXZHdX2UKGgGR7/NtO2y9mHyaAdLA2gIR0Ck4A5Lh73PdX2UKGgGR7/SfpD/lyR0aAdLA2gIR0Ck4MW07bL2dX2UKGgGR7/M5ggHNX5naAdLA2gIR0Ck4Fn9vS+hdX2UKGgGR7/Q5xR2r4nGaAdLA2gIR0Ck37vWhAW0dX2UKGgGR7+3lbNbC79RaAdLAmgIR0Ck4M5nUUfxdX2UKGgGR7/I5wwTM7lraAdLA2gIR0Ck4BtpdrwfdX2UKGgGR7/QQPZqVQhwaAdLA2gIR0Ck4GbMPjGUdX2UKGgGR7/HeiSJTER8aAdLA2gIR0Ck38irksBidX2UKGgGR7+48RtgrpaBaAdLAmgIR0Ck4HErwvxpdX2UKGgGR7/OwN9YwIt2aAdLA2gIR0Ck4CpnHvMKdX2UKGgGR7/WqNIbwSamaAdLBGgIR0Ck4ONDD0lJdX2UKGgGR7/Tb2lEZzgdaAdLA2gIR0Ck39kl/pdKdX2UKGgGR7/A8ifQKKHgaAdLAmgIR0Ck4OuRcNYsdX2UKGgGR7/M8cMmWt2caAdLA2gIR0Ck4DiHARChdX2UKGgGR7/CrmQr+YMOaAdLAmgIR0Ck4ESsr/bTdX2UKGgGR7/ZGza9K28aaAdLBGgIR0Ck3+55Rjz7dX2UKGgGR7/PGtITXarWaAdLA2gIR0Ck4P0Jv5xjdX2UKGgGR7+fNiYsunMuaAdLAWgIR0Ck3/LVWjoIdX2UKGgGR7/eAzHjp9qlaAdLB2gIR0Ck4JVTJhfCdX2UKGgGR7+nLA57w8W9aAdLAWgIR0Ck4Jmxt52RdX2UKGgGR7/ReizsyBTXaAdLA2gIR0Ck4FKoQ4CIdX2UKGgGR7/M5ksjFAE/aAdLA2gIR0Ck4QzNliBodX2UKGgGR7/SWDHwPRReaAdLA2gIR0Ck4AK4QSSNdX2UKGgGR7/LzYmLLpzLaAdLA2gIR0Ck4KmRvFWGdX2UKGgGR7/Mqx1PnB+GaAdLA2gIR0Ck4Rn+ZPVNdX2UKGgGR7/XT3Zf2K2saAdLBGgIR0Ck4GbpFCswdX2UKGgGR7/Rf8uSOinHaAdLA2gIR0Ck4BAWJrLydX2UKGgGR7/Ki+L3sXzlaAdLA2gIR0Ck4LlDF6zFdX2UKGgGR7/C1Bt1p0wKaAdLAmgIR0Ck4HIqCpWFdX2UKGgGR7/QuPmxMWXUaAdLA2gIR0Ck4SmkN4JNdX2UKGgGR7/MhNdqtYCAaAdLA2gIR0Ck4B+armyPdX2UKGgGR7/aJjUd7v5QaAdLBGgIR0Ck4Mnqu8sddX2UKGgGR7/WBFuvUz9CaAdLBGgIR0Ck4IMWGh24dX2UKGgGR7/ZoP07KaG6aAdLBGgIR0Ck4TyAQQMAdX2UKGgGR7/Vm6Gxlg+haAdLBGgIR0Ck4DJrk8zRdX2UKGgGR7+S3ocJdB0IaAdLAWgIR0Ck4UDEehf0dX2UKGgGR7/BronrpqyoaAdLAmgIR0Ck4NTN+so2dX2UKGgGR7+x0ZFXq7iAaAdLAmgIR0Ck4I2aMJhOdX2UKGgGR7/Es1baAWi2aAdLAmgIR0Ck4NxvvSc9dX2UKGgGR7/CMPSUkfLcaAdLA2gIR0Ck4D49X9zfdX2UKGgGR7+gU8FINEw4aAdLAWgIR0Ck4OB+4LCvdX2UKGgGR7+iKJl8PWhAaAdLAWgIR0Ck4EIkqto0dX2UKGgGR7/ZQHzH0btJaAdLBGgIR0Ck4VLTH80ldX2UKGgGR7/ZT0g8r7O3aAdLBGgIR0Ck4J+UyHmBdX2UKGgGR7+9YdQwblzVaAdLAmgIR0Ck