|
import albumentations as A |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from numpy.typing import NDArray |
|
from transformers import PreTrainedModel |
|
from timm import create_model |
|
from typing import Optional |
|
|
|
from .configuration import MammoCropConfig |
|
|
|
_PYDICOM_AVAILABLE = False |
|
try: |
|
from pydicom import dcmread |
|
from pydicom.pixels import apply_voi_lut |
|
|
|
_PYDICOM_AVAILABLE = True |
|
except ModuleNotFoundError: |
|
pass |
|
|
|
|
|
class GeM(nn.Module): |
|
def __init__( |
|
self, p: int = 3, eps: float = 1e-6, dim: int = 2, flatten: bool = True |
|
): |
|
super().__init__() |
|
self.p = nn.Parameter(torch.ones(1) * p) |
|
self.eps = eps |
|
assert dim in {2, 3}, f"dim must be one of [2, 3], not {dim}" |
|
self.dim = dim |
|
if self.dim == 2: |
|
self.func = F.adaptive_avg_pool2d |
|
elif self.dim == 3: |
|
self.func = F.adaptive_avg_pool3d |
|
self.flatten = nn.Flatten(1) if flatten else nn.Identity() |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
|
x = self.func(x.clamp(min=self.eps).pow(self.p), output_size=1).pow( |
|
1.0 / self.p |
|
) |
|
return self.flatten(x) |
|
|
|
|
|
class MammoCropModel(PreTrainedModel): |
|
config_class = MammoCropConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.backbone = create_model( |
|
model_name=config.backbone, |
|
pretrained=False, |
|
num_classes=0, |
|
global_pool="", |
|
features_only=False, |
|
in_chans=config.in_chans, |
|
) |
|
self.pooling = GeM(p=3, dim=2) |
|
self.dropout = nn.Dropout(p=config.dropout) |
|
self.linear = nn.Linear(config.feature_dim, config.num_classes) |
|
|
|
def normalize(self, x: torch.Tensor) -> torch.Tensor: |
|
|
|
mini, maxi = 0.0, 255.0 |
|
x = (x - mini) / (maxi - mini) |
|
x = (x - 0.5) * 2.0 |
|
return x |
|
|
|
@staticmethod |
|
def load_image_from_dicom(path: str) -> Optional[NDArray]: |
|
if not _PYDICOM_AVAILABLE: |
|
print("`pydicom` is not installed, returning None ...") |
|
return None |
|
dicom = dcmread(path) |
|
arr = apply_voi_lut(dicom.pixel_array, dicom) |
|
if dicom.PhotometricInterpretation == "MONOCHROME1": |
|
|
|
arr = arr.max() - arr |
|
|
|
arr = arr - arr.min() |
|
arr = arr / arr.max() |
|
arr = (arr * 255).astype("uint8") |
|
return arr |
|
|
|
@staticmethod |
|
def preprocess(x: NDArray) -> NDArray: |
|
return A.Resize(256, 256, p=1)(image=x)["image"] |
|
|
|
def forward( |
|
self, x: torch.Tensor, img_shape: Optional[torch.Tensor] = None |
|
) -> torch.Tensor: |
|
|
|
|
|
|
|
if img_shape is not None: |
|
assert ( |
|
x.size(0) == img_shape.size(0) |
|
), f"x.size(0) [{x.size(0)}] must equal img_shape.size(0) [{img_shape.size(0)}]" |
|
|
|
|
|
|
|
x = self.normalize(x) |
|
features = self.pooling(self.backbone(x)) |
|
coords = self.linear(features).sigmoid() |
|
|
|
if img_shape is None: |
|
return coords |
|
|
|
rescaled_coords = coords.clone() |
|
rescaled_coords[:, 0] = rescaled_coords[:, 0] * img_shape[:, 1] |
|
rescaled_coords[:, 1] = rescaled_coords[:, 1] * img_shape[:, 0] |
|
rescaled_coords[:, 2] = rescaled_coords[:, 2] * img_shape[:, 1] |
|
rescaled_coords[:, 3] = rescaled_coords[:, 3] * img_shape[:, 0] |
|
return rescaled_coords.int() |
|
|