cguna commited on
Commit
e9a03b0
·
verified ·
1 Parent(s): 81baca5

Upload 63 files

Browse files

hallucination detection LoRAs

This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. hallucination_detection/lora/gpt-oss-20b/README.md +202 -0
  3. hallucination_detection/lora/gpt-oss-20b/adapter_config.json +36 -0
  4. hallucination_detection/lora/gpt-oss-20b/adapter_model.safetensors +3 -0
  5. hallucination_detection/lora/gpt-oss-20b/chat_template.jinja +331 -0
  6. hallucination_detection/lora/gpt-oss-20b/optimizer.pt +3 -0
  7. hallucination_detection/lora/gpt-oss-20b/rng_state_0.pth +3 -0
  8. hallucination_detection/lora/gpt-oss-20b/rng_state_1.pth +3 -0
  9. hallucination_detection/lora/gpt-oss-20b/rng_state_2.pth +3 -0
  10. hallucination_detection/lora/gpt-oss-20b/rng_state_3.pth +3 -0
  11. hallucination_detection/lora/gpt-oss-20b/rng_state_4.pth +3 -0
  12. hallucination_detection/lora/gpt-oss-20b/rng_state_5.pth +3 -0
  13. hallucination_detection/lora/gpt-oss-20b/rng_state_6.pth +3 -0
  14. hallucination_detection/lora/gpt-oss-20b/rng_state_7.pth +3 -0
  15. hallucination_detection/lora/gpt-oss-20b/scheduler.pt +3 -0
  16. hallucination_detection/lora/gpt-oss-20b/special_tokens_map.json +23 -0
  17. hallucination_detection/lora/gpt-oss-20b/tokenizer.json +3 -0
  18. hallucination_detection/lora/gpt-oss-20b/tokenizer_config.json +185 -0
  19. hallucination_detection/lora/gpt-oss-20b/trainer_state.json +94 -0
  20. hallucination_detection/lora/gpt-oss-20b/training_args.bin +3 -0
  21. hallucination_detection/lora/granite-3.3-2b-instruct/README.md +202 -0
  22. hallucination_detection/lora/granite-3.3-2b-instruct/adapter_config.json +39 -0
  23. hallucination_detection/lora/granite-3.3-2b-instruct/adapter_model.safetensors +3 -0
  24. hallucination_detection/lora/granite-3.3-2b-instruct/added_tokens.json +9 -0
  25. hallucination_detection/lora/granite-3.3-2b-instruct/merges.txt +0 -0
  26. hallucination_detection/lora/granite-3.3-2b-instruct/optimizer.bin +3 -0
  27. hallucination_detection/lora/granite-3.3-2b-instruct/pytorch_model_fsdp.bin +3 -0
  28. hallucination_detection/lora/granite-3.3-2b-instruct/rng_state_0.pth +3 -0
  29. hallucination_detection/lora/granite-3.3-2b-instruct/rng_state_1.pth +3 -0
  30. hallucination_detection/lora/granite-3.3-2b-instruct/rng_state_2.pth +3 -0
  31. hallucination_detection/lora/granite-3.3-2b-instruct/rng_state_3.pth +3 -0
  32. hallucination_detection/lora/granite-3.3-2b-instruct/rng_state_4.pth +3 -0
  33. hallucination_detection/lora/granite-3.3-2b-instruct/rng_state_5.pth +3 -0
  34. hallucination_detection/lora/granite-3.3-2b-instruct/rng_state_6.pth +3 -0
  35. hallucination_detection/lora/granite-3.3-2b-instruct/rng_state_7.pth +3 -0
  36. hallucination_detection/lora/granite-3.3-2b-instruct/scheduler.pt +3 -0
  37. hallucination_detection/lora/granite-3.3-2b-instruct/special_tokens_map.json +39 -0
  38. hallucination_detection/lora/granite-3.3-2b-instruct/tokenizer.json +0 -0
  39. hallucination_detection/lora/granite-3.3-2b-instruct/tokenizer_config.json +236 -0
  40. hallucination_detection/lora/granite-3.3-2b-instruct/trainer_state.json +527 -0
  41. hallucination_detection/lora/granite-3.3-2b-instruct/training_args.bin +3 -0
  42. hallucination_detection/lora/granite-3.3-2b-instruct/vocab.json +0 -0
  43. hallucination_detection/lora/granite-3.3-8b-instruct/README.md +202 -0
  44. hallucination_detection/lora/granite-3.3-8b-instruct/adapter_config.json +39 -0
  45. hallucination_detection/lora/granite-3.3-8b-instruct/adapter_model.safetensors +3 -0
  46. hallucination_detection/lora/granite-3.3-8b-instruct/added_tokens.json +9 -0
  47. hallucination_detection/lora/granite-3.3-8b-instruct/merges.txt +0 -0
  48. hallucination_detection/lora/granite-3.3-8b-instruct/optimizer.bin +3 -0
  49. hallucination_detection/lora/granite-3.3-8b-instruct/pytorch_model_fsdp.bin +3 -0
  50. hallucination_detection/lora/granite-3.3-8b-instruct/rng_state_0.pth +3 -0
.gitattributes CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  query_rewrite/lora/gpt-oss-20b/tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  query_rewrite/lora/gpt-oss-20b/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ hallucination_detection/lora/gpt-oss-20b/tokenizer.json filter=lfs diff=lfs merge=lfs -text
hallucination_detection/lora/gpt-oss-20b/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: openai/gpt-oss-20b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
hallucination_detection/lora/gpt-oss-20b/adapter_config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "openai/gpt-oss-20b",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 16,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "k_proj",
28
+ "q_proj",
29
+ "o_proj",
30
+ "v_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "trainable_token_indices": null,
34
+ "use_dora": false,
35
+ "use_rslora": false
36
+ }
hallucination_detection/lora/gpt-oss-20b/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d324b0a7fad875c444762e7681d4ae1ebce10aa138c2823be6617f7a214a6bf
3
+ size 31876192
hallucination_detection/lora/gpt-oss-20b/chat_template.jinja ADDED
@@ -0,0 +1,331 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {#-
2
+ In addition to the normal inputs of `messages` and `tools`, this template also accepts the
3
+ following kwargs:
4
+ - "builtin_tools": A list, can contain "browser" and/or "python".
5
+ - "model_identity": A string that optionally describes the model identity.
6
+ - "reasoning_effort": A string that describes the reasoning effort, defaults to "medium".
