iampedroalz
commited on
Commit
•
fe47456
1
Parent(s):
3cfaf9b
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +7 -7
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 115.65 +/- 116.41
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fabe9010f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fabe9013050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fabe90130e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fabe9013170>", "_build": "<function ActorCriticPolicy._build at 0x7fabe9013200>", "forward": "<function ActorCriticPolicy.forward at 0x7fabe9013290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fabe9013320>", "_predict": "<function ActorCriticPolicy._predict at 0x7fabe90133b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fabe9013440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fabe90134d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fabe9013560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fabe8fd6e40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1668496682293300524, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAuc1L6A8Kk+K3Yfv+u4jb+U7Au9JWpKvQAAAAAAAAAA9oXavsvcLD+S8Cq+q/lVv3nv6L4zm+E8AAAAAAAAAACO3gm/uNDiPvsXAr8wgYu/1WtLvlqyFr0AAAAAAAAAADN2izzX8cQ/YqI3vYELJr6fxYI+4uSxPgAAAAAAAAAAzWWEvvQApD6BlbC+kJSLv/65Ez6FqcE9AAAAAAAAAABl+wy/AenCPtaRxr6AY4a/rr8SvzBsdb4AAAAAAAAAAHBJij6UU6U/nGAeP5lMBL9Trrc94dUtPgAAAAAAAAAAWqv8PTpaGT503xY9HPeRvxkEiz57l9s9AAAAAAAAAADa3ki+bgOVPywmG7/zORe/bmTBu8q6Ub4AAAAAAAAAAJrcBb1jP2c95X1yPmHOlr/8qf2+S9LrPAAAAAAAAAAABtY0v7hIoL3r0hW/w92Pv9pPvL4Vriu+AAAAAAAAAABDmGm+9HbkPlW31L2fmW6/pRtHvuKZir4AAAAAAAAAAM3Y67wyqbw/9RX/vuVS6D5t5tM8fWS8PQAAAAAAAAAAMxAbPYwssz8eMm4+ERArvmJ6QTw5Eok9AAAAAAAAAACAOzw9RlGrPxIapD77OaW+5/cWPTE/Hj4AAAAAAAAAAGZCmL3UCFc/IsIEviSrXb+cpJC+Tk0+vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoDL+fcYBUMCUhpRSlIwBbJRLSowBdJRHQHUNTxPO6d11fZQoaAZoCWgPQwgmN4qsNbhMwJSGlFKUaBVLbGgWR0B1DafGuLaVdX2UKGgGaAloD0MId700RYADT8CUhpRSlGgVS2NoFkdAdQ5NmDlHSXV9lChoBmgJaA9DCOI8nMB0GE/AlIaUUpRoFUt1aBZHQHUOxew9q1x1fZQoaAZoCWgPQwiitDf4wrpHwJSGlFKUaBVLe2gWR0B1DwGu9vjwdX2UKGgGaAloD0MIp3hcVIuUTMCUhpRSlGgVS0loFkdAdQ8TUiILxHV9lChoBmgJaA9DCAw6IXTQFFDAlIaUUpRoFUtjaBZHQHUPDTz/ZNB1fZQoaAZoCWgPQwhpHsAivzZUwJSGlFKUaBVLZ2gWR0B1D02itaIOdX2UKGgGaAloD0MIfc7drpfeSMCUhpRSlGgVS2JoFkdAdQ+DtgKF7HV9lChoBmgJaA9DCDQUd7zJIFXAlIaUUpRoFUtxaBZHQHUP1tj0+Tx1fZQoaAZoCWgPQwjPEmQEVFNRwJSGlFKUaBVLT2gWR0B1ED5VOsT4dX2UKGgGaAloD0MIZJY9CWzqPcCUhpRSlGgVS29oFkdAdRCOBUaQ3nV9lChoBmgJaA9DCJ1Hxf8d4U7AlIaUUpRoFUtPaBZHQHURQkX1rZd1fZQoaAZoCWgPQwjwTj49tg5TwJSGlFKUaBVLc2gWR0B1EkH2RJVbdX2UKGgGaAloD0MIl4+kpIeFQsCUhpRSlGgVS15oFkdAdRKm7aqS5nV9lChoBmgJaA9DCDrq6LgaklLAlIaUUpRoFUtdaBZHQHUTdl2/zrh1fZQoaAZoCWgPQwh9emzLgKNPwJSGlFKUaBVLZGgWR0B1E5byH2ytdX2UKGgGaAloD0MId01IawwyT8CUhpRSlGgVS0ZoFkdAdRQwPiDM/3V9lChoBmgJaA9DCAMF3smnWVbAlIaUUpRoFUtTaBZHQHUUc6NlyzZ1fZQoaAZoCWgPQwiloUYhyfZdwJSGlFKUaBVLZWgWR0B1FStknTiLdX2UKGgGaAloD0MITODW3TxLWMCUhpRSlGgVS1VoFkdAdRWizcAR03V9lChoBmgJaA9DCA8r3PKRLDHAlIaUUpRoFUtgaBZHQHUVmZVn27F1fZQoaAZoCWgPQwiMEB5tHMtcwJSGlFKUaBVLl2gWR0B1FdI8QqZudX2UKGgGaAloD0MIOWQD6WJJXcCUhpRSlGgVS2xoFkdAdRX3IuGsWHV9lChoBmgJaA9DCBrfF5eqqljAlIaUUpRoFUtuaBZHQHUWDho/Rmd1fZQoaAZoCWgPQwjWV1cFartWwJSGlFKUaBVLfWgWR0B1FlOVPepGdX2UKGgGaAloD0MIb/JbdLKuS8CUhpRSlGgVS3VoFkdAdRZ+B6KLsXV9lChoBmgJaA9DCMKKU62FuUHAlIaUUpRoFUt5aBZHQHUYYKhL5AR1fZQoaAZoCWgPQwhvSnmthFhOwJSGlFKUaBVLaGgWR0B1GRUVBUrDdX2UKGgGaAloD0MIH6FmSBXiUsCUhpRSlGgVS1JoFkdAdRkOJcgQpXV9lChoBmgJaA9DCH3NctnojVbAlIaUUpRoFUtWaBZHQHUZNBF/hEV1fZQoaAZoCWgPQwgNF7mnK55jwJSGlFKUaBVLf2gWR0B1GYX+ERJ3dX2UKGgGaAloD0MIXp7OFaUAVcCUhpRSlGgVS1FoFkdAdRnWM0gr6XV9lChoBmgJaA9DCCZTBaOSqVXAlIaUUpRoFUtyaBZHQHUaKuB+Wnl1fZQoaAZoCWgPQwiOc5twrxA+wJSGlFKUaBVLSmgWR0B1GhPqLS/kdX2UKGgGaAloD0MIJt9sc2PAS8CUhpRSlGgVS0xoFkdAdRqh1klNUXV9lChoBmgJaA9DCMe8jjhkll7AlIaUUpRoFUtlaBZHQHUa29L6DXh1fZQoaAZoCWgPQwhEigESTbZWwJSGlFKUaBVLY2gWR0B1HFZwGW2PdX2UKGgGaAloD0MIam0a22vROECUhpRSlGgVS2BoFkdAdRy1MM7U5XV9lChoBmgJaA9DCLHh6ZWyqVLAlIaUUpRoFUt2aBZHQHUdSlnAZbZ1fZQoaAZoCWgPQwhaZ3xfXFRNwJSGlFKUaBVLdWgWR0B1HXJNj9XLdX2UKGgGaAloD0MIjqz8MhhdRMCUhpRSlGgVS0poFkdAdR3Z62OQyXV9lChoBmgJaA9DCC3MQjunr03AlIaUUpRoFUt0aBZHQHUd4Z2pyZN1fZQoaAZoCWgPQwiiDcAGRNgWQJSGlFKUaBVLhGgWR0B1HpaPjn3ddX2UKGgGaAloD0MIQ6z+CMNWV8CUhpRSlGgVS1BoFkdAdR6s+FDfFnV9lChoBmgJaA9DCDL/6Js0lVPAlIaUUpRoFUtKaBZHQHUe0NnXd0t1fZQoaAZoCWgPQwh3hNOCF0xcwJSGlFKUaBVLVWgWR0B1H5/ViF0xdX2UKGgGaAloD0MIfZOmQdEPUcCUhpRSlGgVS3BoFkdAdSBRbbDdg3V9lChoBmgJaA9DCPwdigL9+mXAlIaUUpRoFUt9aBZHQHUggWBSUC91fZQoaAZoCWgPQwjo9/2bl5NjwJSGlFKUaBVLYGgWR0B1INYoy9EkdX2UKGgGaAloD0MIyD8ziA/oWsCUhpRSlGgVS0doFkdAdSD8zyjHn3V9lChoBmgJaA9DCL9hokEKiErAlIaUUpRoFUt1aBZHQHUhZCWu5jJ1fZQoaAZoCWgPQwjovwevXeZUwJSGlFKUaBVLY2gWR0B1IUcp9ZzQdX2UKGgGaAloD0MItvY+VYWWM8CUhpRSlGgVS4VoFkdAdSHHM2WIGnV9lChoBmgJaA9DCMjT8gNXNlfAlIaUUpRoFUtVaBZHQHUiNjslb/x1fZQoaAZoCWgPQwiHo6t0d6VSwJSGlFKUaBVLVGgWR0B1Iq3b212JdX2UKGgGaAloD0MI3o0FhUHbXMCUhpRSlGgVS09oFkdAdSLq9XcQAnV9lChoBmgJaA9DCAaf5uRFbVbAlIaUUpRoFUtHaBZHQHUjJCKJl8R1fZQoaAZoCWgPQwg6BI4EGjhGwJSGlFKUaBVLYmgWR0B1JA+Y+jdpdX2UKGgGaAloD0MIB5s6j4o2V8CUhpRSlGgVS1NoFkdAdSQZjhDPW3V9lChoBmgJaA9DCONuEK0VG1LAlIaUUpRoFUtYaBZHQHUlRxT850d1fZQoaAZoCWgPQwjHuU24V/ZfwJSGlFKUaBVLSWgWR0B1Jaro4dZJdX2UKGgGaAloD0MIJNHLKJZZWcCUhpRSlGgVS1RoFkdAdSZBSDRMOHV9lChoBmgJaA9DCM791eO+DTHAlIaUUpRoFUt1aBZHQHUmQEt/WlN1fZQoaAZoCWgPQwjFWRE10QZcwJSGlFKUaBVLU2gWR0B1JqFAVwgldX2UKGgGaAloD0MIXmdD/pnmV8CUhpRSlGgVS5BoFkdAdSa7vG6wuHV9lChoBmgJaA9DCNHN/kC5G0DAlIaUUpRoFUtbaBZHQHUnQiml67d1fZQoaAZoCWgPQwhNTu0M0zFgwJSGlFKUaBVLbmgWR0B1J5MzuWrwdX2UKGgGaAloD0MIgzKNJhfrTsCUhpRSlGgVS1RoFkdAdSejdpItlXV9lChoBmgJaA9DCMprJXSXOE/AlIaUUpRoFUuMaBZHQHUphArxy4p1fZQoaAZoCWgPQwizI9V3fhxYwJSGlFKUaBVLZGgWR0B1KdW6shgWdX2UKGgGaAloD0MIlDE+zF5bUcCUhpRSlGgVS3BoFkdAdSoo9LYf4nV9lChoBmgJaA9DCEG8rl+wUFjAlIaUUpRoFUuCaBZHQHUqagh8pkR1fZQoaAZoCWgPQwjqJFtdTjdRwJSGlFKUaBVLQGgWR0B1KqQo1DSgdX2UKGgGaAloD0MI4E237BBZTcCUhpRSlGgVS3VoFkdAdSrErGza9XV9lChoBmgJaA9DCANDVrd6AVHAlIaUUpRoFUtnaBZHQHUrDiwSrYJ1fZQoaAZoCWgPQwgEqn8QyQlYwJSGlFKUaBVLSWgWR0B1KzNOdoWYdX2UKGgGaAloD0MIGZC93v3RTsCUhpRSlGgVS3JoFkdAdSvDP4VRDXV9lChoBmgJaA9DCJp4B3jSh1fAlIaUUpRoFUtoaBZHQHUsQ2uPmxN1fZQoaAZoCWgPQwhat0Htt9xPwJSGlFKUaBVLU2gWR0B1LDSy+pOvdX2UKGgGaAloD0MIo3iVtU20VsCUhpRSlGgVS3hoFkdAdS2YTj/+9HV9lChoBmgJaA9DCHFWRE30ES7AlIaUUpRoFUtEaBZHQHUt6c7Qswt1fZQoaAZoCWgPQwhrgqj7AFdbwJSGlFKUaBVLamgWR0B1LrFWGRFJdX2UKGgGaAloD0MIdxVSflIzQcCUhpRSlGgVS4RoFkdAdS9+8oQWe3V9lChoBmgJaA9DCI4hADj2sEDAlIaUUpRoFUuDaBZHQHUwCWE9Mbp1fZQoaAZoCWgPQwixw5j098dVwJSGlFKUaBVLTmgWR0B1MDLKV6eHdX2UKGgGaAloD0MI1ub/VUcdZMCUhpRSlGgVS35oFkdAdTAeiSJTEXV9lChoBmgJaA9DCM1Xycfu0VHAlIaUUpRoFUtWaBZHQHUweCkGiYd1fZQoaAZoCWgPQwg8Mlab/71PwJSGlFKUaBVLWmgWR0B1MKAe7tiQdX2UKGgGaAloD0MIwR9+/nvMP8CUhpRSlGgVS2NoFkdAdTDH6uW8iHV9lChoBmgJaA9DCJsg6j4AolbAlIaUUpRoFUtiaBZHQHUw88DB/I91fZQoaAZoCWgPQwjScTWyK1JQwJSGlFKUaBVLUWgWR0B1MTlvIfbLdX2UKGgGaAloD0MIM6g2OBF7UcCUhpRSlGgVSz5oFkdAdTIih37k4nV9lChoBmgJaA9DCDc5fNKJQ1fAlIaUUpRoFUtnaBZHQHUzDGgi/wl1fZQoaAZoCWgPQwglsg+yLOhTwJSGlFKUaBVLbGgWR0B1M20a6z3RdX2UKGgGaAloD0MIpz/7kSKyB0CUhpRSlGgVS31oFkdAdTNxnnMdLnV9lChoBmgJaA9DCNoAbECEIkvAlIaUUpRoFUuaaBZHQHUz9ic5Ke11fZQoaAZoCWgPQwjd6c4Tz9NQwJSGlFKUaBVLS2gWR0B1NOAvtdAxdX2UKGgGaAloD0MIkIKnkCvFRsCUhpRSlGgVS2BoFkdAdTUATZg5R3V9lChoBmgJaA9DCPLNNjemAzXAlIaUUpRoFUtEaBZHQHU1dFWn0kJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fabe9010f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fabe9013050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fabe90130e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fabe9013170>", "_build": "<function