Update handler.py
Browse files- handler.py +29 -26
handler.py
CHANGED
@@ -1,16 +1,15 @@
|
|
1 |
from ultralyticsplus import YOLO
|
2 |
-
from typing import
|
3 |
-
from sahi import ObjectPrediction
|
4 |
|
5 |
|
6 |
DEFAULT_CONFIG = {'conf': 0.25, 'iou': 0.45, 'agnostic_nms': False, 'max_det': 1000}
|
7 |
-
|
8 |
|
9 |
class EndpointHandler():
|
10 |
-
def __init__(self
|
11 |
self.model = YOLO('ultralyticsplus/yolov8s')
|
12 |
|
13 |
-
def __call__(self, data: str) -> List[
|
14 |
"""
|
15 |
data args:
|
16 |
image: image path to segment
|
@@ -19,33 +18,37 @@ class EndpointHandler():
|
|
19 |
agnostic_nms - NMS class-agnostic: True / False,
|
20 |
max_det - maximum number of detections per image)
|
21 |
Return:
|
22 |
-
|
23 |
"""
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
25 |
# Set model parameters
|
26 |
self.model.overrides['conf'] = config.get('conf')
|
27 |
self.model.overrides['iou'] = config.get('iou')
|
28 |
self.model.overrides['agnostic_nms'] = config.get('agnostic_nms')
|
29 |
self.model.overrides['max_det'] = config.get('max_det')
|
30 |
|
|
|
|
|
|
|
31 |
# perform inference
|
32 |
-
inputs = data.pop("inputs", data)
|
33 |
result = self.model.predict(inputs['image'])[0]
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
det_ind += 1
|
50 |
-
return object_predictions
|
51 |
-
|
|
|
1 |
from ultralyticsplus import YOLO
|
2 |
+
from typing import Dict, Any, List
|
|
|
3 |
|
4 |
|
5 |
DEFAULT_CONFIG = {'conf': 0.25, 'iou': 0.45, 'agnostic_nms': False, 'max_det': 1000}
|
6 |
+
BOX_KEYS = ['xmin', 'ymin', 'xmax', 'ymax']
|
7 |
|
8 |
class EndpointHandler():
|
9 |
+
def __init__(self):
|
10 |
self.model = YOLO('ultralyticsplus/yolov8s')
|
11 |
|
12 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
13 |
"""
|
14 |
data args:
|
15 |
image: image path to segment
|
|
|
18 |
agnostic_nms - NMS class-agnostic: True / False,
|
19 |
max_det - maximum number of detections per image)
|
20 |
Return:
|
21 |
+
A :obj: `dict` | `dict`: {scores, labels, boxes}
|
22 |
"""
|
23 |
+
inputs = data.pop("inputs", data)
|
24 |
+
input_config = inputs.pop("config", DEFAULT_CONFIG)
|
25 |
+
config = {**DEFAULT_CONFIG, **input_config}
|
26 |
+
|
27 |
+
if config is None:
|
28 |
+
config = DEFAULT_CONFIG
|
29 |
# Set model parameters
|
30 |
self.model.overrides['conf'] = config.get('conf')
|
31 |
self.model.overrides['iou'] = config.get('iou')
|
32 |
self.model.overrides['agnostic_nms'] = config.get('agnostic_nms')
|
33 |
self.model.overrides['max_det'] = config.get('max_det')
|
34 |
|
35 |
+
# Get label idx-to-name
|
36 |
+
names = model.model.names
|
37 |
+
|
38 |
# perform inference
|
|
|
39 |
result = self.model.predict(inputs['image'])[0]
|
40 |
+
prediction = []
|
41 |
+
for score, label, box in zip(result.boxes.conf, result.boxes.cls, result.boxes.xyxy):
|
42 |
+
item_score = score.item()
|
43 |
+
item_label = names[int(label)]
|
44 |
+
item_box = box.to(dtype=int).tolist()
|
45 |
+
|
46 |
+
item_prediction = {
|
47 |
+
'score': item_score,
|
48 |
+
'label': item_label,
|
49 |
+
'box': dict(zip(BOX_KEYS, item_box))
|
50 |
+
}
|
51 |
+
|
52 |
+
prediction.append(item_prediction)
|
53 |
+
|
54 |
+
return prediction
|
|
|
|
|
|