7
+ #}
8
+
9
+ {#- Tool Definition Rendering ============================================== #}
10
+ {%- macro render_typescript_type(param_spec, required_params, is_nullable=false) -%}
11
+ {%- if param_spec.type == "array" -%}
12
+ {%- if param_spec['items'] -%}
13
+ {%- if param_spec['items']['type'] == "string" -%}
14
+ {{- "string[]" }}
15
+ {%- elif param_spec['items']['type'] == "number" -%}
16
+ {{- "number[]" }}
17
+ {%- elif param_spec['items']['type'] == "integer" -%}
18
+ {{- "number[]" }}
19
+ {%- elif param_spec['items']['type'] == "boolean" -%}
20
+ {{- "boolean[]" }}
21
+ {%- else -%}
22
+ {%- set inner_type = render_typescript_type(param_spec['items'], required_params) -%}
23
+ {%- if inner_type == "object | object" or inner_type|length > 50 -%}
24
+ {{- "any[]" }}
25
+ {%- else -%}
26
+ {{- inner_type + "[]" }}
27
+ {%- endif -%}
28
+ {%- endif -%}
29
+ {%- if param_spec.nullable -%}
30
+ {{- " | null" }}
31
+ {%- endif -%}
32
+ {%- else -%}
33
+ {{- "any[]" }}
34
+ {%- if param_spec.nullable -%}
35
+ {{- " | null" }}
36
+ {%- endif -%}
37
+ {%- endif -%}
38
+ {%- elif param_spec.type is defined and param_spec.type is iterable and param_spec.type is not string and param_spec.type is not mapping and param_spec.type[0] is defined -%}
39
+ {#- Handle array of types like ["object", "object"] from Union[dict, list] #}
40
+ {%- if param_spec.type | length > 1 -%}
41
+ {{- param_spec.type | join(" | ") }}
42
+ {%- else -%}
43
+ {{- param_spec.type[0] }}
44
+ {%- endif -%}
45
+ {%- elif param_spec.oneOf -%}
46
+ {#- Handle oneOf schemas - check for complex unions and fallback to any #}
47
+ {%- set has_object_variants = false -%}
48
+ {%- for variant in param_spec.oneOf -%}
49
+ {%- if variant.type == "object" -%}
50
+ {%- set has_object_variants = true -%}
51
+ {%- endif -%}
52
+ {%- endfor -%}
53
+ {%- if has_object_variants and param_spec.oneOf|length > 1 -%}
54
+ {{- "any" }}
55
+ {%- else -%}
56
+ {%- for variant in param_spec.oneOf -%}
57
+ {{- render_typescript_type(variant, required_params) -}}
58
+ {%- if variant.description %}
59
+ {{- "// " + variant.description }}
60
+ {%- endif -%}
61
+ {%- if variant.default is defined %}
62
+ {{ "// default: " + variant.default|tojson }}
63
+ {%- endif -%}
64
+ {%- if not loop.last %}
65
+ {{- " | " }}
66
+ {% endif -%}
67
+ {%- endfor -%}
68
+ {%- endif -%}
69
+ {%- elif param_spec.type == "string" -%}
70
+ {%- if param_spec.enum -%}
71
+ {{- '"' + param_spec.enum|join('" | "') + '"' -}}
72
+ {%- else -%}
73
+ {{- "string" }}
74
+ {%- if param_spec.nullable %}
75
+ {{- " | null" }}
76
+ {%- endif -%}
77
+ {%- endif -%}
78
+ {%- elif param_spec.type == "number" -%}
79
+ {{- "number" }}
80
+ {%- elif param_spec.type == "integer" -%}
81
+ {{- "number" }}
82
+ {%- elif param_spec.type == "boolean" -%}
83
+ {{- "boolean" }}
84
+
85
+ {%- elif param_spec.type == "object" -%}
86
+ {%- if param_spec.properties -%}
87
+ {{- "{\n" }}
88
+ {%- for prop_name, prop_spec in param_spec.properties.items() -%}
89
+ {{- prop_name -}}
90
+ {%- if prop_name not in (param_spec.required or []) -%}
91
+ {{- "?" }}
92
+ {%- endif -%}
93
+ {{- ": " }}
94
+ {{ render_typescript_type(prop_spec, param_spec.required or []) }}
95
+ {%- if not loop.last -%}
96
+ {{-", " }}
97
+ {%- endif -%}
98
+ {%- endfor -%}
99
+ {{- "}" }}
100
+ {%- else -%}
101
+ {{- "object" }}
102
+ {%- endif -%}
103
+ {%- else -%}
104
+ {{- "any" }}
105
+ {%- endif -%}
106
+ {%- endmacro -%}
107
+
108
+ {%- macro render_tool_namespace(namespace_name, tools) -%}
109
+ {{- "## " + namespace_name + "\n\n" }}
110
+ {{- "namespace " + namespace_name + " {\n\n" }}
111
+ {%- for tool in tools %}
112
+ {%- set tool = tool.function %}
113
+ {{- "// " + tool.description + "\n" }}
114
+ {{- "type "+ tool.name + " = " }}
115
+ {%- if tool.parameters and tool.parameters.properties %}
116
+ {{- "(_: {\n" }}
117
+ {%- for param_name, param_spec in tool.parameters.properties.items() %}
118
+ {%- if param_spec.description %}
119
+ {{- "// " + param_spec.description + "\n" }}
120
+ {%- endif %}
121
+ {{- param_name }}
122
+ {%- if param_name not in (tool.parameters.required or []) -%}
123
+ {{- "?" }}
124
+ {%- endif -%}
125
+ {{- ": " }}
126
+ {{- render_typescript_type(param_spec, tool.parameters.required or []) }}
127
+ {%- if param_spec.default is defined -%}
128
+ {%- if param_spec.enum %}
129
+ {{- ", // default: " + param_spec.default }}
130
+ {%- elif param_spec.oneOf %}
131
+ {{- "// default: " + param_spec.default }}
132
+ {%- else %}
133
+ {{- ", // default: " + param_spec.default|tojson }}
134
+ {%- endif -%}
135
+ {%- endif -%}
136
+ {%- if not loop.last %}
137
+ {{- ",\n" }}
138
+ {%- else %}
139
+ {{- ",\n" }}
140
+ {%- endif -%}
141
+ {%- endfor %}
142
+ {{- "}) => any;\n\n" }}
143
+ {%- else -%}
144
+ {{- "() => any;\n\n" }}
145
+ {%- endif -%}
146
+ {%- endfor %}
147
+ {{- "} // namespace " + namespace_name }}
148
+ {%- endmacro -%}
149
+
150
+ {%- macro render_builtin_tools(browser_tool, python_tool) -%}
151
+ {%- if browser_tool %}
152
+ {{- "## browser\n\n" }}
153
+ {{- "// Tool for browsing.\n" }}
154
+ {{- "// The `cursor` appears in brackets before each browsing display: `[{cursor}]`.\n" }}
155
+ {{- "// Cite information from the tool using the following format:\n" }}
156
+ {{- "// `【{cursor}†L{line_start}(-L{line_end})?】`, for example: `【6†L9-L11】` or `【8†L3】`.\n" }}
157
+ {{- "// Do not quote more than 10 words directly from the tool output.\n" }}
158
+ {{- "// sources=web (default: web)\n" }}
159
+ {{- "namespace browser {\n\n" }}
160
+ {{- "// Searches for information related to `query` and displays `topn` results.\n" }}
161
+ {{- "type search = (_: {\n" }}
162
+ {{- "query: string,\n" }}
163
+ {{- "topn?: number, // default: 10\n" }}
164
+ {{- "source?: string,\n" }}
165
+ {{- "}) => any;\n\n" }}
166
+ {{- "// Opens the link `id` from the page indicated by `cursor` starting at line number `loc`, showing `num_lines` lines.\n" }}
167
+ {{- "// Valid link ids are displayed with the formatting: `【{id}†.*】`.\n" }}
168
+ {{- "// If `cursor` is not provided, the most recent page is implied.\n" }}
169
+ {{- "// If `id` is a string, it is treated as a fully qualified URL associated with `source`.\n" }}
170
+ {{- "// If `loc` is not provided, the viewport will be positioned at the beginning of the document or centered on the most relevant passage, if available.\n" }}
171
+ {{- "// Use this function without `id` to scroll to a new location of an opened page.\n" }}
172
+ {{- "type open = (_: {\n" }}
173
+ {{- "id?: number | string, // default: -1\n" }}
174
+ {{- "cursor?: number, // default: -1\n" }}
175
+ {{- "loc?: number, // default: -1\n" }}
176
+ {{- "num_lines?: number, // default: -1\n" }}
177
+ {{- "view_source?: boolean, // default: false\n" }}
178
+ {{- "source?: string,\n" }}
179
+ {{- "}) => any;\n\n" }}
180
+ {{- "// Finds exact matches of `pattern` in the current page, or the page given by `cursor`.\n" }}
181
+ {{- "type find = (_: {\n" }}
182
+ {{- "pattern: string,\n" }}
183
+ {{- "cursor?: number, // default: -1\n" }}
184
+ {{- "}) => any;\n\n" }}
185
+ {{- "} // namespace browser\n\n" }}
186
+ {%- endif -%}
187
+
188
+ {%- if python_tool %}
189
+ {{- "## python\n\n" }}
190