ActorCriticPolicy._build at 0x7fabe9013200>", "forward": "<function ActorCriticPolicy.forward at 0x7fabe9013290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fabe9013320>", "_predict": "<function ActorCriticPolicy._predict at 0x7fabe90133b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fabe9013440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fabe90134d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fabe9013560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fabe8fd6e40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1668498230257711948, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG3WZj6KdSk8heAaO1VaEjkvKbY9sDM5ugAAgD8AAIA/xugoPim/UbzrVdu6FwQCOTbVvL3hxgw6AACAPwAAgD8LULO+qrBSPt05djsARGe+Z4nEvYpyij0AAAAAAAAAAM5LCz/HSJs+vEPEverEJL54bKc9UhYavgAAAAAAAAAAmkVvvDCsjT+xeMu8QMmlvgivCzzKxq69AAAAAAAAAADARRQ+ytyBP3pgUz6e44y+WR+XPduhZD0AAAAAAAAAAK1HYT7xLDI8yCtiO+0QWjl7irU9BtCFugAAgD8AAIA/ZiNPPcMdNro+kUg7CXQGth62N7smUGq6AACAPwAAgD+aWTa99rhTuhXrXry+C0c2Mlu3u76ws7UAAIA/AACAPyZhJz5PvwC8NHerOWIERLkjIlO9CMbEuAAAgD8AAIA/c90tPq6HsLih5sK883vKOzWTCTvlg7E8AACAPwAAgD/NdIa9j8Idup4GursayWQ2Au8Ku2p007UAAIA/AACAP+Zhyj1cCwG6c/Squv0CMbZ2sxq5/mXIOQAAgD8AAIA/oGFoPlPXBj8S9BQ9s1ZpvrCPmT1bI2M9AAAAAAAAAACKOoy+cwoZP+USND5akDu+fHI6vRe1iD0AAAAAAAAAAM3Evrv2/Gy63c92u5yvVTjoP7A6ZN0JOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2BGHbCDmW0CUhpRSlIwBbJRN6AOMAXSUR0Cia7/1YhdMdX2UKGgGaAloD0MImrD9ZIyaXECUhpRSlGgVTegDaBZHQKJtZ2criER1fZQoaAZoCWgPQwg/G7luSmdbQJSGlFKUaBVN6ANoFkdAonGpi3G4qnV9lChoBmgJaA9DCFtgj4mUP1pAlIaUUpRoFU3oA2gWR0Ciclm3F1jidX2UKGgGaAloD0MIPGh23Vv9YkCUhpRSlGgVTegDaBZHQKJy2QOnVG11fZQoaAZoCWgPQwjdPxaiQ2AeQJSGlFKUaBVNGAFoFkdAonOG3DvVmXV9lChoBmgJaA9DCPj7xWzJOGRAlIaUUpRoFU3oA2gWR0CidWryMDOkdX2UKGgGaAloD0MI8/+qI0fRYECUhpRSlGgVTegDaBZHQKKHU2b5M111fZQoaAZoCWgPQwheg7709lM/wJSGlFKUaBVNTQFoFkdAoogoffXPJXV9lChoBmgJaA9DCPHz34NXJWFAlIaUUpRoFU3oA2gWR0Ciifa/h2nsdX2UKGgGaAloD0MITvG4qBbOWECUhpRSlGgVTegDaBZHQKKMnxVAAyV1fZQoaAZoCWgPQwgnbD8Z4xRfQJSGlFKUaBVN6ANoFkdAoo4bd30PH3V9lChoBmgJaA9DCIRjlj2JMWBAlIaUUpRoFU3oA2gWR0Cij2aouPFOdX2UKGgGaAloD0MIAyZw624gRUCUhpRSlGgVTRoBaBZHQKKRUKD01651fZQoaAZoCWgPQwhA+5EiMiRVQJSGlFKUaBVN6ANoFkdAopHCd+Xqq3V9lChoBmgJaA9DCPsgy4KJbFlAlIaUUpRoFU3oA2gWR0CikvMG5c1PdX2UKGgGaAloD0MIZ5lFKLYVXUCUhpRSlGgVTegDaBZHQKKVO7muDBd1fZQoaAZoCWgPQwiqgHueP636v5SGlFKUaBVL72gWR0CiluFtbcGkdX2UKGgGaAloD0MIfv0QGyxRXECUhpRSlGgVTegDaBZHQKKW+qkM1CR1fZQoaAZoCWgPQwimRBK9jDFbQJSGlFKUaBVN6ANoFkdAopdHapPykXV9lChoBmgJaA9DCD7QCgxZAlhAlIaUUpRoFU3oA2gWR0CimON5t3wDdX2UKGgGaAloD0MIYoIavoVoYECUhpRSlGgVTegDaBZHQKKdDLvCuU51fZQoaAZoCWgPQwhPeAlO/c1gQJSGlFKUaBVN6ANoFkdAop4txS5y2nV9lChoBmgJaA9DCFvptdlYOSlAlIaUUpRoFUvqaBZHQKKeUwoLG711fZQoaAZoCWgPQwh9kjtsIgpWQJSGlFKUaBVN6ANoFkdAop7PktEofHV9lChoBmgJaA9DCHLe/8cJlmBAlIaUUpRoFU3oA2gWR0CioPtYKYzBdX2UKGgGaAloD0MIFXMQdLRPVECUhpRSlGgVTegDaBZHQKKyGyRjjJd1fZQoaAZoCWgPQwiZmgRvyFBiQJSGlFKUaBVN6ANoFkdAorOq8nNPg3V9lChoBmgJaA9DCPYINUOqXDZAlIaUUpRoFU1DAWgWR0CitQNVaOghdX2UKGgGaAloD0MI2XxcGypkYECUhpRSlGgVTegDaBZHQKK2BffGdZt1fZQoaAZoCWgPQwg2lNqLaKtWQJSGlFKUaBVN6ANoFkdAordTmZE2HnV9lChoBmgJaA9DCMakv5fCpF9AlIaUUpRoFU3oA2gWR0CiulROUMXrdX2UKGgGaAloD0MIEYyDS0dMYECUhpRSlGgVTegDaBZHQKK6x9Q40dl1fZQoaAZoCWgPQwiLGkzDcEJiQJSGlFKUaBVN6ANoFkdAorv4IhQm/nV9lChoBmgJaA9DCPTDCOHR6mNAlIaUUpRoFU3oA2gWR0CivjLTpgTidX2UKGgGaAloD0MIhShf0EJ0V0CUhpRSlGgVTegDaBZHQKK/5edkJ8h1fZQoaAZoCWgPQwiHiJtTybtaQJSGlFKUaBVN6ANoFkdAosAAqmTC+HV9lChoBmgJaA9DCDKQZ5dvC1xAlIaUUpRoFU3oA2gWR0CiwhsWweNldX2UKGgGaAloD0MIGR77WSzmXECUhpRSlGgVTegDaBZHQKLGz1AZ88d1fZQoaAZoCWgPQwgfEOhM2vVkQJSGlFKUaBVN6ANoFkdAosgEBKcurnV9lChoBmgJaA9DCACuZMdGfFtAlIaUUpRoFU3oA2gWR0CiyCyR8twrdX2UKGgGaAloD0MIw0fElMibYECUhpRSlGgVTegDaBZHQKLIv8CPp6h1fZQoaAZoCWgPQwgKn62Dg/NZQJSGlFKUaBVN6ANoFkdAot3dgc94eXV9lChoBmgJaA9DCA3+fjHbWGNAlIaUUpRoFU3oA2gWR0Ci379CNS62dX2UKGgGaAloD0MIAHSYLy8gXkCUhpRSlGgVTegDaBZHQKLhYJ8fFJh1fZQoaAZoCWgPQwiY9s39VbNrQJSGlFKUaBVNwgFoFkdAouGoSWZ7X3V9lChoBmgJaA9DCLYQ5KCEYWBAlIaUUpRoFU3oA2gWR0Ci4njJ+2E1dX2UKGgGaAloD0MITODW3TyJW0CUhpRSlGgVTegDaBZHQKLj3id8Rcx1fZQoaAZoCWgPQwi4Agr19MRYQJSGlFKUaBVN6ANoFkdAoubpR64Ue3V9lChoBmgJaA9DCHbAdcUMzGNAlIaUUpRoFU3oA2gWR0Ci52ARkEs8dX2UKGgGaAloD0MIcasgBrpYYECUhpRSlGgVTegDaBZHQKLokf8uSOl1fZQoaAZoCWgPQwj+DG/W4L0hwJSGlFKUaBVNEAFoFkdAouoHfoA4oHV9lChoBmgJaA9DCP7w89+Ddl9AlIaUUpRoFU3oA2gWR0Ci6uZM+NcXdX2UKGgGaAloD0MIkUYFTrbdVUCUhpRSlGgVTegDaBZHQKLshS8an751fZQoaAZoCWgPQwgdWmQ7345dQJSGlFKUaBVN6ANoFkdAouydapxWDHV9lChoBmgJaA9DCNklqrcGm1pAlIaUUpRoFU3oA2gWR0Ci7nxaouPFdX2UKGgGaAloD0MIDOavkDl/YECUhpRSlGgVTegDaBZHQKL0IYAsCkp1fZQoaAZoCWgPQwgdylAVU8VaQJSGlFKUaBVN6ANoFkdAovROu9vjwXV9lChoBmgJaA9DCA4UeCcfEWBAlIaUUpRoFU3oA2gWR0Ci9OKWC2+gdX2UKGgGaAloD0MIrfcb7TiJaUCUhpRSlGgVTS0CaBZHQKL6nNWU8mt1fZQoaAZoCWgPQwj/If32dSZmQJSGlFKUaBVNfAJoFkdAovv1grpaBHV9lChoBmgJaA9DCEFK7Nre5iXAlIaUUpRoFUvhaBZHQKL8l3OfNA11fZQoaAZoCWgPQwgom3KFd5xbQJSGlFKUaBVN6ANoFkdAov7x2+wkgXV9lChoBmgJaA9DCL6lnC/2rVtAlIaUUpRoFU3oA2gWR0CjCqbNB4UvdX2UKGgGaAloD0MICOOncW8GYkCUhpRSlGgVTegDaBZHQKMMXq0MPSV1fZQoaAZoCWgPQwhCeLRxxG1oQJSGlFKUaBVNogJoFkdAow0SwD/2kHV9lChoBmgJaA9DCMai6exkEFhAlIaUUpRoFU3oA2gWR0CjDSvCVKPGdX2UKGgGaAloD0MITp1Hxf8MXkCUhpRSlGgVTegDaBZHQKMOZND+irV1fZQoaAZoCWgPQwiZnUXv1LhhQJSGlFKUaBVN6ANoFkdAoxEqzcAR03V9lChoBmgJaA9DCCVATS1bpl9AlIaUUpRoFU3oA2gWR0CjFHsRxtHhdX2UKGgGaAloD0MIlPsdioJEYECUhpRSlGgVTegDaBZHQKMVbQXyiEh1fZQoaAZoCWgPQwg5J/bQPtJhQJSGlFKUaBVN6ANoFkdAoxc4hbGFSXV9lChoBmgJaA9DCBnFcksrJ2FAlIaUUpRoFU3oA2gWR0CjGaD3/PxAdX2UKGgGaAloD0MICjGXVG3HNcCUhpRSlGgVTSMBaBZHQKMbG6DoQnR1fZQoaAZoCWgPQwg8vOfAcpxgQJSGlFKUaBVN6ANoFkdAox/czl90BHV9lChoBmgJaA9DCCvZsREIG2FAlIaUUpRoFU3oA2gWR0CjIAsnAqNIdX2UKGgGaAloD0MIz0pa8Q1iY0CUhpRSlGgVTegDaBZHQKMmhaDf3vh1fZQoaAZoCWgPQwhNZyeDI4lgQJSGlFKUaBVN6ANoFkdAoyf0KkVN6HV9lChoBmgJaA9DCDYjg9xFsFpAlIaUUpRoFU3oA2gWR0CjKJ6CUX54dX2UKGgGaAloD0MI+Z0mM95AQsCUhpRSlGgVTTsBaBZHQKMq8/ag2611fZQoaAZoCWgPQwg90uC2tkRcQJSGlFKUaBVN6ANoFkdAoysFjNIK+nV9lChoBmgJaA9DCC7m54amMVhAlIaUUpRoFU3oA2gWR0CjNo+/QBxQdX2UKGgGaAloD0MI2CrB4nDtXECUhpRSlGgVTegDaBZHQKM4II/qxC91fZQoaAZoCWgPQwj3V4/71htgQJSGlFKUaBVN6ANoFkdAozjLowEhaHV9lChoBmgJaA9DCHXKoxthRFZAlIaUUpRoFU3oA2gWR0CjOOGNrCWNdX2UKGgGaAloD0MI5Nak2xIMYECUhpRSlGgVTegDaBZHQKM59aoMrmR1fZQoaAZoCWgPQwgcQwBw7BRtQJSGlFKUaBVNIwFoFkdAoz8uxKQJX3V9lChoBmgJaA9DCP6arFGPFGVAlIaUUpRoFU0aA2gWR0CjP3I6r/83dX2UKGgGaAloD0MIo1aYvtcQYECUhpRSlGgVTegDaBZHQKM/7zNliBp1fZQoaAZoCWgPQwiBCdy6m3hWQJSGlFKUaBVN6ANoFkdAo0DXmaH9FXV9lChoBmgJaA9DCCY3iqw1W1lAlIaUUpRoFU3oA2gWR0CjQnWsaKk3dX2UKGgGaAloD0MIOWOYE7SsXUCUhpRSlGgVTegDaBZHQKNElJ9RaX91fZQoaAZoCWgPQwjvcaYJ20xoQJSGlFKUaBVNoQFoFkdAo0S05U96knV9lChoBmgJaA9DCN2adFsiKUxAlIaUUpRoFU3oA2gWR0CjSrzN+so2dX2UKGgGaAloD0MIzJntCn0eQ8CUhpRSlGgVTT4BaBZHQKNQZ40Mw111fZQoaAZoCWgPQwjNBS6PNSdXQJSGlFKUaBVN6ANoFkdAo1I+WIGhVXV9lChoBmgJaA9DCFx1HaopYmJAlIaUUpRoFU3oA2gWR0CjU9lMyrPudX2UKGgGaAloD0MIUitM32s+YECUhpRSlGgVTegDaBZHQKNUl5Y5ksl1fZQoaAZoCWgPQwjUSba6nJ9WQJSGlFKUaBVN6ANoFkdAo1cJ+nZTQ3V9lChoBmgJaA9DCBVVv9J5bmFAlIaUUpRoFU3oA2gWR0CjVxvci4axdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 152, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71037cc5da1f3bce8213789f9d9f7daf8ef031ad82dc96abb8e7724376810247
|
3 |
+
size 147150
|
ppo-LunarLander-v2/data
CHANGED
@@ -42,12 +42,12 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,16 +66,16 @@