4Eynk1dgdX2UKGgGR7+9NIsiB5HFaAdLAmgIR0Ck4VsRQJokdX2UKGgGR7/R2a2F36hyaAdLA2gIR0Ck4O8zQ/ordX2UKGgGR7/A9Jz1bqyGaAdLAmgIR0Ck4KgSWZ7YdX2UKGgGR7+8s7MgU1yeaAdLAmgIR0Ck4WTzND+jdX2UKGgGR7/RMPSUkfLcaAdLA2gIR0Ck4FrTpgTidX2UKGgGR7/If9P1tfoiaAdLA2gIR0Ck4P9gF5fMdX2UKGgGR7/S3BpHqeK9aAdLA2gIR0Ck4LhhH9WIdX2UKGgGR7/CaMrEtNBXaAdLAmgIR0Ck4QeVcD8tdX2UKGgGR7/PRUm2LHdXaAdLA2gIR0Ck4GlvAGjcdX2UKGgGR7/RMUh3aBZqaAdLBGgIR0Ck4Xfs3Q2NdX2UKGgGR7/KGbkOqebvaAdLA2gIR0Ck4MS+HrQgdX2UKGgGR7+lFOO801qGaAdLAWgIR0Ck4G3ueBhAdX2UKGgGR7/JiDM/yGzsaAdLA2gIR0Ck4RdJjDsMdX2UKGgGR7+75sTFl05maAdLAmgIR0Ck4NA5zYEodX2UKGgGR7/BkvK2a2F4aAdLAmgIR0Ck4HlXJYDDdX2UKGgGR7/TzwMH8jzJaAdLBGgIR0Ck4YvvrnkldX2UKGgGR7/Duc+aBqbjaAdLAmgIR0Ck4SAPuogndX2UKGgGR7/OeTV2A5JcaAdLA2gIR0Ck4NzCk43ndX2UKGgGR7/ad8iOearnaAdLBGgIR0Ck4ImZuyeJdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:46cbb740b732c14601e6506e45c4467122a787c60f13949e0c20a11c1470b9bc
|
3 |
+
size 44734
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:017ac6dd0d5372f4f6c5dfb35296788c2a5cb77d4341f79cba917ad2bed81dfd
|
3 |
+
size 46014
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7af0f4817490>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7af0f480bac0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693757668473963841, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA/QG8v6qYhz8QgpK/qkFOvxEIbr+QqLO/2WTGvTuN875bFGe+J8WXPr0OX7zpn94+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmZCKvxFg0T5mlme9aD06vifpjr4xYFy/Np8qvwPvZr4hIsW/opKmv5HyfL+et6q/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD9Aby/qpiHPxCCkr+HcaS/T9GRPhXUgr6qQU6/EQhuv5Cos79JgRe/iDqZPX5je7/ZZMa9O43zvlsUZ754bea/VvSov/CYqr8nxZc+vQ5fvOmf3j4rt/Y++4GVuafGyD6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-1.4688107 1.0593464 -1.1445942 ]\n [-0.80568945 -0.9298106 -1.4035816 ]\n [-0.09687204 -0.47568688 -0.22566359]\n [ 0.29642603 -0.01361435 0.43481377]]", "desired_goal": "[[-1.0825378 0.40893605 -0.05653992]\n [-0.18187487 -0.27912256 -0.86084276]\n [-0.66649187 -0.22552113 -1.540104 ]\n [-1.3013499 -0.98807627 -1.3337286 ]]", "observation": "[[-1.4688107e+00 1.0593464e+00 -1.1445942e+00 -1.2847146e+00\n 2.8480002e-01 -2.5552431e-01]\n [-8.0568945e-01 -9.2981058e-01 -1.4035816e+00 -5.9181648e-01\n 7.4818671e-02 -9.8198688e-01]\n [-9.6872039e-02 -4.7568688e-01 -2.2566359e-01 -1.8002157e+00\n -1.3199565e+00 -1.3327923e+00]\n [ 2.9642603e-01 -1.3614354e-02 4.3481377e-01 4.8186621e-01\n -2.8516338e-04 3.9214060e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAj6fXvLtC/b29OTc82HeoPZQSGL4+hEc9v1CwPfcIC77jqnU9RCqdPehXa70KeKk9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.02632502 -0.12366243 0.0111832 ]\n [ 0.08225983 -0.14850837 0.0487101 ]\n [ 0.08609151 -0.13577639 0.05997742]\n [ 0.07674077 -0.05745688 0.08274849]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9Tp6hQFcIKMAWyUSwOMAXSUR0Ck35bulXRxdX2UKGgGR7/CqXnhbW3CaAdLAmgIR0Ck30BUipvQdX2UKGgGR7/J7KJVKf4AaAdLA2gIR0Ck4FLPldTpdX2UKGgGR7+Xa8Hv+fh/aAdLAWgIR0Ck4Fc63iJgdX2UKGgGR7/Ks4DLbHp9aAdLA2gIR0Ck3+tnGsFMdX2UKGgGR7/RtqHoHLRsaAdLA2gIR0Ck36R5s0pFdX2UKGgGR7/RgvDgqEvkaAdLA2gIR0Ck302hRIjGdX2UKGgGR7+SXyAhB7eEaAdLAWgIR0Ck36tyYG+sdX2UKGgGR7+7s5XEIgNgaAdLAmgIR0Ck4GLhR64UdX2UKGgGR7+8495hScbzaAdLAmgIR0Ck31iml67edX2UKGgGR7/KURnOB19waAdLA2gIR0Ck3/sRQJokdX2UKGgGR7+z+tKZlWfcaAdLAmgIR0Ck4Gs6q815dX2UKGgGR7/SjFQ2uPmxaAdLA2gIR0Ck37hMzuWsdX2UKGgGR7+5K5CngpBpaAdLAmgIR0Ck32F/pdKNdX2UKGgGR7+ALeANG3F2aAdLAWgIR0Ck4HAogFHKdX2UKGgGR7+KVdHDrJKbaAdLAWgIR0Ck370R3/xUdX2UKGgGR7/KkO7QLNOeaAdLA2gIR0Ck4ArWRRuTdX2UKGgGR799O6/Zdv87aAdLAWgIR0Ck38PYFqzrdX2UKGgGR7/Qe1rqMWGiaAdLA2gIR0Ck33FLWZqmdX2UKGgGR7/CcLBsQ/X5aAdLAmgIR0Ck4BPuXu3MdX2UKGgGR7/T0Re1KGtZaAdLBGgIR0Ck4IQnx8UmdX2UKGgGR7/JcFhXr+o+aAdLA2gIR0Ck39Ei2UjcdX2UKGgGR7/Y6J66asp5aAdLA2gIR0Ck335TqB3BdX2UKGgGR7/DfoicG1QZaAdLA2gIR0Ck4CNhuwX7dX2UKGgGR7/P/S6UaAFxaAdLA2gIR0Ck3+B1cMVldX2UKGgGR7/b8qFyq+8HaAdLBGgIR0Ck4JgLqlgudX2UKGgGR7+1z/6wdKdyaAdLAmgIR0Ck4Cw7T2FndX2UKGgGR7/IoKD0163RaAdLA2gIR0Ck3447ihnKdX2UKGgGR7+6tLcsUZeiaAdLAmgIR0Ck4KFqzqrzdX2UKGgGR7/BEXtShrWRaAdLAmgIR0Ck4DXlKbrkdX2UKGgGR7/L5C4SYgJUaAdLA2gIR0Ck3+8a4tpVdX2UKGgGR7+zEAHVwxWUaAdLAmgIR0Ck35heHBUJdX2UKGgGR7/TAO8TSLIgaAdLA2gIR0Ck3/5CfHxSdX2UKGgGR7/ajHGS6lLwaAdLBGgIR0Ck4LZPEbYLdX2UKGgGR7/YbJfYzzmPaAdLBGgIR0Ck4EpwbVBldX2UKGgGR7/WDPWxyGSIaAdLBGgIR0Ck36xlpXZHdX2UKGgGR7/NtO2y9mHyaAdLA2gIR0Ck4A5Lh73PdX2UKGgGR7/SfpD/lyR0aAdLA2gIR0Ck4MW07bL2dX2UKGgGR7/M5ggHNX5naAdLA2gIR0Ck4Fn9vS+hdX2UKGgGR7/Q5xR2r4nGaAdLA2gIR0Ck37vWhAW0dX2UKGgGR7+3lbNbC79RaAdLAmgIR0Ck4M5nUUfxdX2UKGgGR7/I5wwTM7lraAdLA2gIR0Ck4BtpdrwfdX2UKGgGR7/QQPZqVQhwaAdLA2gIR0Ck4GbMPjGUdX2UKGgGR7/HeiSJTER8aAdLA2gIR0Ck38irksBidX2UKGgGR7+48RtgrpaBaAdLAmgIR0Ck4HErwvxpdX2UKGgGR7/OwN9YwIt2aAdLA2gIR0Ck4CpnHvMKdX2UKGgGR7/WqNIbwSamaAdLBGgIR0Ck4ONDD0lJdX2UKGgGR7/Tb2lEZzgdaAdLA2gIR0Ck39kl/pdKdX2UKGgGR7/A8ifQKKHgaAdLAmgIR0Ck4OuRcNYsdX2UKGgGR7/M8cMmWt2caAdLA2gIR0Ck4DiHARChdX2UKGgGR7/CrmQr+YMOaAdLAmgIR0Ck4ESsr/bTdX2UKGgGR7/ZGza9K28aaAdLBGgIR0Ck3+55Rjz7dX2UKGgGR7/PGtITXarWaAdLA2gIR0Ck4P0Jv5xjdX2UKGgGR7+fNiYsunMuaAdLAWgIR0Ck3/LVWjoIdX2UKGgGR7/eAzHjp9qlaAdLB2gIR0Ck4JVTJhfCdX2UKGgGR7+nLA57w8W9aAdLAWgIR0Ck4Jmxt52RdX2UKGgGR7/ReizsyBTXaAdLA2gIR0Ck4FKoQ4CIdX2UKGgGR7/M5ksjFAE/aAdLA2gIR0Ck4QzNliBodX2UKGgGR7/SWDHwPRReaAdLA2gIR0Ck4AK4QSSNdX2UKGgGR7/LzYmLLpzLaAdLA2gIR0Ck4KmRvFWGdX2UKGgGR7/Mqx1PnB+GaAdLA2gIR0Ck4Rn+ZPVNdX2UKGgGR7/XT3Zf2K2saAdLBGgIR0Ck4GbpFCswdX2UKGgGR7/Rf8uSOinHaAdLA2gIR0Ck4BAWJrLydX2UKGgGR7/Ki+L3sXzlaAdLA2gIR0Ck4LlDF6zFdX2UKGgGR7/C1Bt1p0wKaAdLAmgIR0Ck4HIqCpWFdX2UKGgGR7/QuPmxMWXUaAdLA2gIR0Ck4SmkN4JNdX2UKGgGR7/MhNdqtYCAaAdLA2gIR0Ck4B+armyPdX2UKGgGR7/aJjUd7v5QaAdLBGgIR0Ck4Mnqu8sddX2UKGgGR7/WBFuvUz9CaAdLBGgIR0Ck4IMWGh24dX2UKGgGR7/ZoP07KaG6aAdLBGgIR0Ck4TyAQQMAdX2UKGgGR7/Vm6Gxlg+haAdLBGgIR0Ck4DJrk8zRdX2UKGgGR7+S3ocJdB0IaAdLAWgIR0Ck4UDEehf0dX2UKGgGR7/BronrpqyoaAdLAmgIR0Ck4NTN+so2dX2UKGgGR7+x0ZFXq7iAaAdLAmgIR0Ck4I2aMJhOdX2UKGgGR7/Es1baAWi2aAdLAmgIR0Ck4NxvvSc9dX2UKGgGR7/CMPSUkfLcaAdLA2gIR0Ck4D49X9zfdX2UKGgGR7+gU8FINEw4aAdLAWgIR0Ck4OB+4LCvdX2UKGgGR7+iKJl8PWhAaAdLAWgIR0Ck4EIkqto0dX2UKGgGR7/ZQHzH0btJaAdLBGgIR0Ck4VLTH80ldX2UKGgGR7/ZT0g8r7O3aAdLBGgIR0Ck4J+UyHmBdX2UKGgGR7+9YdQwblzVaAdLAmgIR0Ck4Eynk1dgdX2UKGgGR7+9NIsiB5HFaAdLAmgIR0Ck4VsRQJokdX2UKGgGR7/R2a2F36hyaAdLA2gIR0Ck4O8zQ/ordX2UKGgGR7/A9Jz1bqyGaAdLAmgIR0Ck4KgSWZ7YdX2UKGgGR7+8s7MgU1yeaAdLAmgIR0Ck4WTzND+jdX2UKGgGR7/RMPSUkfLcaAdLA2gIR0Ck4FrTpgTidX2UKGgGR7/If9P1tfoiaAdLA2gIR0Ck4P9gF5fMdX2UKGgGR7/S3BpHqeK9aAdLA2gIR0Ck4LhhH9WIdX2UKGgGR7/CaMrEtNBXaAdLAmgIR0Ck4QeVcD8tdX2UKGgGR7/PRUm2LHdXaAdLA2gIR0Ck4GlvAGjcdX2UKGgGR7/RMUh3aBZqaAdLBGgIR0Ck4Xfs3Q2NdX2UKGgGR7/KGbkOqebvaAdLA2gIR0Ck4MS+HrQgdX2UKGgGR7+lFOO801qGaAdLAWgIR0Ck4G3ueBhAdX2UKGgGR7/JiDM/yGzsaAdLA2gIR0Ck4RdJjDsMdX2UKGgGR7+75sTFl05maAdLAmgIR0Ck4NA5zYEodX2UKGgGR7/BkvK2a2F4aAdLAmgIR0Ck4HlXJYDDdX2UKGgGR7/TzwMH8jzJaAdLBGgIR0Ck4YvvrnkldX2UKGgGR7/Duc+aBqbjaAdLAmgIR0Ck4SAPuogndX2UKGgGR7/OeTV2A5JcaAdLA2gIR0Ck4NzCk43ndX2UKGgGR7/ad8iOearnaAdLBGgIR0Ck4ImZuyeJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (693 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.13832025211304427, "std_reward": 0.09936368026950987, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-03T17:02:52.755399"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a97671ace68ae3552d01069216a0fdc7f2ccc04b963216765854e284f4ccf333
|
3 |
+
size 2636
|