+ {{- "Use this tool to execute Python code in your chain of thought. The code will not be shown to the user. This tool should be used for internal reasoning, but not for code that is intended to be visible to the user (e.g. when creating plots, tables, or files).\n\n" }}
191
+ {{- "When you send a message containing Python code to python, it will be executed in a stateful Jupyter notebook environment. python will respond with the output of the execution or time out after 120.0 seconds. The drive at '/mnt/data' can be used to save and persist user files. Internet access for this session is UNKNOWN. Depends on the cluster.\n\n" }}
192
+ {%- endif -%}
193
+ {%- endmacro -%}
194
+
195
+ {#- System Message Construction ============================================ #}
196
+ {%- macro build_system_message() -%}
197
+ {%- if model_identity is not defined %}
198
+ {%- set model_identity = "You are ChatGPT, a large language model trained by OpenAI." %}
199
+ {%- endif %}
200
+ {{- model_identity + "\n" }}
201
+ {{- "Knowledge cutoff: 2024-06\n" }}
202
+ {{- "Current date: " + strftime_now("%Y-%m-%d") + "\n\n" }}
203
+ {%- if reasoning_effort is not defined %}
204
+ {%- set reasoning_effort = "medium" %}
205
+ {%- endif %}
206
+ {{- "Reasoning: " + reasoning_effort + "\n\n" }}
207
+ {%- if builtin_tools %}
208
+ {{- "# Tools\n\n" }}
209
+ {%- set available_builtin_tools = namespace(browser=false, python=false) %}
210
+ {%- for tool in builtin_tools %}
211
+ {%- if tool == "browser" %}
212
+ {%- set available_builtin_tools.browser = true %}
213
+ {%- elif tool == "python" %}
214
+ {%- set available_builtin_tools.python = true %}
215
+ {%- endif %}
216
+ {%- endfor %}
217
+ {{- render_builtin_tools(available_builtin_tools.browser, available_builtin_tools.python) }}
218
+ {%- endif -%}
219
+ {{- "# Valid channels: analysis, commentary, final. Channel must be included for every message." }}
220
+ {%- if tools -%}
221
+ {{- "\nCalls to these tools must go to the commentary channel: 'functions'." }}
222
+ {%- endif -%}
223
+ {%- endmacro -%}
224
+
225
+ {#- Main Template Logic ================================================= #}
226
+ {#- Set defaults #}
227
+
228
+ {#- Render system message #}
229
+ {{- "<|start|>system<|message|>" }}
230
+ {{- build_system_message() }}
231
+ {{- "<|end|>" }}
232
+
233
+ {#- Extract developer message #}
234
+ {%- if messages[0].role == "developer" or messages[0].role == "system" %}
235
+ {%- set developer_message = messages[0].content %}
236
+ {%- set loop_messages = messages[1:] %}
237
+ {%- else %}
238
+ {%- set developer_message = "" %}
239
+ {%- set loop_messages = messages %}
240
+ {%- endif %}
241
+
242
+ {#- Render developer message #}
243
+ {%- if developer_message or tools %}
244
+ {{- "<|start|>developer<|message|>" }}
245
+ {%- if developer_message %}
246
+ {{- "# Instructions\n\n" }}
247
+ {{- developer_message }}
248
+ {{- "\n\n" }}
249
+ {%- endif %}
250
+ {%- if tools -%}
251
+ {{- "# Tools\n\n" }}
252
+ {{- render_tool_namespace("functions", tools) }}
253
+ {%- endif -%}
254
+ {{- "<|end|>" }}
255
+ {%- endif %}
256
+
257
+ {#- Render messages #}
258
+ {%- set last_tool_call = namespace(name=none) %}
259
+ {%- for message in loop_messages -%}
260
+ {#- At this point only assistant/user/tool messages should remain #}
261
+ {%- if message.role == 'assistant' -%}
262
+ {#- Checks to ensure the messages are being passed in the format we expect #}
263
+ {%- if "content" in message %}
264
+ {%- if "<|channel|>analysis<|message|>" in message.content or "<|channel|>final<|message|>" in message.content %}
265
+ {{- raise_exception("You have passed a message containing <|channel|> tags in the content field. Instead of doing this, you should pass analysis messages (the string between '<|message|>' and '<|end|>') in the 'thinking' field, and final messages (the string between '<|message|>' and '<|end|>') in the 'content' field.") }}
266
+ {%- endif %}
267
+ {%- endif %}
268
+ {%- if "thinking" in message %}
269
+ {%- if "<|channel|>analysis<|message|>" in message.thinking or "<|channel|>final<|message|>" in message.thinking %}
270
+ {{- raise_exception("You have passed a message containing <|channel|> tags in the thinking field. Instead of doing this, you should pass analysis messages (the string between '<|message|>' and '<|end|>') in the 'thinking' field, and final messages (the string between '<|message|>' and '<|end|>') in the 'content' field.") }}
271
+ {%- endif %}
272
+ {%- endif %}
273
+ {%- if "tool_calls" in message %}
274
+ {#- We need very careful handling here - we want to drop the tool call analysis message if the model #}
275
+ {#- has output a later <|final|> message, but otherwise we want to retain it. This is the only case #}
276
+ {#- when we render CoT/analysis messages in inference. #}
277
+ {%- set future_final_message = namespace(found=false) %}
278
+ {%- for future_message in loop_messages[loop.index:] %}
279
+ {%- if future_message.role == 'assistant' and "tool_calls" not in future_message %}
280
+ {%- set future_final_message.found = true %}
281
+ {%- endif %}
282
+ {%- endfor %}
283
+ {#- We assume max 1 tool call per message, and so we infer the tool call name #}
284
+ {#- in "tool" messages from the most recent assistant tool call name #}
285
+ {%- set tool_call = message.tool_calls[0] %}
286
+ {%- if tool_call.function %}
287
+ {%- set tool_call = tool_call.function %}
288
+ {%- endif %}
289
+ {%- if message.content and message.thinking %}
290
+ {{- raise_exception("Cannot pass both content and thinking in an assistant message with tool calls! Put the analysis message in one or the other, but not both.") }}
291
+ {%- elif message.content and not future_final_message.found %}
292
+ {{- "<|start|>assistant<|channel|>analysis<|message|>" + message.content + "<|end|>" }}
293
+ {%- elif message.thinking and not future_final_message.found %}
294
+ {{- "<|start|>assistant<|channel|>analysis<|message|>" + message.thinking + "<|end|>" }}
295
+ {%- endif %}
296
+ {{- "<|start|>assistant to=" }}
297
+ {{- "functions." + tool_call.name + "<|channel|>commentary " }}
298
+ {{- (tool_call.content_type if tool_call.content_type is defined else "json") + "<|message|>" }}
299
+ {{- tool_call.arguments|tojson }}
300
+ {{- "<|call|>" }}
301
+ {%- set last_tool_call.name = tool_call.name %}
302
+ {%- elif loop.last and not add_generation_prompt %}
303
+ {#- Only render the CoT if the final turn is an assistant turn and add_generation_prompt is false #}
304
+ {#- This is a situation that should only occur in training, never in inference. #}
305
+ {%- if "thinking" in message %}
306
+ {{- "<|start|>assistant<|channel|>analysis<|message|>" + message.thinking + "<|end|>" }}
307
+ {%- endif %}
308
+ {#- <|return|> indicates the end of generation, but <|end|> does not #}
309
+ {#- <|return|> should never be an input to the model, but we include it as the final token #}
310
+ {#- when training, so the model learns to emit it. #}
311
+ {{- "<|start|>assistant<|channel|>final<|message|>" + message.content + "<|return|>" }}
312
+ {%- else %}
313
+ {#- CoT is dropped during all previous turns, so we never render it for inference #}
314
+ {{- "<|start|>assistant<|channel|>final<|message|>" + message.content + "<|end|>" }}
315
+ {%- set last_tool_call.name = none %}
316
+ {%- endif %}
317
+ {%- elif message.role == 'tool' -%}
318
+ {%- if last_tool_call.name is none %}
319
