Paolo-Fraccaro
commited on
Commit
·
c70cc56
1
Parent(s):
1ecae73
Upload Prithvi.py
Browse files- Prithvi.py +291 -0
Prithvi.py
ADDED
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
# --------------------------------------------------------
|
7 |
+
# References:
|
8 |
+
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
|
9 |
+
# DeiT: https://github.com/facebookresearch/deit
|
10 |
+
# --------------------------------------------------------
|
11 |
+
|
12 |
+
from functools import partial
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
|
17 |
+
from timm.models.vision_transformer import Block
|
18 |
+
from timm.models.layers import to_2tuple, _assert
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
|
22 |
+
from einops import rearrange
|
23 |
+
|
24 |
+
def get_3d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
|
25 |
+
"""
|
26 |
+
grid_size: 3d tuple of grid size: t, h, w
|
27 |
+
return:
|
28 |
+
pos_embed: L, D
|
29 |
+
"""
|
30 |
+
|
31 |
+
assert embed_dim % 16 == 0
|
32 |
+
|
33 |
+
t_size, h_size, w_size = grid_size
|
34 |
+
|
35 |
+
w_embed_dim = embed_dim // 16 * 6
|
36 |
+
h_embed_dim = embed_dim // 16 * 6
|
37 |
+
t_embed_dim = embed_dim // 16 * 4
|
38 |
+
|
39 |
+
w_pos_embed = get_1d_sincos_pos_embed_from_grid(w_embed_dim, np.arange(w_size))
|
40 |
+
h_pos_embed = get_1d_sincos_pos_embed_from_grid(h_embed_dim, np.arange(h_size))
|
41 |
+
t_pos_embed = get_1d_sincos_pos_embed_from_grid(t_embed_dim, np.arange(t_size))
|
42 |
+
|
43 |
+
w_pos_embed = np.tile(w_pos_embed, (t_size * h_size, 1))
|
44 |
+
h_pos_embed = np.tile(np.repeat(h_pos_embed, w_size, axis=0), (t_size, 1))
|
45 |
+
t_pos_embed = np.repeat(t_pos_embed, h_size * w_size, axis=0)
|
46 |
+
|
47 |
+
pos_embed = np.concatenate((w_pos_embed, h_pos_embed, t_pos_embed), axis=1)
|
48 |
+
|
49 |
+
if cls_token:
|
50 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
51 |
+
return pos_embed
|
52 |
+
|
53 |
+
|
54 |
+
class PatchEmbed(nn.Module):
|
55 |
+
""" Frames of 2D Images to Patch Embedding
|
56 |
+
The 3D version of timm.models.vision_transformer.PatchEmbed
|
57 |
+
"""
|
58 |
+
def __init__(
|
59 |
+
self,
|
60 |
+
img_size=224,
|
61 |
+
patch_size=16,
|
62 |
+
num_frames=3,
|
63 |
+
tubelet_size=1,
|
64 |
+
in_chans=3,
|
65 |
+
embed_dim=768,
|
66 |
+
norm_layer=None,
|
67 |
+
flatten=True,
|
68 |
+
bias=True,
|
69 |
+
):
|
70 |
+
super().__init__()
|
71 |
+
img_size = to_2tuple(img_size)
|
72 |
+
patch_size = to_2tuple(patch_size)
|
73 |
+
self.img_size = img_size
|
74 |
+
self.patch_size = patch_size
|
75 |
+
self.num_frames = num_frames
|
76 |
+
self.tubelet_size = tubelet_size
|
77 |
+
self.grid_size = (num_frames // tubelet_size, img_size[0] // patch_size[0], img_size[1] // patch_size[1])
|
78 |
+
self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2]
|
79 |
+
self.flatten = flatten
|
80 |
+
|
81 |
+
self.proj = nn.Conv3d(in_chans, embed_dim,
|
82 |
+
kernel_size=(tubelet_size, patch_size[0], patch_size[1]),
|
83 |
+
stride=(tubelet_size, patch_size[0], patch_size[1]), bias=bias)
|
84 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
85 |
+
|
86 |
+
def forward(self, x):
|
87 |
+
B, C, T, H, W = x.shape
|
88 |
+
_assert(H == self.img_size[0], f"Input image height ({H}) doesn't match model ({self.img_size[0]}).")
|
89 |
+
_assert(W == self.img_size[1], f"Input image width ({W}) doesn't match model ({self.img_size[1]}).")
