Upload model
Browse files- README.md +199 -0
- config.json +17 -0
- configuration.py +21 -0
- model.safetensors +3 -0
- modeling.py +114 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BoneAgeCropModel"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration.BoneAgeCropConfig",
|
7 |
+
"AutoModel": "modeling.BoneAgeCropModel"
|
8 |
+
},
|
9 |
+
"backbone": "mobilenetv3_small_100",
|
10 |
+
"dropout": 0.1,
|
11 |
+
"feature_dim": 1024,
|
12 |
+
"in_chans": 1,
|
13 |
+
"model_type": "bone_age_crop",
|
14 |
+
"num_classes": 4,
|
15 |
+
"torch_dtype": "float32",
|
16 |
+
"transformers_version": "4.47.0"
|
17 |
+
}
|
configuration.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class BoneAgeCropConfig(PretrainedConfig):
|
5 |
+
model_type = "bone_age_crop"
|
6 |
+
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
backbone="mobilenetv3_small_100",
|
10 |
+
feature_dim=1024,
|
11 |
+
dropout=0.1,
|
12 |
+
num_classes=4,
|
13 |
+
in_chans=1,
|
14 |
+
**kwargs,
|
15 |
+
):
|
16 |
+
self.backbone = backbone
|
17 |
+
self.feature_dim = feature_dim
|
18 |
+
self.dropout = dropout
|
19 |
+
self.num_classes = num_classes
|
20 |
+
self.in_chans = in_chans
|
21 |
+
super().__init__(**kwargs)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:194f32fc60c8797353b95647611078db2130de944250879a56060b77a81aea3e
|
3 |
+
size 6159428
|
modeling.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import albumentations as A
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
from numpy.typing import NDArray
|
7 |
+
from transformers import PreTrainedModel
|
8 |
+
from timm import create_model
|
9 |
+
from typing import Optional
|
10 |
+
|
11 |
+
from .configuration import BoneAgeCropConfig
|
12 |
+
|
13 |
+
_PYDICOM_AVAILABLE = False
|
14 |
+
try:
|
15 |
+
from pydicom import dcmread
|
16 |
+
from pydicom.pixels import apply_voi_lut
|
17 |
+
|
18 |
+
_PYDICOM_AVAILABLE = True
|
19 |
+
except ModuleNotFoundError:
|
20 |
+
pass
|
21 |
+
|
22 |
+
|
23 |
+
class GeM(nn.Module):
|
24 |
+
def __init__(
|
25 |
+
self, p: int = 3, eps: float = 1e-6, dim: int = 2, flatten: bool = True
|
26 |
+
):
|
27 |
+
super().__init__()
|
28 |
+
self.p = nn.Parameter(torch.ones(1) * p)
|
29 |
+
self.eps = eps
|
30 |
+
assert dim in {2, 3}, f"dim must be one of [2, 3], not {dim}"
|
31 |
+
self.dim = dim
|
32 |
+
if self.dim == 2:
|
33 |
+
self.func = F.adaptive_avg_pool2d
|
34 |
+
elif self.dim == 3:
|
35 |
+
self.func = F.adaptive_avg_pool3d
|
36 |
+
self.flatten = nn.Flatten(1) if flatten else nn.Identity()
|
37 |
+
|
38 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
39 |
+
# assumes x.shape is (n, c, [t], h, w)
|
40 |
+
x = self.func(x.clamp(min=self.eps).pow(self.p), output_size=1).pow(
|
41 |
+
1.0 / self.p
|
42 |
+
)
|
43 |
+
return self.flatten(x)
|
44 |
+
|
45 |
+
|
46 |
+
class BoneAgeCropModel(PreTrainedModel):
|
47 |
+
config_class = BoneAgeCropConfig
|
48 |
+
|
49 |
+
def __init__(self, config):
|
50 |
+
super().__init__(config)
|
51 |
+
self.backbone = create_model(
|
52 |
+
model_name=config.backbone,
|
53 |
+
pretrained=False,
|
54 |
+
num_classes=0,
|
55 |
+
global_pool="",
|
56 |
+
features_only=False,
|
57 |
+
in_chans=config.in_chans,
|
58 |
+
)
|
59 |
+
self.pooling = GeM(p=3, dim=2)
|
60 |
+
self.dropout = nn.Dropout(p=config.dropout)
|
61 |
+
self.linear = nn.Linear(config.feature_dim, config.num_classes)
|
62 |
+
|
63 |
+
def normalize(self, x: torch.Tensor) -> torch.Tensor:
|
64 |
+
# [0, 255] -> [-1, 1]
|
65 |
+
mini, maxi = 0.0, 255.0
|
66 |
+
x = (x - mini) / (maxi - mini)
|
67 |
+
x = (x - 0.5) * 2.0
|
68 |
+
return x
|
69 |
+
|
70 |
+
@staticmethod
|
71 |
+
def load_image_from_dicom(path: str) -> Optional[NDArray]:
|
72 |
+
if not _PYDICOM_AVAILABLE:
|
73 |
+
print("`pydicom` is not installed, returning None ...")
|
74 |
+
return None
|
75 |
+
dicom = dcmread(path)
|
76 |
+
arr = apply_voi_lut(dicom.pixel_array, dicom)
|
77 |
+
if dicom.PhotometricInterpretation == "MONOCHROME1":
|
78 |
+
# invert image if needed
|
79 |
+
arr = arr.max() - arr
|
80 |
+
|
81 |
+
arr = arr - arr.min()
|
82 |
+
arr = arr / arr.max()
|
83 |
+
arr = (arr * 255).astype("uint8")
|
84 |
+
return arr
|
85 |
+
|
86 |
+
@staticmethod
|
87 |
+
def preprocess(x: NDArray) -> NDArray:
|
88 |
+
return A.Resize(512, 512, p=1)(image=x)["image"]
|
89 |
+
|
90 |
+
def forward(
|
91 |
+
self, x: torch.Tensor, img_shape: Optional[torch.Tensor] = None
|
92 |
+
) -> torch.Tensor:
|
93 |
+
# if img_shape is provided, will provide rescaled coordinates
|
94 |
+
# otherwise, provide normalized [0, 1] coordinates
|
95 |
+
# coords format is xywh
|
96 |
+
assert x.size(0) == img_shape.size(
|
97 |
+
0
|
98 |
+
), f"x.size(0) [{x.size(0)}] must equal img_shape.size(0) [{img_shape.size(0)}]"
|
99 |
+
# img_shape = (batch_dim, 2)
|
100 |
+
# img_shape[:, 0] = height, img_shape[:, 1] = width
|
101 |
+
|
102 |
+
x = self.normalize(x)
|
103 |
+
features = self.pooling(self.backbone(x))
|
104 |
+
coords = self.linear(features).sigmoid()
|
105 |
+
|
106 |
+
if img_shape is None:
|
107 |
+
return coords
|
108 |
+
|
109 |
+
rescaled_coords = coords.clone()
|
110 |
+
rescaled_coords[:, 0] = rescaled_coords[:, 0] * img_shape[:, 1]
|
111 |
+
rescaled_coords[:, 1] = rescaled_coords[:, 1] * img_shape[:, 0]
|
112 |
+
rescaled_coords[:, 2] = rescaled_coords[:, 2] * img_shape[:, 1]
|
113 |
+
rescaled_coords[:, 3] = rescaled_coords[:, 3] * img_shape[:, 0]
|
114 |
+
return rescaled_coords.int()
|