+ {{- raise_exception("Message has tool role, but there was no previous assistant message with a tool call!") }}
320
+ {%- endif %}
321
+ {{- "<|start|>functions." + last_tool_call.name }}
322
+ {{- " to=assistant<|channel|>commentary<|message|>" + message.content|tojson + "<|end|>" }}
323
+ {%- elif message.role == 'user' -%}
324
+ {{- "<|start|>user<|message|>" + message.content + "<|end|>" }}
325
+ {%- endif -%}
326
+ {%- endfor -%}
327
+
328
+ {#- Generation prompt #}
329
+ {%- if add_generation_prompt -%}
330
+ <|start|>assistant
331
+ {%- endif -%}
hallucination_detection/lora/gpt-oss-20b/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8264e5c7ebdd42fabfa068b7a4e96981d16384ba70d7e80d338651f0ad2d41e
3
+ size 63865547
hallucination_detection/lora/gpt-oss-20b/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3a2ed5978228f1fbe612fb8eb9247796a9df085bc9e5f3e361ae3560c189d80
3
+ size 16389
hallucination_detection/lora/gpt-oss-20b/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a15884dd1e21536a264a6fa6f3502e19743f8a8c890a1b169656524c1900ddd4
3
+ size 16389
hallucination_detection/lora/gpt-oss-20b/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45451ad565e3f026c0025df362a871a6f4013e8ff222a547231faf76105e18e3
3
+ size 16389
hallucination_detection/lora/gpt-oss-20b/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:072a2828ede6f79e42f2c07571ab01bec72c30e3de81d1b74925f65ea04b6b94
3
+ size 16389
hallucination_detection/lora/gpt-oss-20b/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:054c242a579f2b00e2053834e975fdc4f2d3ae14fef0fa0658ed1e06efca80b5
3
+ size 16389
hallucination_detection/lora/gpt-oss-20b/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a073bb78c2f0f6f57cf9cf0268369ceb6f8b50a081829d3f0e50a43d49683cd6
3
+ size 16389
hallucination_detection/lora/gpt-oss-20b/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a68d31f225a3ea15cd75e7867ff7b4f714bfb8448271b7b9a5d7bdbdc2ad01e
3
+ size 16389
hallucination_detection/lora/gpt-oss-20b/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d99e278e3f674055289809d716858615eca0867e7e29f6c740e1cafdb7d0884d
3
+ size 16389
hallucination_detection/lora/gpt-oss-20b/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7240971cdfa6696d6d623c794d4d528d09d40a5bd6c94ee9f26f75cb0e2492ed
3
+ size 1465
hallucination_detection/lora/gpt-oss-20b/special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|return|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
hallucination_detection/lora/gpt-oss-20b/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0614fe83cadab421296e664e1f48f4261fa8fef6e03e63bb75c20f38e37d07d3
3
+ size 27868174
hallucination_detection/lora/gpt-oss-20b/tokenizer_config.json ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "199998": {
4
+ "content": "<|startoftext|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "199999": {
12
+ "content": "<|endoftext|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "200000": {
20
+ "content": "<|reserved_200000|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "200001": {
28
+ "content": "<|reserved_200001|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "200002": {
36
+ "content": "<|return|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "200003": {
44
+ "content": "<|constrain|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "200004": {
52
+ "content": "<|reserved_200004|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "200005": {
60
+ "content": "<|channel|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "200006": {
68
+ "content": "<|start|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "200007": {
76
+ "content": "<|end|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "200008": {
84
+ "content": "<|message|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "200009": {
92
+ "content": "<|reserved_200009|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "200010": {
100
+ "content": "<|reserved_200010|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "200011": {
108
+ "content": "<|reserved_200011|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "200012": {
116
+ "content": "<|call|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "200013": {
124
+ "content": "<|reserved_200013|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "200014": {
132
+ "content": "<|reserved_200014|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "200015": {
140
+ "content": "<|reserved_200015|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "200016": {
148
+ "content": "<|reserved_200016|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "200017": {
156
+ "content": "<|reserved_200017|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "200018": {
164
+ "content": "<|endofprompt|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ }
171
+ },
172
+ "bos_token": "<|startoftext|>",
173
+ "clean_up_tokenization_spaces": false,
174
+ "eos_token": "<|return|>",
175
+ "extra_special_tokens": {},
176
+ "model_input_names": [
177
+ "input_ids",
178
+ "attention_mask"
179
+ ],
180
+ "model_max_length": 1000000000000000019884624838656,
181
+ "pad_token": "<|endoftext|>",
182
+ "padding_side": "right",
183
+ "split_special_tokens": false,
184
+ "tokenizer_class": "PreTrainedTokenizerFast"
185
+ }
hallucination_detection/lora/gpt-oss-20b/trainer_state.json ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 4.12796697626419,
6
+ "eval_steps": 1000,
7
+ "global_step": 4000,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 1.0319917440660475,
14
+ "grad_norm": 0.6404266953468323,
15
+ "learning_rate": 5.154798761609907e-05,
16
+ "loss": 0.3551,
17
+ "step": 1000
18
+ },
19
+ {
20
+ "epoch": 1.0319917440660475,
21
+ "eval_loss": 0.2621232867240906,
22
+ "eval_runtime": 285.996,
23
+ "eval_samples_per_second": 6.025,
24
+ "eval_steps_per_second": 0.755,
25
+ "step": 1000
26
+ },
27
+ {
28
+ "epoch": 2.063983488132095,
29
+ "grad_norm": 0.5686078071594238,
30
+ "learning_rate": 9.9996982116359e-05,
31
+ "loss": 0.2362,
32
+ "step": 2000
33
+ },
34
+ {
35
+ "epoch": 2.063983488132095,
36
+ "eval_loss": 0.2504255175590515,
37
+ "eval_runtime": 285.5907,
38
+ "eval_samples_per_second": 6.033,
39
+ "eval_steps_per_second": 0.756,
40
+ "step": 2000
41
+ },
42
+ {
43
+ "epoch": 3.0959752321981426,
44
+ "grad_norm": 0.510012686252594,
45
+ "learning_rate": 9.908976018041207e-05,
46
+ "loss": 0.2221,
47
+ "step": 3000
48
+ },
49
+ {
50
+ "epoch": 3.0959752321981426,
51
+ "eval_loss": 0.2474418580532074,
52
+ "eval_runtime": 285.7076,
53
+ "eval_samples_per_second": 6.031,
54
+ "eval_steps_per_second": 0.756,
55
+ "step": 3000
56
+ },
57
+ {
58
+ "epoch": 4.12796697626419,
59
+ "grad_norm": 0.4461008608341217,
60
+ "learning_rate": 9.659427070509466e-05,
61
+ "loss": 0.2102,
62
+ "step": 4000
63
+ },
64
+ {
65
+ "epoch": 4.12796697626419,
66
+ "eval_loss": 0.247001051902771,
67
+ "eval_runtime": 285.5088,
68
+ "eval_samples_per_second": 6.035,
69
+ "eval_steps_per_second": 0.757,
70
+ "step": 4000
71
+ }
72
+ ],
73
+ "logging_steps": 1000,
74
+ "max_steps": 19380,
75
+ "num_input_tokens_seen": 0,
76
+ "num_train_epochs": 20,
77
+ "save_steps": 1000,
78
+ "stateful_callbacks": {
79
+ "TrainerControl": {
80
+ "args": {
81
+ "should_epoch_stop": false,
82
+ "should_evaluate": false,
83
+ "should_log": false,
84
+ "should_save": true,
85
+ "should_training_stop": false
86
+ },
87
+ "attributes": {}
88
+ }
89
+ },
90