|
90 |
+
x = self.proj(x)
|
91 |
+
if self.flatten:
|
92 |
+
x = x.flatten(2).transpose(1, 2) # B,C,T,H,W -> B,C,L -> B,L,C
|
93 |
+
x = self.norm(x)
|
94 |
+
return x
|
95 |
+
|
96 |
+
|
97 |
+
class MaskedAutoencoderViT(nn.Module):
|
98 |
+
""" Masked Autoencoder with VisionTransformer backbone
|
99 |
+
"""
|
100 |
+
def __init__(self, img_size=224, patch_size=16,
|
101 |
+
num_frames=3, tubelet_size=1,
|
102 |
+
in_chans=3, embed_dim=1024, depth=24, num_heads=16,
|
103 |
+
decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
|
104 |
+
mlp_ratio=4., norm_layer=nn.LayerNorm, norm_pix_loss=False):
|
105 |
+
super().__init__()
|
106 |
+
|
107 |
+
# --------------------------------------------------------------------------
|
108 |
+
# MAE encoder specifics
|
109 |
+
self.patch_embed = PatchEmbed(img_size, patch_size,num_frames, tubelet_size, in_chans, embed_dim)
|
110 |
+
num_patches = self.patch_embed.num_patches
|
111 |
+
|
112 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
113 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim), requires_grad=False) # fixed sin-cos embedding
|
114 |
+
|
115 |
+
self.blocks = nn.ModuleList([
|
116 |
+
Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer)
|
117 |
+
for i in range(depth)])
|
118 |
+
self.norm = norm_layer(embed_dim)
|
119 |
+
# --------------------------------------------------------------------------
|
120 |
+
|
121 |
+
# --------------------------------------------------------------------------
|
122 |
+
# MAE decoder specifics
|
123 |
+
self.decoder_embed = nn.Linear(embed_dim, decoder_embed_dim, bias=True)
|
124 |
+
|
125 |
+
self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))
|
126 |
+
|
127 |
+
self.decoder_pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, decoder_embed_dim), requires_grad=False) # fixed sin-cos embedding
|
128 |
+
|
129 |
+
self.decoder_blocks = nn.ModuleList([
|
130 |
+
Block(decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer)
|
131 |
+
for i in range(decoder_depth)])
|
132 |
+
|
133 |
+
self.decoder_norm = norm_layer(decoder_embed_dim)
|
134 |
+
self.decoder_pred = nn.Linear(decoder_embed_dim, tubelet_size * patch_size * patch_size * in_chans, bias=True) # decoder to patch
|
135 |
+
# --------------------------------------------------------------------------
|
136 |
+
|
137 |
+
self.norm_pix_loss = norm_pix_loss
|
138 |
+
|
139 |
+
self.initialize_weights()
|
140 |
+
|
141 |
+
def initialize_weights(self):
|
142 |
+
# initialization
|
143 |
+
# initialize (and freeze) pos_embed by sin-cos embedding
|
144 |
+
pos_embed = get_3d_sincos_pos_embed(self.pos_embed.shape[-1], self.patch_embed.grid_size, cls_token=True)
|
145 |
+
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
|
146 |
+
|
147 |
+
decoder_pos_embed = get_3d_sincos_pos_embed(self.decoder_pos_embed.shape[-1], self.patch_embed.grid_size, cls_token=True)
|
148 |
+
self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0))
|
149 |
+
|
150 |
+
# initialize patch_embed like nn.Linear (instead of nn.Conv2d)
|
151 |
+
w = self.patch_embed.proj.weight.data
|
152 |
+
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
|
153 |
+
|
154 |
+
# timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
|
155 |
+
torch.nn.init.normal_(self.cls_token, std=.02)
|
156 |
+
torch.nn.init.normal_(self.mask_token, std=.02)
|
157 |
+
|
158 |
+
# initialize nn.Linear and nn.LayerNorm
|
159 |
+
self.apply(self._init_weights)
|
160 |
+
|
161 |
+
def _init_weights(self, m):
|
162 |
+
if isinstance(m, nn.Linear):
|
163 |
+
# we use xavier_uniform following official JAX ViT:
|
164 |
+
torch.nn.init.xavier_uniform_(m.weight)
|
165 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
166 |
+
nn.init.constant_(m.bias, 0)
|
167 |
+
elif isinstance(m, nn.LayerNorm):
|
168 |
+
nn.init.constant_(m.bias, 0)
|
169 |
+
nn.init.constant_(m.weight, 1.0)
|
170 |
+
|
171 |
+
def patchify(self, imgs):
|
172 |
+
"""
|
173 |
+
imgs: B, C, T, H, W
|
174 |
+
x: B, L, D
|
175 |
+
"""
|
176 |
+
p = self.patch_embed.patch_size[0]
|
177 |
+
tub = self.patch_embed.tubelet_size
|
178 |
+
x = rearrange(imgs, 'b c (t tub) (h p) (w q) -> b (t h w) (tub p q c)', tub=tub, p=p, q=p)
|
179 |
+
|
180 |
+
return x
|
181 |
+
|
182 |
+
def unpatchify(self, x):
|
183 |
+
"""
|
184 |
+
x: B, L, D
|
185 |
+
imgs: B, C, T, H, W
|
186 |
+
"""
|
187 |
+
p = self.patch_embed.patch_size[0]
|
188 |
+
num_p = self.patch_embed.img_size[0] // p
|
189 |
+
tub = self.patch_embed.tubelet_size
|
190 |
+
imgs = rearrange(x, 'b (t h w) (tub p q c) -> b c (t tub) (h p) (w q)', h=num_p, w=num_p, tub=tub, p=p, q=p)
|
191 |
+
return imgs
|
192 |
+
|
193 |
+
def random_masking(self, x, mask_ratio):
|
194 |
+
"""
|
195 |
+
Perform per-sample random masking by per-sample shuffling.
