sahilsuneja commited on
Commit
3f4497e
1 Parent(s): b3c9ab2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +124 -3
README.md CHANGED
@@ -1,3 +1,124 @@
1
- ---
2
- license: llama2
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama2
3
+ ---
4
+
5
+
6
+ ## Installation from source
7
+
8
+ ```bash
9
+ git clone https://github.com/foundation-model-stack/fms-extras
10
+ cd fms-extras
11
+ pip install -e .
12
+ ```
13
+
14
+
15
+ ## Description
16
+
17
+ This model is intended to be used as an accelerator for [llama 34B (code)](https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf) and takes inspiration
18
+ from the Medusa speculative decoding architecture. This accelerator modifies the MLP into a multi-stage MLP, where each stage predicts
19
+ a single token in the draft based on both a state vector and sampled token
20
+ from the prior stage (the base model can be considered stage 0).
21
+ The state vector from the base model provides contextual information to the accelerator,
22
+ while conditioning on prior sampled tokens allows it to produce higher-quality draft n-grams.
23
+
24
+ Note: The underlying MLP speculator is a generic architecture that can be trained with any generative model to accelerate inference.
25
+ Training is light-weight and can be completed in only a few days depending on base model size and speed.
26
+
27
+ ## Repository Links
28
+
29
+ 1. [Paged Attention KV-Cache / Speculator](https://github.com/foundation-model-stack/fms-extras)
30
+ 2. [Production Server with speculative decoding](https://github.com/IBM/text-generation-inference.git)
31
+ 3. [Speculator training](https://github.com/foundation-model-stack/fms-fsdp/pull/35)
32
+
33
+ ## Samples
34
+
35
+ _Note: For all samples, your environment must have access to cuda_
36
+
37
+ ### Use in IBM Production TGIS
38
+
39
+ *To try this out running in a production-like environment, please use the pre-built docker image:*
40
+
41
+ #### Setup
42
+
43
+ ```bash
44
+ HF_HUB_CACHE=/hf_hub_cache
45
+ chmod a+w $HF_HUB_CACHE
46
+ HF_HUB_TOKEN="your huggingface hub token"
47
+ TGIS_IMAGE=quay.io/wxpe/text-gen-server:main.ddc56ee
48
+
49
+ docker pull $TGIS_IMAGE
50
+
51
+ # optionally download CodeLlama-34b-Instruct-hf if the weights do not already exist
52
+ docker run --rm \
53
+ -v $HF_HUB_CACHE:/models \
54
+ -e HF_HUB_CACHE=/models \
55
+ -e TRANSFORMERS_CACHE=/models \
56
+ $TGIS_IMAGE \
57
+ text-generation-server download-weights \
58
+ codellama/CodeLlama-13b-Instruct-hf \
59
+ --token $HF_HUB_TOKEN
60
+
61
+ # optionally download the speculator model if the weights do not already exist
62
+ docker run --rm \
63
+ -v $HF_HUB_CACHE:/models \
64
+ -e HF_HUB_CACHE=/models \
65
+ -e TRANSFORMERS_CACHE=/models \
66
+ $TGIS_IMAGE \
67
+ text-generation-server download-weights \
68
+ ibm-fms/codellama-34b-accelerator \
69
+ --token $HF_HUB_TOKEN
70
+
71
+ # note: if the weights were downloaded separately (not with the above commands), please place them in the HF_HUB_CACHE directory and refer to them with /models/<model_name>
72
+ docker run -d --rm --gpus all \
73
+ --name my-tgis-server \
74
+ -p 8033:8033 \
75
+ -v $HF_HUB_CACHE:/models \
76
+ -e HF_HUB_CACHE=/models \
77
+ -e TRANSFORMERS_CACHE=/models \
78
+ -e MODEL_NAME=codellama/CodeLlama-13b-Instruct-hf \
79
+ -e SPECULATOR_NAME=ibm-fms/codellama-34b-accelerator \
80
+ -e FLASH_ATTENTION=true \
81
+ -e PAGED_ATTENTION=true \
82
+ -e DTYPE=float16 \
83
+ $TGIS_IMAGE
84
+
85
+ # check logs and wait for "gRPC server started on port 8033" and "HTTP server started on port 3000"
86
+ docker logs my-tgis-server -f
87
+
88
+ # get the client sample (Note: The first prompt will take longer as there is a warmup time)
89
+ conda create -n tgis-client-env python=3.11
90
+ conda activate tgis-client-env
91
+ git clone --branch main --single-branch https://github.com/IBM/text-generation-inference.git
92
+ cd text-generation-inference/integration_tests
93
+ make gen-client
94
+ pip install . --no-cache-dir
95
+ ```
96
+
97
+ #### Run Sample
98
+
99
+ ```bash
100
+ python sample_client.py
101
+ ```
102
+
103
+ _Note: first prompt may be slower as there is a slight warmup time_
104
+
105
+ ### Use in Huggingface TGI
106
+
107
+ #### start the server
108
+
109
+ ```bash
110
+ model=ibm-fms/codellama-34b-accelerator
111
+ volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
112
+ docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id $model
113
+ ```
114
+
115
+ _note: for tensor parallel, add --num-shard_
116
+
117
+ #### make a request
118
+
119
+ ```bash
120
+ curl 127.0.0.1:8080/generate_stream \
121
+ -X POST \
122
+ -d '{"inputs":"Write a bubble sort in python","parameters":{"max_new_tokens":100}}' \
123
+ -H 'Content-Type: application/json'
124
+ ```