+ "total_flos": 1.8354072285918265e+19,
91
+ "train_batch_size": 1,
92
+ "trial_name": null,
93
+ "trial_params": null
94
+ }
hallucination_detection/lora/gpt-oss-20b/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e616a7bb843f281b7352f0ea5d7bd8511e5bb1835765c40f3dcb51d17d0304f
3
+ size 6225
hallucination_detection/lora/granite-3.3-2b-instruct/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ibm-granite/granite-3.3-2b-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
hallucination_detection/lora/granite-3.3-2b-instruct/adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "ibm-granite/granite-3.3-2b-instruct",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 16,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "gate_proj",
28
+ "q_proj",
29
+ "k_proj",
30
+ "v_proj",
31
+ "up_proj",
32
+ "o_proj",
33
+ "down_proj"
34
+ ],
35
+ "task_type": "CAUSAL_LM",
36
+ "trainable_token_indices": null,
37
+ "use_dora": false,
38
+ "use_rslora": false
39
+ }
hallucination_detection/lora/granite-3.3-2b-instruct/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f55c95cd9d7601d6c05fa039ad67c02b04706c28b6541f1da6b400000928ee19
3
+ size 112796488
hallucination_detection/lora/granite-3.3-2b-instruct/added_tokens.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|end_of_cite|>": 49156,
3
+ "<|end_of_plugin|>": 49158,
4
+ "<|end_of_role|>": 49153,
5
+ "<|start_of_cite|>": 49155,
6
+ "<|start_of_plugin|>": 49157,
7
+ "<|start_of_role|>": 49152,
8
+ "<|tool_call|>": 49154
9
+ }
hallucination_detection/lora/granite-3.3-2b-instruct/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
hallucination_detection/lora/granite-3.3-2b-instruct/optimizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:073ccfaa3db4d07a0786b134efcbee0edb7cc53b76873bcfb5cb6833a24f51ca
3
+ size 226010850
hallucination_detection/lora/granite-3.3-2b-instruct/pytorch_model_fsdp.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c887506150ce52ecaff8ebacd7785e2dafbf1ff05f12e01919413e157cc084a
3
+ size 112930382
hallucination_detection/lora/granite-3.3-2b-instruct/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e69ecb0a6c6f67ea7bee6ad1393e57a30d1d9645372cc24114e3c4b42f540de
3
+ size 15984
hallucination_detection/lora/granite-3.3-2b-instruct/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9eac70c1aa5c4aec18ed031dd5e5d7b86b59e4d46384e6d90c595e0e3cabe3c6
3
+ size 15984
hallucination_detection/lora/granite-3.3-2b-instruct/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd697eaa921bb4a57ffdc0c4cec2ea3c56f76143e828478195d42b277684d055
3
+ size 15984
hallucination_detection/lora/granite-3.3-2b-instruct/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:248bded13ac83c62167e222fbd7f5395b84c63cfb8dab56f2ad6f9abdcb58647
3
+ size 15984
hallucination_detection/lora/granite-3.3-2b-instruct/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb2ab31377ae55e76ca9c85c92977c5471b83baae233735e51f96d022c56401f
3
+ size 15984
hallucination_detection/lora/granite-3.3-2b-instruct/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:667f1d70cf10d06e67a2308e61dfdd96953332b8a6b5ded6d40711e254000544
3
+ size 15984
hallucination_detection/lora/granite-3.3-2b-instruct/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:196a7fa7c9e4c574119f095e67977d0e21047c107640bcb1b44ae73153be0277
3
+ size 15984
hallucination_detection/lora/granite-3.3-2b-instruct/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f532d109bad249d59e6639d13af2ff95e1d9cf0dc60d8d70c40c0c044ddc376
3
+ size 15984
hallucination_detection/lora/granite-3.3-2b-instruct/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:144450d52f4dd6083f936605318b36a6af37d10e8864513b81bade554fec7d2b
3
+ size 1064
hallucination_detection/lora/granite-3.3-2b-instruct/special_tokens_map.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|start_of_role|>",
4
+ "<|end_of_role|>",
5
+ "<|tool_call|>",
6
+ "<|start_of_cite|>",
7
+ "<|end_of_cite|>",
8
+ "<|start_of_plugin|>",
9
+ "<|end_of_plugin|>"
10
+ ],
11
+ "bos_token": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "eos_token": {
19
+ "content": "<|end_of_text|>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "pad_token": {
26
+ "content": "<|end_of_text|>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ },
32
+ "unk_token": {
33
+ "content": "<|end_of_text|>",
34
+ "lstrip": false,
35
+ "normalized": false,
36
+ "rstrip": false,
37
+ "single_word": false
38
+ }
39
+ }
hallucination_detection/lora/granite-3.3-2b-instruct/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
hallucination_detection/lora/granite-3.3-2b-instruct/tokenizer_config.json ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<|end_of_text|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<fim_prefix>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "<fim_middle>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<fim_suffix>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "4": {
38
+ "content": "<fim_pad>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "5": {
46
+ "content": "<filename>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "6": {
54
+ "content": "<gh_stars>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "7": {
62
+ "content": "<issue_start>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "8": {
70
+ "content": "<issue_comment>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "9": {
78
+ "content": "<issue_closed>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "10": {
86
+ "content": "<jupyter_start>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "11": {
94
+ "content": "<jupyter_text>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "12": {
102
+ "content": "<jupyter_code>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "13": {
110
+ "content": "<jupyter_output>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "14": {
118
+ "content": "<empty_output>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": true
124
+ },
125
+ "15": {
126
+ "content": "<commit_before>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": true
132
+ },
133
+ "16": {
134
+ "content": "<commit_msg>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": true
140
+ },
141
+ "17": {
142
+ "content": "<commit_after>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": true
148
+ },
149
+ "18": {
150
+ "content": "<reponame>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": true
156
+ },
157
+ "49152": {
158
+ "content": "<|start_of_role|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": true
164
+ },
165
+ "49153": {
166
+ "content": "<|end_of_role|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": true
172
+ },
173
+ "49154": {
174
+ "content": "<|tool_call|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": true
180
+ },
181
+ "49155": {
182
+ "content": "<|start_of_cite|>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": true
188
+ },
189
+ "49156": {
190
+ "content": "<|end_of_cite|>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": true
196
+ },
197
+ "49157": {
198
+ "content": "<|start_of_plugin|>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": true
204
+ },
205
+ "49158": {
206
+ "content": "<|end_of_plugin|>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": true
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|start_of_role|>",
216
+ "<|end_of_role|>",
217
+ "<|tool_call|>",