|
196 |
+
Per-sample shuffling is done by argsort random noise.
|
197 |
+
x: [N, L, D], sequence
|
198 |
+
"""
|
199 |
+
N, L, D = x.shape # batch, length, dim
|
200 |
+
len_keep = int(L * (1 - mask_ratio))
|
201 |
+
|
202 |
+
noise = torch.rand(N, L, device=x.device) # noise in [0, 1]
|
203 |
+
|
204 |
+
# sort noise for each sample
|
205 |
+
ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove
|
206 |
+
ids_restore = torch.argsort(ids_shuffle, dim=1)
|
207 |
+
|
208 |
+
# keep the first subset
|
209 |
+
ids_keep = ids_shuffle[:, :len_keep]
|
210 |
+
x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
|
211 |
+
|
212 |
+
# generate the binary mask: 0 is keep, 1 is remove
|
213 |
+
mask = torch.ones([N, L], device=x.device)
|
214 |
+
mask[:, :len_keep] = 0
|
215 |
+
# unshuffle to get the binary mask
|
216 |
+
mask = torch.gather(mask, dim=1, index=ids_restore)
|
217 |
+
|
218 |
+
return x_masked, mask, ids_restore
|
219 |
+
|
220 |
+
def forward_encoder(self, x, mask_ratio):
|
221 |
+
# embed patches
|
222 |
+
x = self.patch_embed(x)
|
223 |
+
|
224 |
+
# add pos embed w/o cls token
|
225 |
+
x = x + self.pos_embed[:, 1:, :]
|
226 |
+
|
227 |
+
# masking: length -> length * mask_ratio
|
228 |
+
x, mask, ids_restore = self.random_masking(x, mask_ratio)
|
229 |
+
|
230 |
+
# append cls token
|
231 |
+
cls_token = self.cls_token + self.pos_embed[:, :1, :]
|
232 |
+
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
|
233 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
234 |
+
|
235 |
+
# apply Transformer blocks
|
236 |
+
for blk in self.blocks:
|
237 |
+
x = blk(x)
|
238 |
+
x = self.norm(x)
|
239 |
+
|
240 |
+
return x, mask, ids_restore
|
241 |
+
|
242 |
+
def forward_decoder(self, x, ids_restore):
|
243 |
+
# embed tokens
|
244 |
+
x = self.decoder_embed(x)
|
245 |
+
|
246 |
+
# append mask tokens to sequence
|
247 |
+
mask_tokens = self.mask_token.repeat(x.shape[0], ids_restore.shape[1] + 1 - x.shape[1], 1)
|
248 |
+
x_ = torch.cat([x[:, 1:, :], mask_tokens], dim=1) # no cls token
|
249 |
+
x_ = torch.gather(x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2])) # unshuffle
|
250 |
+
x = torch.cat([x[:, :1, :], x_], dim=1) # append cls token
|
251 |
+
|
252 |
+
# add pos embed
|
253 |
+
x = x + self.decoder_pos_embed
|
254 |
+
|
255 |
+
# apply Transformer blocks
|
256 |
+
for blk in self.decoder_blocks:
|
257 |
+
x = blk(x)
|
258 |
+
x = self.decoder_norm(x)
|
259 |
+
|
260 |
+
# predictor projection
|
261 |
+
x = self.decoder_pred(x)
|
262 |
+
|
263 |
+
# remove cls token
|
264 |
+
x = x[:, 1:, :]
|
265 |
+
|
266 |
+
return x
|
267 |
+
|
268 |
+
def forward_loss(self, imgs, pred, mask):
|
269 |
+
"""
|
270 |
+
imgs: B, C, T, H, W
|
271 |
+
target: B, L, D
|
272 |
+
pred: B, L, D
|
273 |
+
mask: B, L. 0 is keep, 1 is remove,
|
274 |
+
"""
|
275 |
+
target = self.patchify(imgs)
|
276 |
+
if self.norm_pix_loss:
|
277 |
+
mean = target.mean(dim=-1, keepdim=True)
|
278 |
+
var = target.var(dim=-1, keepdim=True)
|
279 |
+
target = (target - mean) / (var + 1.e-6)**.5
|
280 |
+
|
281 |
+
loss = (pred - target) ** 2
|
282 |
+
loss = loss.mean(dim=-1) # [N, L], mean loss per patch
|
283 |
+
|
284 |
+
loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches
|
285 |
+
return loss
|
286 |
+
|
287 |
+
def forward(self, imgs, mask_ratio=0.75):
|
288 |
+
latent, mask, ids_restore = self.forward_encoder(imgs, mask_ratio)
|
289 |
+
pred = self.forward_decoder(latent, ids_restore)
|
290 |
+
loss = self.forward_loss(imgs, pred, mask)
|
291 |
+
return loss, pred, mask
|