JRosenkranz commited on
Commit
bcfdbd0
·
verified ·
1 Parent(s): 83ed4ac

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +162 -0
README.md CHANGED
@@ -1,3 +1,165 @@
1
  ---
2
  license: llama2
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: llama2
3
  ---
4
+
5
+ ## Installation from source
6
+
7
+ ```bash
8
+ git clone https://github.com/foundation-model-stack/fms-extras
9
+ cd fms-extras
10
+ pip install -e .
11
+ ```
12
+
13
+
14
+ ## Description
15
+
16
+ This model is intended to be used as an accelerator for [granite 7B (instruct lab)](https://huggingface.co/instructlab/granite-7b-lab) and takes inspiration
17
+ from the Medusa speculative decoding architecture. This accelerator modifies the MLP into a multi-stage MLP, where each stage predicts
18
+ a single token in the draft based on both a state vector and sampled token
19
+ from the prior stage (the base model can be considered stage 0).
20
+ The state vector from the base model provides contextual information to the accelerator,
21
+ while conditioning on prior sampled tokens allows it to produce higher-quality draft n-grams.
22
+
23
+ Note: The underlying MLP speculator is a generic architecture that can be trained with any generative model to accelerate inference.
24
+ Training is light-weight and can be completed in only a few days depending on base model size and speed.
25
+
26
+ ## Repository Links
27
+
28
+ 1. [Paged Attention KV-Cache / Speculator](https://github.com/foundation-model-stack/fms-extras)
29
+ 2. [Production Server with speculative decoding](https://github.com/IBM/text-generation-inference.git)
30
+ 3. [Speculator training](https://github.com/foundation-model-stack/fms-fsdp/pull/35)
31
+
32
+ ## Samples
33
+
34
+ _Note: For all samples, your environment must have access to cuda_
35
+
36
+ ### Production Server Sample
37
+
38
+ *To try this out running in a production-like environment, please use the pre-built docker image:*
39
+
40
+ #### Setup
41
+
42
+ ```bash
43
+ HF_HUB_CACHE=/hf_hub_cache
44
+ chmod a+w $HF_HUB_CACHE
45
+ HF_HUB_TOKEN="your huggingface hub token"
46
+ TGIS_IMAGE=quay.io/wxpe/text-gen-server:main.ee927a4
47
+
48
+ docker pull $TGIS_IMAGE
49
+
50
+ # optionally download granite-7b-lab if the weights do not already exist
51
+ docker run --rm \
52
+ -v $HF_HUB_CACHE:/models \
53
+ -e HF_HUB_CACHE=/models \
54
+ -e TRANSFORMERS_CACHE=/models \
55
+ $TGIS_IMAGE \
56
+ text-generation-server download-weights \
57
+ instructlab/granite-7b-lab \
58
+ --token $HF_HUB_TOKEN
59
+
60
+ # optionally download the speculator model if the weights do not already exist
61
+ docker run --rm \
62
+ -v $HF_HUB_CACHE:/models \
63
+ -e HF_HUB_CACHE=/models \
64
+ -e TRANSFORMERS_CACHE=/models \
65
+ $TGIS_IMAGE \
66
+ text-generation-server download-weights \
67
+ ibm/granite-7b-lab-accelerator \
68
+ --token $HF_HUB_TOKEN
69
+
70
+ # note: if the weights were downloaded separately (not with the above commands), please place them in the HF_HUB_CACHE directoy and refer to them with /models/<model_name>
71
+ docker run -d --rm --gpus all \
72
+ --name my-tgis-server \
73
+ -p 8033:8033 \
74
+ -v $HF_HUB_CACHE:/models \
75
+ -e HF_HUB_CACHE=/models \
76
+ -e TRANSFORMERS_CACHE=/models \
77
+ -e MODEL_NAME=instructlab/granite-7b-lab \
78
+ -e SPECULATOR_NAME=ibm/granite-7b-lab-accelerator \
79
+ -e FLASH_ATTENTION=true \
80
+ -e PAGED_ATTENTION=true \
81
+ -e DTYPE=float16 \
82
+ $TGIS_IMAGE
83
+
84
+ # check logs and wait for "gRPC server started on port 8033" and "HTTP server started on port 3000"
85
+ docker logs my-tgis-server -f
86
+
87
+ # get the client sample (Note: The first prompt will take longer as there is a warmup time)
88
+ conda create -n tgis-client-env python=3.11
89
+ conda activate tgis-client-env
90
+ git clone --branch main --single-branch https://github.com/IBM/text-generation-inference.git
91
+ cd text-generation-inference/integration_tests
92
+ make gen-client
93
+ pip install . --no-cache-dir
94
+ ```
95
+
96
+ #### Run Sample
97
+
98
+ ```bash
99
+ python sample_client.py
100
+ ```
101
+
102
+ _Note: first prompt may be slower as there is a slight warmup time_
103
+
104
+ ### Minimal Sample
105
+
106
+ *To try this out with the fms-native compiled model, please execute the following:*
107
+
108
+ #### Install
109
+
110
+ ```bash
111
+ git clone --branch ibm_7b_instruct_lab_variant --single-branch https://github.com/JRosenkranz/fms-extras.git
112
+ (cd fms-extras && pip install -e .)
113
+ pip install transformers==4.35.0 sentencepiece numpy
114
+ ```
115
+
116
+ #### Run Sample
117
+
118
+ ##### batch_size=1 (compile + cudagraphs)
119
+
120
+ ```bash
121
+ MODEL_PATH=/path/to/instructlab/granite-7b-lab
122
+ python fms-extras/scripts/paged_speculative_inference.py \
123
+ --variant=ibm.7b_instruct_lab \
124
+ --model_path=$MODEL_PATH \
125
+ --model_source=hf \
126
+ --tokenizer=$MODEL_PATH \
127
+ --speculator_path=ibm/granite-7b-lab-accelerator \
128
+ --speculator_source=hf \
129
+ --top_k_tokens_per_head=4,3,2,2,2 \
130
+ --compile \
131
+ --compile_mode=reduce-overhead
132
+ ```
133
+
134
+ ##### batch_size=1 (compile)
135
+
136
+ ```bash
137
+ MODEL_PATH=/path/to/instructlab/granite-7b-lab
138
+ python fms-extras/scripts/paged_speculative_inference.py \
139
+ --variant=ibm.7b_instruct_lab \
140
+ --model_path=$MODEL_PATH \
141
+ --model_source=hf \
142
+ --tokenizer=$MODEL_PATH \
143
+ --speculator_path=ibm/granite-7b-lab-accelerator \
144
+ --speculator_source=hf \
145
+ --top_k_tokens_per_head=4,3,2,2,2 \
146
+ --compile \
147
+ ```
148
+
149
+ ##### batch_size=4 (compile)
150
+
151
+ ```bash
152
+ MODEL_PATH=/path/to/instructlab/granite-7b-lab
153
+ python fms-extras/scripts/paged_speculative_inference.py \
154
+ --variant=ibm.7b_instruct_lab \
155
+ --model_path=$MODEL_PATH \
156
+ --model_source=hf \
157
+ --tokenizer=$MODEL_PATH \
158
+ --speculator_path=ibm/granite-7b-lab-accelerator \
159
+ --speculator_source=hf \
160
+ --top_k_tokens_per_head=4,3,2,2,2 \
161
+ --batch_input \
162
+ --compile \
163
+ ```
164
+
165
+ Sample code can be found [here](https://github.com/foundation-model-stack/fms-extras/blob/main/scripts/paged_speculative_inference.py)