218
+ "<|start_of_cite|>",
219
+ "<|end_of_cite|>",
220
+ "<|start_of_plugin|>",
221
+ "<|end_of_plugin|>"
222
+ ],
223
+ "bos_token": "<|end_of_text|>",
224
+ "chat_template": "{# Alias tools -> available_tools #}\n{%- if tools and not available_tools -%}\n {%- set available_tools = tools -%}\n{%- endif -%}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content'] %}\n {%- set loop_messages = messages[1:] %}\n {%- else %}\n {%- set system_message = \"Knowledge Cutoff Date: April 2024.\nToday's Date: \" + strftime_now('%B %d, %Y') + \".\nYou are Granite, developed by IBM.\" %}\n {%- if available_tools and documents %}\n {%- set system_message = system_message + \" You are a helpful assistant with access to the following tools. When a tool is required to answer the user's query, respond only with <|tool_call|> followed by a JSON list of tools used. If a tool does not exist in the provided list of tools, notify the user that you do not have the ability to fulfill the request.\nWrite the response to the user's input by strictly aligning with the facts in the provided documents. If the information needed to answer the question is not available in the documents, inform the user that the question cannot be answered based on the available data.\" %}\n {%- elif available_tools %}\n {%- set system_message = system_message + \" You are a helpful assistant with access to the following tools. When a tool is required to answer the user's query, respond only with <|tool_call|> followed by a JSON list of tools used. If a tool does not exist in the provided list of tools, notify the user that you do not have the ability to fulfill the request.\" %}\n {%- elif documents %}\n {%- set system_message = system_message + \" Write the response to the user's input by strictly aligning with the facts in the provided documents. If the information needed to answer the question is not available in the documents, inform the user that the question cannot be answered based on the available data.\" %}\n {%- elif thinking %}\n {%- set system_message = system_message + \" You are a helpful AI assistant.\nRespond to every user query in a comprehensive and detailed way. You can write down your thoughts and reasoning process before responding. In the thought process, engage in a comprehensive cycle of analysis, summarization, exploration, reassessment, reflection, backtracing, and iteration to develop well-considered thinking process. In the response section, based on various attempts, explorations, and reflections from the thoughts section, systematically present the final solution that you deem correct. The response should summarize the thought process. Write your thoughts between <think></think> and write your response between <response></response> for each user query.\" %}\n {%- else %}\n {%- set system_message = system_message + \" You are a helpful AI assistant.\" %}\n {%- endif %}\n {%- if 'citations' in controls and documents %}\n {%- set system_message = system_message + '\nUse the symbols <|start_of_cite|> and <|end_of_cite|> to indicate when a fact comes from a document in the search result, e.g <|start_of_cite|> {document_id: 1}my fact <|end_of_cite|> for a fact from document 1. Afterwards, list all the citations with their corresponding documents in an ordered list.' %}\n {%- endif %}\n {%- if 'hallucinations' in controls and documents %}\n {%- set system_message = system_message + '\nFinally, after the response is written, include a numbered list of sentences from the response with a corresponding risk value that are hallucinated and not based in the documents.' %}\n {%- endif %}\n {%- set loop_messages = messages %}\n {%- endif %}\n {{- '<|start_of_role|>system<|end_of_role|>' + system_message + '<|end_of_text|>\n' }}\n {%- if available_tools %}\n {{- '<|start_of_role|>available_tools<|end_of_role|>' }}\n {{- available_tools | tojson(indent=4) }}\n {{- '<|end_of_text|>\n' }}\n {%- endif %}\n {%- if documents %}\n {%- for document in documents %}\n {{- '<|start_of_role|>document {\"document_id\": \"' + document['doc_id'] | string + '\"}<|end_of_role|>\n' }}\n {{- document['text'] }}\n {{- '<|end_of_text|>\n' }}\n {%- endfor %}\n {%- endif %}\n {%- for message in loop_messages %}\n {{- '<|start_of_role|>' + message['role'] + '<|end_of_role|>' + message['content'] + '<|end_of_text|>\n' }}\n {%- if loop.last and add_generation_prompt %}\n {{- '<|start_of_role|>assistant' }}\n {%- if controls %}\n {{- ' ' + controls | tojson()}}\n {%- endif %}\n {{- '<|end_of_role|>' }}\n {%- endif %}\n {%- endfor %}",
225
+ "clean_up_tokenization_spaces": true,
226
+ "eos_token": "<|end_of_text|>",
227
+ "errors": "replace",
228
+ "extra_special_tokens": {},
229
+ "legacy": true,
230
+ "model_max_length": 9223372036854775807,
231
+ "pad_token": "<|end_of_text|>",
232
+ "padding_side": "left",
233
+ "tokenizer_class": "GPT2Tokenizer",
234
+ "unk_token": "<|end_of_text|>",
235
+ "vocab_size": 49152
236
+ }
hallucination_detection/lora/granite-3.3-2b-instruct/trainer_state.json ADDED
@@ -0,0 +1,527 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 29.927760577915375,
6
+ "eval_steps": 1000,
7
+ "global_step": 29000,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 1.0319917440660475,
14
+ "grad_norm": 0.32089266180992126,
15
+ "learning_rate": 0.0009656002751977985,
16
+ "loss": 1.0805,
17
+ "step": 1000
18
+ },
19
+ {
20
+ "epoch": 1.0319917440660475,
21
+ "eval_loss": 1.0923641920089722,
22
+ "eval_mean_token_accuracy": 0.7410744825998942,
23
+ "eval_num_tokens": 47412692.0,
24
+ "eval_runtime": 57.5939,
25
+ "eval_samples_per_second": 29.916,
26
+ "eval_steps_per_second": 0.469,
27
+ "step": 1000
28
+ },
29
+ {
30
+ "epoch": 2.063983488132095,
31
+ "grad_norm": 0.3891073763370514,
32
+ "learning_rate": 0.0009312005503955968,
33
+ "loss": 0.9843,
34
+ "step": 2000
35
+ },
36
+ {
37
+ "epoch": 2.063983488132095,
38
+ "eval_loss": 1.057154655456543,
39
+ "eval_mean_token_accuracy": 0.7485561701986525,
40
+ "eval_num_tokens": 94769417.0,
41
+ "eval_runtime": 56.2287,
42
+ "eval_samples_per_second": 30.643,
43
+ "eval_steps_per_second": 0.48,
44
+ "step": 2000
45
+ },
46
+ {
47
+ "epoch": 3.0959752321981426,
48
+ "grad_norm": 0.3925711512565613,
49
+ "learning_rate": 0.0008968008255933953,
50
+ "loss": 0.9407,
51
+ "step": 3000
52
+ },
53
+ {
54
+ "epoch": 3.0959752321981426,
55
+ "eval_loss": 1.02516508102417,
56
+ "eval_mean_token_accuracy": 0.756507072183821,
57
+ "eval_num_tokens": 142421609.0,
58
+ "eval_runtime": 56.2567,
59
+ "eval_samples_per_second": 30.627,
60
+ "eval_steps_per_second": 0.48,
61
+ "step": 3000
62
+ },
63
+ {
64
+ "epoch": 4.12796697626419,
65
+ "grad_norm": 0.5045697093009949,
66
+ "learning_rate": 0.0008624011007911937,
67
+ "loss": 0.9,
68
+ "step": 4000
69
+ },
70
+ {
71
+ "epoch": 4.12796697626419,
72
+ "eval_loss": 1.0085307359695435,
73
+ "eval_mean_token_accuracy": 0.7603880299462212,
74
+ "eval_num_tokens": 189897196.0,
75
+ "eval_runtime": 56.2402,
76
+ "eval_samples_per_second": 30.636,
77
+ "eval_steps_per_second": 0.48,
78
+ "step": 4000
79
+ },
80
+ {
81
+ "epoch": 5.159958720330238,
82
+ "grad_norm": 0.39714938402175903,
83
+ "learning_rate": 0.0008280013759889921,
84
+ "loss": 0.8717,
85
+ "step": 5000
86
+ },
87
+ {
88
+ "epoch": 5.159958720330238,
89
+ "eval_loss": 0.9817115068435669,
90
