ianpan commited on
Commit
dd7b16e
1 Parent(s): 9822ff1

Upload model

Browse files
Files changed (5) hide show
  1. README.md +199 -0
  2. config.json +17 -0
  3. configuration.py +21 -0
  4. model.safetensors +3 -0
  5. modeling.py +114 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BoneAgeCropModel"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration.BoneAgeCropConfig",
7
+ "AutoModel": "modeling.BoneAgeCropModel"
8
+ },
9
+ "backbone": "mobilenetv3_small_100",
10
+ "dropout": 0.1,
11
+ "feature_dim": 1024,
12
+ "in_chans": 1,
13
+ "model_type": "bone_age_crop",
14
+ "num_classes": 4,
15
+ "torch_dtype": "float32",
16
+ "transformers_version": "4.47.0"
17
+ }
configuration.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+
4
+ class BoneAgeCropConfig(PretrainedConfig):
5
+ model_type = "bone_age_crop"
6
+
7
+ def __init__(
8
+ self,
9
+ backbone="mobilenetv3_small_100",
10
+ feature_dim=1024,
11
+ dropout=0.1,
12
+ num_classes=4,
13
+ in_chans=1,
14
+ **kwargs,
15
+ ):
16
+ self.backbone = backbone
17
+ self.feature_dim = feature_dim
18
+ self.dropout = dropout
19
+ self.num_classes = num_classes
20
+ self.in_chans = in_chans
21
+ super().__init__(**kwargs)
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:194f32fc60c8797353b95647611078db2130de944250879a56060b77a81aea3e
3
+ size 6159428
modeling.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import albumentations as A
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+
6
+ from numpy.typing import NDArray
7
+ from transformers import PreTrainedModel
8
+ from timm import create_model
9
+ from typing import Optional
10
+
11
+ from .configuration import BoneAgeCropConfig
12
+
13
+ _PYDICOM_AVAILABLE = False
14
+ try:
15
+ from pydicom import dcmread
16
+ from pydicom.pixels import apply_voi_lut
17
+
18
+ _PYDICOM_AVAILABLE = True
19
+ except ModuleNotFoundError:
20
+ pass
21
+
22
+
23
+ class GeM(nn.Module):
24
+ def __init__(
25
+ self, p: int = 3, eps: float = 1e-6, dim: int = 2, flatten: bool = True
26
+ ):
27
+ super().__init__()
28
+ self.p = nn.Parameter(torch.ones(1) * p)
29
+ self.eps = eps
30
+ assert dim in {2, 3}, f"dim must be one of [2, 3], not {dim}"
31
+ self.dim = dim
32
+ if self.dim == 2:
33
+ self.func = F.adaptive_avg_pool2d
34
+ elif self.dim == 3:
35
+ self.func = F.adaptive_avg_pool3d
36
+ self.flatten = nn.Flatten(1) if flatten else nn.Identity()
37
+
38
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
39
+ # assumes x.shape is (n, c, [t], h, w)
40
+ x = self.func(x.clamp(min=self.eps).pow(self.p), output_size=1).pow(
41
+ 1.0 / self.p
42
+ )
43
+ return self.flatten(x)
44
+
45
+
46
+ class BoneAgeCropModel(PreTrainedModel):
47
+ config_class = BoneAgeCropConfig
48
+
49
+ def __init__(self, config):
50
+ super().__init__(config)
51
+ self.backbone = create_model(
52
+ model_name=config.backbone,
53
+ pretrained=False,
54
+ num_classes=0,
55
+ global_pool="",
56
+ features_only=False,
57
+ in_chans=config.in_chans,
58
+ )
59
+ self.pooling = GeM(p=3, dim=2)
60
+ self.dropout = nn.Dropout(p=config.dropout)
61
+ self.linear = nn.Linear(config.feature_dim, config.num_classes)
62
+
63
+ def normalize(self, x: torch.Tensor) -> torch.Tensor:
64
+ # [0, 255] -> [-1, 1]
65
+ mini, maxi = 0.0, 255.0
66
+ x = (x - mini) / (maxi - mini)
67
+ x = (x - 0.5) * 2.0
68
+ return x
69
+
70
+ @staticmethod
71
+ def load_image_from_dicom(path: str) -> Optional[NDArray]:
72
+ if not _PYDICOM_AVAILABLE:
73
+ print("`pydicom` is not installed, returning None ...")
74
+ return None
75
+ dicom = dcmread(path)
76
+ arr = apply_voi_lut(dicom.pixel_array, dicom)
77
+ if dicom.PhotometricInterpretation == "MONOCHROME1":
78
+ # invert image if needed
79
+ arr = arr.max() - arr
80
+
81
+ arr = arr - arr.min()
82
+ arr = arr / arr.max()
83
+ arr = (arr * 255).astype("uint8")
84
+ return arr
85
+
86
+ @staticmethod
87
+ def preprocess(x: NDArray) -> NDArray:
88
+ return A.Resize(512, 512, p=1)(image=x)["image"]
89
+
90
+ def forward(
91
+ self, x: torch.Tensor, img_shape: Optional[torch.Tensor] = None
92
+ ) -> torch.Tensor:
93
+ # if img_shape is provided, will provide rescaled coordinates
94
+ # otherwise, provide normalized [0, 1] coordinates
95
+ # coords format is xywh
96
+ assert x.size(0) == img_shape.size(
97
+ 0
98
+ ), f"x.size(0) [{x.size(0)}] must equal img_shape.size(0) [{img_shape.size(0)}]"
99
+ # img_shape = (batch_dim, 2)
100
+ # img_shape[:, 0] = height, img_shape[:, 1] = width
101
+
102
+ x = self.normalize(x)
103
+ features = self.pooling(self.backbone(x))
104
+ coords = self.linear(features).sigmoid()
105
+
106
+ if img_shape is None:
107
+ return coords
108
+
109
+ rescaled_coords = coords.clone()
110
+ rescaled_coords[:, 0] = rescaled_coords[:, 0] * img_shape[:, 1]
111
+ rescaled_coords[:, 1] = rescaled_coords[:, 1] * img_shape[:, 0]
112
+ rescaled_coords[:, 2] = rescaled_coords[:, 2] * img_shape[:, 1]
113
+ rescaled_coords[:, 3] = rescaled_coords[:, 3] * img_shape[:, 0]
114
+ return rescaled_coords.int()