+ "eval_mean_token_accuracy": 0.7660076551967197,
91
+ "eval_num_tokens": 237355707.0,
92
+ "eval_runtime": 56.2279,
93
+ "eval_samples_per_second": 30.643,
94
+ "eval_steps_per_second": 0.48,
95
+ "step": 5000
96
+ },
97
+ {
98
+ "epoch": 6.191950464396285,
99
+ "grad_norm": 0.41504770517349243,
100
+ "learning_rate": 0.0007936016511867905,
101
+ "loss": 0.8433,
102
+ "step": 6000
103
+ },
104
+ {
105
+ "epoch": 6.191950464396285,
106
+ "eval_loss": 0.9733635783195496,
107
+ "eval_mean_token_accuracy": 0.7682124994419239,
108
+ "eval_num_tokens": 284720183.0,
109
+ "eval_runtime": 56.2137,
110
+ "eval_samples_per_second": 30.651,
111
+ "eval_steps_per_second": 0.48,
112
+ "step": 6000
113
+ },
114
+ {
115
+ "epoch": 7.223942208462332,
116
+ "grad_norm": 0.40874141454696655,
117
+ "learning_rate": 0.000759201926384589,
118
+ "loss": 0.8228,
119
+ "step": 7000
120
+ },
121
+ {
122
+ "epoch": 7.223942208462332,
123
+ "eval_loss": 0.9546017646789551,
124
+ "eval_mean_token_accuracy": 0.7724185784657797,
125
+ "eval_num_tokens": 332037913.0,
126
+ "eval_runtime": 56.2568,
127
+ "eval_samples_per_second": 30.627,
128
+ "eval_steps_per_second": 0.48,
129
+ "step": 7000
130
+ },
131
+ {
132
+ "epoch": 8.25593395252838,
133
+ "grad_norm": 0.3823445737361908,
134
+ "learning_rate": 0.0007248022015823874,
135
+ "loss": 0.7951,
136
+ "step": 8000
137
+ },
138
+ {
139
+ "epoch": 8.25593395252838,
140
+ "eval_loss": 0.9385991096496582,
141
+ "eval_mean_token_accuracy": 0.7759647259005794,
142
+ "eval_num_tokens": 379810696.0,
143
+ "eval_runtime": 56.2299,
144
+ "eval_samples_per_second": 30.642,
145
+ "eval_steps_per_second": 0.48,
146
+ "step": 8000
147
+ },
148
+ {
149
+ "epoch": 9.287925696594428,
150
+ "grad_norm": 0.4290030896663666,
151
+ "learning_rate": 0.0006904024767801858,
152
+ "loss": 0.7738,
153
+ "step": 9000
154
+ },
155
+ {
156
+ "epoch": 9.287925696594428,
157
+ "eval_loss": 0.9202907681465149,
158
+ "eval_mean_token_accuracy": 0.7804138174763432,
159
+ "eval_num_tokens": 427128704.0,
160
+ "eval_runtime": 56.2231,
161
+ "eval_samples_per_second": 30.646,
162
+ "eval_steps_per_second": 0.48,
163
+ "step": 9000
164
+ },
165
+ {
166
+ "epoch": 10.319917440660475,
167
+ "grad_norm": 0.4692038297653198,
168
+ "learning_rate": 0.0006560027519779842,
169
+ "loss": 0.7508,
170
+ "step": 10000
171
+ },
172
+ {
173
+ "epoch": 10.319917440660475,
174
+ "eval_loss": 0.9198392629623413,
175
+ "eval_mean_token_accuracy": 0.7807041119646143,
176
+ "eval_num_tokens": 474203705.0,
177
+ "eval_runtime": 56.24,
178
+ "eval_samples_per_second": 30.637,
179
+ "eval_steps_per_second": 0.48,
180
+ "step": 10000
181
+ },
182
+ {
183
+ "epoch": 11.351909184726523,
184
+ "grad_norm": 0.37863677740097046,
185
+ "learning_rate": 0.0006216030271757827,
186
+ "loss": 0.7307,
187
+ "step": 11000
188
+ },
189
+ {
190
+ "epoch": 11.351909184726523,
191
+ "eval_loss": 0.8965745568275452,
192
+ "eval_mean_token_accuracy": 0.7863567449428417,
193
+ "eval_num_tokens": 521982652.0,
194
+ "eval_runtime": 56.2438,
195
+ "eval_samples_per_second": 30.634,
196
+ "eval_steps_per_second": 0.48,
197
+ "step": 11000
198
+ },
199
+ {
200
+ "epoch": 12.38390092879257,
201
+ "grad_norm": 0.48203784227371216,
202
+ "learning_rate": 0.000587203302373581,
203
+ "loss": 0.7064,
204
+ "step": 12000
205
+ },
206
+ {
207
+ "epoch": 12.38390092879257,
208
+ "eval_loss": 0.8885735869407654,
209
+ "eval_mean_token_accuracy": 0.788471934971986,
210
+ "eval_num_tokens": 569418100.0,
211
+ "eval_runtime": 56.2462,
212
+ "eval_samples_per_second": 30.633,
213
+ "eval_steps_per_second": 0.48,
214
+ "step": 12000
215
+ },
216
+ {
217
+ "epoch": 13.415892672858616,
218
+ "grad_norm": 0.44372233748435974,
219
+ "learning_rate": 0.0005528035775713794,
220
+ "loss": 0.6881,
221
+ "step": 13000
222
+ },
223
+ {
224
+ "epoch": 13.415892672858616,
225
+ "eval_loss": 0.8669394850730896,
226
+ "eval_mean_token_accuracy": 0.7939398730242694,
227
+ "eval_num_tokens": 617201808.0,
228
+ "eval_runtime": 56.2135,
229
+ "eval_samples_per_second": 30.651,
230
+ "eval_steps_per_second": 0.48,
231
+ "step": 13000
232
+ },
233
+ {
234
+ "epoch": 14.447884416924664,
235
+ "grad_norm": 0.4749726355075836,
236
+ "learning_rate": 0.0005184038527691779,
237
+ "loss": 0.6584,
238
+ "step": 14000
239
+ },
240
+ {
241
+ "epoch": 14.447884416924664,
242
+ "eval_loss": 0.8618115782737732,
243
+ "eval_mean_token_accuracy": 0.7957073405936912,
244
+ "eval_num_tokens": 664323509.0,
245
+ "eval_runtime": 56.2278,
246
+ "eval_samples_per_second": 30.643,
247
+ "eval_steps_per_second": 0.48,
248
+ "step": 14000
249
+ },
250
+ {
251
+ "epoch": 15.479876160990711,
252
+ "grad_norm": 0.4324134588241577,
253
+ "learning_rate": 0.00048400412796697627,
254
+ "loss": 0.6407,
255
+ "step": 15000
256
+ },
257
+ {
258
+ "epoch": 15.479876160990711,
259
+ "eval_loss": 0.8422237038612366,
260
+ "eval_mean_token_accuracy": 0.8001910183164809,
261
+ "eval_num_tokens": 711746029.0,
262
+ "eval_runtime": 56.2488,
263
+ "eval_samples_per_second": 30.632,
264
+ "eval_steps_per_second": 0.48,
265
+ "step": 15000
266
+ },
267
+ {
268
+ "epoch": 16.51186790505676,
269
+ "grad_norm": 0.4769855737686157,
270
+ "learning_rate": 0.00044960440316477466,
271
+ "loss": 0.6115,
272
+ "step": 16000
273
+ },
274
+ {
275
+ "epoch": 16.51186790505676,
276
+ "eval_loss": 0.8330299854278564,
277
+ "eval_mean_token_accuracy": 0.8031680098286381,
278
+ "eval_num_tokens": 759095613.0,
279
+ "eval_runtime": 56.2567,
280
+ "eval_samples_per_second": 30.627,
281
+ "eval_steps_per_second": 0.48,
282
+ "step": 16000
283
+ },
284
+ {
285
+ "epoch": 17.54385964912281,
286
+ "grad_norm": 0.4796912968158722,
287
+ "learning_rate": 0.0004152046783625731,
288
+ "loss": 0.5963,
289
+ "step": 17000
290
+ },
291
+ {
292
+ "epoch": 17.54385964912281,
293
+ "eval_loss": 0.8192445635795593,
294
+ "eval_mean_token_accuracy": 0.80625847975413,
295
+ "eval_num_tokens": 806645056.0,
296
+ "eval_runtime": 56.2357,
297
+ "eval_samples_per_second": 30.639,
298
+ "eval_steps_per_second": 0.48,
299
+ "step": 17000
300
+ },
301
+ {
302
+ "epoch": 18.575851393188856,
303
+ "grad_norm": 0.5161197781562805,
304
+ "learning_rate": 0.00038080495356037155,
305
+ "loss": 0.573,
306
+ "step": 18000
307
+ },
308
+ {
309
+ "epoch": 18.575851393188856,
310
+ "eval_loss": 0.8079583644866943,
311
+ "eval_mean_token_accuracy": 0.8098772190235279,
312
+ "eval_num_tokens": 854026739.0,
313
+ "eval_runtime": 56.2464,
314
+ "eval_samples_per_second": 30.633,
315
+ "eval_steps_per_second": 0.48,
316
+ "step": 18000
317
+ },
318
+ {
319
+ "epoch": 19.607843137254903,
320
+ "grad_norm": 0.46244215965270996,
321
+ "learning_rate": 0.00034640522875816995,
322
+ "loss": 0.547,
323
+ "step": 19000
324
+ },
325
+ {
326
+ "epoch": 19.607843137254903,
327
+ "eval_loss": 0.7954151034355164,
328
+ "eval_mean_token_accuracy": 0.8126830833929556,
329
+ "eval_num_tokens": 901217256.0,
330
+ "eval_runtime": 56.2302,
331
+ "eval_samples_per_second": 30.642,
332
+ "eval_steps_per_second": 0.48,
333
+ "step": 19000
334
+ },
335
+ {
336
+ "epoch": 20.63983488132095,
337
+ "grad_norm": 0.46430373191833496,
338
+ "learning_rate": 0.0003120055039559684,
339
+ "loss": 0.5287,
340
+ "step": 20000
341
+ },
342
+ {
343
+ "epoch": 20.63983488132095,
344
+ "eval_loss": 0.7813732624053955,
345
+ "eval_mean_token_accuracy": 0.8175128102302551,
346
+ "eval_num_tokens": 949060821.0,
347
+ "eval_runtime": 56.23,
348
+ "eval_samples_per_second": 30.642,
349
+ "eval_steps_per_second": 0.48,
350
+ "step": 20000
351
+ },
352
+ {
353
+ "epoch": 21.671826625387,
354
+ "grad_norm": 0.45292457938194275,
355
+ "learning_rate": 0.0002776057791537668,
356
+ "loss": 0.4962,
357
+ "step": 21000
358
+ },
359
+ {
360
+ "epoch": 21.671826625387,
361
+ "eval_loss": 0.7719714641571045,
362
+ "eval_mean_token_accuracy": 0.8197157471268265,
363
+ "eval_num_tokens": 996298969.0,
364
+ "eval_runtime": 56.2238,
365
+ "eval_samples_per_second": 30.645,
366
+ "eval_steps_per_second": 0.48,
367
+ "step": 21000
368
+ },
369
+ {
370
+ "epoch": 22.703818369453046,
371
+ "grad_norm": 0.40682360529899597,
372
+ "learning_rate": 0.0002432060543515652,
373
+ "loss": 0.4802,
374
+ "step": 22000
375
+ },
376
+ {
377
+ "epoch": 22.703818369453046,
378
+ "eval_loss": 0.763215184211731,
379
+ "eval_mean_token_accuracy": 0.8226491543981764,
380
+ "eval_num_tokens": 1043700207.0,
381
+ "eval_runtime": 56.2399,
382
+ "eval_samples_per_second": 30.637,
383
+ "eval_steps_per_second": 0.48,
384
+ "step": 22000
385
+ },
386
+ {
387
+ "epoch": 23.735810113519094,
388
+ "grad_norm": 0.4373944401741028,
389
+ "learning_rate": 0.0002088063295493636,
390
+ "loss": 0.4576,
391
+ "step": 23000
392
+ },
393
+ {
394
+ "epoch": 23.735810113519094,
395
+ "eval_loss": 0.7539334297180176,
396
+ "eval_mean_token_accuracy": 0.825957163616463,
397
+ "eval_num_tokens": 1091208980.0,
398
+ "eval_runtime": 56.2128,
399
+ "eval_samples_per_second": 30.651,
400
+ "eval_steps_per_second": 0.48,
401
+ "step": 23000
402
+ },
403
+ {
404
+ "epoch": 24.76780185758514,
405
+ "grad_norm": 0.5636469721794128,
406
+ "learning_rate": 0.000174406604747162,
407
+ "loss": 0.431,
408
+ "step": 24000
409
+ },
410
+ {
411
+ "epoch": 24.76780185758514,
412
+ "eval_loss": 0.7444979548454285,
413
+ "eval_mean_token_accuracy": 0.8288741928559763,
414
+ "eval_num_tokens": 1138882639.0,
415
+ "eval_runtime": 56.2494,
416
+ "eval_samples_per_second": 30.631,
417
+ "eval_steps_per_second": 0.48,
418
+ "step": 24000
419
+ },
420
+ {
421
+ "epoch": 25.799793601651185,
422
+ "grad_norm": 0.5337460041046143,
423
+ "learning_rate": 0.00014000687994496046,
424
+ "loss": 0.4112,
425
+ "step": 25000
426
+ },
427
+ {
428
+ "epoch": 25.799793601651185,
429
+ "eval_loss": 0.7356423735618591,
430
+ "eval_mean_token_accuracy": 0.8320455705678022,
431
+ "eval_num_tokens": 1186203743.0,
432
+ "eval_runtime": 56.2041,
433
+ "eval_samples_per_second": 30.656,
434
+ "eval_steps_per_second": 0.48,
435
+ "step": 25000
436
+ },
437
+ {
438
+ "epoch": 26.831785345717233,
439
+ "grad_norm": 0.5075405836105347,
440
+ "learning_rate": 0.00010560715514275886,
441
+ "loss": 0.3867,
442
+ "step": 26000
443
+ },
444
+ {
445
+ "epoch": 26.831785345717233,
446
+ "eval_loss": 0.7299110889434814,
447
+ "eval_mean_token_accuracy": 0.8344257120732907,
448
+ "eval_num_tokens": 1233580426.0,
449
+ "eval_runtime": 56.2298,
450
+ "eval_samples_per_second": 30.642,
451
+ "eval_steps_per_second": 0.48,
452
+ "step": 26000
453
+ },
454
+ {
455
+ "epoch": 27.86377708978328,
456
+ "grad_norm": 0.44573232531547546,
457
+ "learning_rate": 7.120743034055728e-05,
458
+ "loss": 0.3663,
459
+ "step": 27000
460
+ },
461
+ {
462
+ "epoch": 27.86377708978328,
463
+ "eval_loss": 0.7276948094367981,
464
+ "eval_mean_token_accuracy": 0.836361202928755,
465
+ "eval_num_tokens": 1281001856.0,
466
+ "eval_runtime": 56.2494,
467
+ "eval_samples_per_second": 30.631,
468
+ "eval_steps_per_second": 0.48,
469
+ "step": 27000
470
+ },
471
+ {
472
+ "epoch": 28.895768833849328,
473
+ "grad_norm": 0.4509119987487793,
474
+ "learning_rate": 3.68077055383557e-05,
475
+ "loss": 0.3502,
476
+ "step": 28000
477
+ },
478
+ {
479
+ "epoch": 28.895768833849328,
480
+ "eval_loss": 0.723430335521698,
481
+ "eval_mean_token_accuracy": 0.8381591439247131,
482
+ "eval_num_tokens": 1328582176.0,
483
+ "eval_runtime": 56.232,
484
+ "eval_samples_per_second": 30.641,
485
+ "eval_steps_per_second": 0.48,
486
+ "step": 28000
487
+ },
488
+ {
489
+ "epoch": 29.927760577915375,
490
+ "grad_norm": 0.5297461152076721,
491
+ "learning_rate": 2.407980736154111e-06,
492
+ "loss": 0.3311,
493
+ "step": 29000
494
+ },
495
+ {
496
+ "epoch": 29.927760577915375,
497
+ "eval_loss": 0.7236496806144714,
498
+ "eval_mean_token_accuracy": 0.8388593373475252,
499
+ "eval_num_tokens": 1375981577.0,
500
+ "eval_runtime": 56.2255,
501
+ "eval_samples_per_second": 30.644,
502
+ "eval_steps_per_second": 0.48,
503
+ "step": 29000
504
+ }
505
+ ],
506
+ "logging_steps": 1000,
507
+ "max_steps": 29070,
508
+ "num_input_tokens_seen": 0,
509
+ "num_train_epochs": 30,
510
+ "save_steps": 1000,
511
+ "stateful_callbacks": {
512
+ "TrainerControl": {
513
+ "args": {
514
+ "should_epoch_stop": false,
515
+ "should_evaluate": false,
516
+ "should_log": false,
517
+ "should_save": true,
518
+ "should_training_stop": false
519
+ },
520
+ "attributes": {}
521
+ }
522
+ },
523
+ "total_flos": 2.541333454713258e+18,
524
+ "train_batch_size": 1,
525
+ "trial_name": null,
526
+ "trial_params": null
527
+ }
hallucination_detection/lora/granite-3.3-2b-instruct/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a88e258fa84e6c58cbccfc0b4eeb2324beee8d238d5db727d8d561df1358ee5b
3
+ size 5880
hallucination_detection/lora/granite-3.3-2b-instruct/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
hallucination_detection/lora/granite-3.3-8b-instruct/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ibm-granite/granite-3.3-8b-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
hallucination_detection/lora/granite-3.3-8b-instruct/adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "ibm-granite/granite-3.3-8b-instruct",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 16,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "up_proj",
28
+ "gate_proj",
29
+ "k_proj",
30
+ "q_proj",
31
+ "o_proj",
32
+ "v_proj",
33
+ "down_proj"
34
+ ],
35
+ "task_type": "CAUSAL_LM",
36
+ "trainable_token_indices": null,
37
+ "use_dora": false,
38
+ "use_rslora": false
39
+ }
hallucination_detection/lora/granite-3.3-8b-instruct/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52ff4990eae716c984e77ca4d2593eeebf297f9e9508db932fe94a45eb1be52e
3
+ size 197993952
hallucination_detection/lora/granite-3.3-8b-instruct/added_tokens.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|end_of_cite|>": 49156,
3
+ "<|end_of_plugin|>": 49158,
4
+ "<|end_of_role|>": 49153,
5
+ "<|start_of_cite|>": 49155,
6
+ "<|start_of_plugin|>": 49157,
7
+ "<|start_of_role|>": 49152,
8
+ "<|tool_call|>": 49154
9
+ }
hallucination_detection/lora/granite-3.3-8b-instruct/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
hallucination_detection/lora/granite-3.3-8b-instruct/optimizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ca4d5b36c6c43ab29167653182087e6e1c24531a6382ed4234958f4074974ec
3
+ size 396405858
hallucination_detection/lora/granite-3.3-8b-instruct/pytorch_model_fsdp.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6b1ea713215c2703c0a58b9d44e817cbb1bf3edb596076c99871a74c45a2275
3
+ size 198127950
hallucination_detection/lora/granite-3.3-8b-instruct/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e448d7aacc32677bc6162d5b37880a95cfdb7cfcbd0786abff69a817877c131
3
+ size 15984