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1668498230257711948,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG3WZj6KdSk8heAaO1VaEjkvKbY9sDM5ugAAgD8AAIA/xugoPim/UbzrVdu6FwQCOTbVvL3hxgw6AACAPwAAgD8LULO+qrBSPt05djsARGe+Z4nEvYpyij0AAAAAAAAAAM5LCz/HSJs+vEPEverEJL54bKc9UhYavgAAAAAAAAAAmkVvvDCsjT+xeMu8QMmlvgivCzzKxq69AAAAAAAAAADARRQ+ytyBP3pgUz6e44y+WR+XPduhZD0AAAAAAAAAAK1HYT7xLDI8yCtiO+0QWjl7irU9BtCFugAAgD8AAIA/ZiNPPcMdNro+kUg7CXQGth62N7smUGq6AACAPwAAgD+aWTa99rhTuhXrXry+C0c2Mlu3u76ws7UAAIA/AACAPyZhJz5PvwC8NHerOWIERLkjIlO9CMbEuAAAgD8AAIA/c90tPq6HsLih5sK883vKOzWTCTvlg7E8AACAPwAAgD/NdIa9j8Idup4GursayWQ2Au8Ku2p007UAAIA/AACAP+Zhyj1cCwG6c/Squv0CMbZ2sxq5/mXIOQAAgD8AAIA/oGFoPlPXBj8S9BQ9s1ZpvrCPmT1bI2M9AAAAAAAAAACKOoy+cwoZP+USND5akDu+fHI6vRe1iD0AAAAAAAAAAM3Evrv2/Gy63c92u5yvVTjoP7A6ZN0JOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2BGHbCDmW0CUhpRSlIwBbJRN6AOMAXSUR0Cia7/1YhdMdX2UKGgGaAloD0MImrD9ZIyaXECUhpRSlGgVTegDaBZHQKJtZ2criER1fZQoaAZoCWgPQwg/G7luSmdbQJSGlFKUaBVN6ANoFkdAonGpi3G4qnV9lChoBmgJaA9DCFtgj4mUP1pAlIaUUpRoFU3oA2gWR0Ciclm3F1jidX2UKGgGaAloD0MIPGh23Vv9YkCUhpRSlGgVTegDaBZHQKJy2QOnVG11fZQoaAZoCWgPQwjdPxaiQ2AeQJSGlFKUaBVNGAFoFkdAonOG3DvVmXV9lChoBmgJaA9DCPj7xWzJOGRAlIaUUpRoFU3oA2gWR0CidWryMDOkdX2UKGgGaAloD0MI8/+qI0fRYECUhpRSlGgVTegDaBZHQKKHU2b5M111fZQoaAZoCWgPQwheg7709lM/wJSGlFKUaBVNTQFoFkdAoogoffXPJXV9lChoBmgJaA9DCPHz34NXJWFAlIaUUpRoFU3oA2gWR0Ciifa/h2nsdX2UKGgGaAloD0MITvG4qBbOWECUhpRSlGgVTegDaBZHQKKMnxVAAyV1fZQoaAZoCWgPQwgnbD8Z4xRfQJSGlFKUaBVN6ANoFkdAoo4bd30PH3V9lChoBmgJaA9DCIRjlj2JMWBAlIaUUpRoFU3oA2gWR0Cij2aouPFOdX2UKGgGaAloD0MIAyZw624gRUCUhpRSlGgVTRoBaBZHQKKRUKD01651fZQoaAZoCWgPQwhA+5EiMiRVQJSGlFKUaBVN6ANoFkdAopHCd+Xqq3V9lChoBmgJaA9DCPsgy4KJbFlAlIaUUpRoFU3oA2gWR0CikvMG5c1PdX2UKGgGaAloD0MIZ5lFKLYVXUCUhpRSlGgVTegDaBZHQKKVO7muDBd1fZQoaAZoCWgPQwiqgHueP636v5SGlFKUaBVL72gWR0CiluFtbcGkdX2UKGgGaAloD0MIfv0QGyxRXECUhpRSlGgVTegDaBZHQKKW+qkM1CR1fZQoaAZoCWgPQwimRBK9jDFbQJSGlFKUaBVN6ANoFkdAopdHapPykXV9lChoBmgJaA9DCD7QCgxZAlhAlIaUUpRoFU3oA2gWR0CimON5t3wDdX2UKGgGaAloD0MIYoIavoVoYECUhpRSlGgVTegDaBZHQKKdDLvCuU51fZQoaAZoCWgPQwhPeAlO/c1gQJSGlFKUaBVN6ANoFkdAop4txS5y2nV9lChoBmgJaA9DCFvptdlYOSlAlIaUUpRoFUvqaBZHQKKeUwoLG711fZQoaAZoCWgPQwh9kjtsIgpWQJSGlFKUaBVN6ANoFkdAop7PktEofHV9lChoBmgJaA9DCHLe/8cJlmBAlIaUUpRoFU3oA2gWR0CioPtYKYzBdX2UKGgGaAloD0MIFXMQdLRPVECUhpRSlGgVTegDaBZHQKKyGyRjjJd1fZQoaAZoCWgPQwiZmgRvyFBiQJSGlFKUaBVN6ANoFkdAorOq8nNPg3V9lChoBmgJaA9DCPYINUOqXDZAlIaUUpRoFU1DAWgWR0CitQNVaOghdX2UKGgGaAloD0MI2XxcGypkYECUhpRSlGgVTegDaBZHQKK2BffGdZt1fZQoaAZoCWgPQwg2lNqLaKtWQJSGlFKUaBVN6ANoFkdAordTmZE2HnV9lChoBmgJaA9DCMakv5fCpF9AlIaUUpRoFU3oA2gWR0CiulROUMXrdX2UKGgGaAloD0MIEYyDS0dMYECUhpRSlGgVTegDaBZHQKK6x9Q40dl1fZQoaAZoCWgPQwiLGkzDcEJiQJSGlFKUaBVN6ANoFkdAorv4IhQm/nV9lChoBmgJaA9DCPTDCOHR6mNAlIaUUpRoFU3oA2gWR0CivjLTpgTidX2UKGgGaAloD0MIhShf0EJ0V0CUhpRSlGgVTegDaBZHQKK/5edkJ8h1fZQoaAZoCWgPQwiHiJtTybtaQJSGlFKUaBVN6ANoFkdAosAAqmTC+HV9lChoBmgJaA9DCDKQZ5dvC1xAlIaUUpRoFU3oA2gWR0CiwhsWweNldX2UKGgGaAloD0MIGR77WSzmXECUhpRSlGgVTegDaBZHQKLGz1AZ88d1fZQoaAZoCWgPQwgfEOhM2vVkQJSGlFKUaBVN6ANoFkdAosgEBKcurnV9lChoBmgJaA9DCACuZMdGfFtAlIaUUpRoFU3oA2gWR0CiyCyR8twrdX2UKGgGaAloD0MIw0fElMibYECUhpRSlGgVTegDaBZHQKLIv8CPp6h1fZQoaAZoCWgPQwgKn62Dg/NZQJSGlFKUaBVN6ANoFkdAot3dgc94eXV9lChoBmgJaA9DCA3+fjHbWGNAlIaUUpRoFU3oA2gWR0Ci379CNS62dX2UKGgGaAloD0MIAHSYLy8gXkCUhpRSlGgVTegDaBZHQKLhYJ8fFJh1fZQoaAZoCWgPQwiY9s39VbNrQJSGlFKUaBVNwgFoFkdAouGoSWZ7X3V9lChoBmgJaA9DCLYQ5KCEYWBAlIaUUpRoFU3oA2gWR0Ci4njJ+2E1dX2UKGgGaAloD0MITODW3TyJW0CUhpRSlGgVTegDaBZHQKLj3id8Rcx1fZQoaAZoCWgPQwi4Agr19MRYQJSGlFKUaBVN6ANoFkdAoubpR64Ue3V9lChoBmgJaA9DCHbAdcUMzGNAlIaUUpRoFU3oA2gWR0Ci52ARkEs8dX2UKGgGaAloD0MIcasgBrpYYECUhpRSlGgVTegDaBZHQKLokf8uSOl1fZQoaAZoCWgPQwj+DG/W4L0hwJSGlFKUaBVNEAFoFkdAouoHfoA4oHV9lChoBmgJaA9DCP7w89+Ddl9AlIaUUpRoFU3oA2gWR0Ci6uZM+NcXdX2UKGgGaAloD0MIkUYFTrbdVUCUhpRSlGgVTegDaBZHQKLshS8an751fZQoaAZoCWgPQwgdWmQ7345dQJSGlFKUaBVN6ANoFkdAouydapxWDHV9lChoBmgJaA9DCNklqrcGm1pAlIaUUpRoFU3oA2gWR0Ci7nxaouPFdX2UKGgGaAloD0MIDOavkDl/YECUhpRSlGgVTegDaBZHQKL0IYAsCkp1fZQoaAZoCWgPQwgdylAVU8VaQJSGlFKUaBVN6ANoFkdAovROu9vjwXV9lChoBmgJaA9DCA4UeCcfEWBAlIaUUpRoFU3oA2gWR0Ci9OKWC2+gdX2UKGgGaAloD0MIrfcb7TiJaUCUhpRSlGgVTS0CaBZHQKL6nNWU8mt1fZQoaAZoCWgPQwj/If32dSZmQJSGlFKUaBVNfAJoFkdAovv1grpaBHV9lChoBmgJaA9DCEFK7Nre5iXAlIaUUpRoFUvhaBZHQKL8l3OfNA11fZQoaAZoCWgPQwgom3KFd5xbQJSGlFKUaBVN6ANoFkdAov7x2+wkgXV9lChoBmgJaA9DCL6lnC/2rVtAlIaUUpRoFU3oA2gWR0CjCqbNB4UvdX2UKGgGaAloD0MICOOncW8GYkCUhpRSlGgVTegDaBZHQKMMXq0MPSV1fZQoaAZoCWgPQwhCeLRxxG1oQJSGlFKUaBVNogJoFkdAow0SwD/2kHV9lChoBmgJaA9DCMai6exkEFhAlIaUUpRoFU3oA2gWR0CjDSvCVKPGdX2UKGgGaAloD0MITp1Hxf8MXkCUhpRSlGgVTegDaBZHQKMOZND+irV1fZQoaAZoCWgPQwiZnUXv1LhhQJSGlFKUaBVN6ANoFkdAoxEqzcAR03V9lChoBmgJaA9DCCVATS1bpl9AlIaUUpRoFU3oA2gWR0CjFHsRxtHhdX2UKGgGaAloD0MIlPsdioJEYECUhpRSlGgVTegDaBZHQKMVbQXyiEh1fZQoaAZoCWgPQwg5J/bQPtJhQJSGlFKUaBVN6ANoFkdAoxc4hbGFSXV9lChoBmgJaA9DCBnFcksrJ2FAlIaUUpRoFU3oA2gWR0CjGaD3/PxAdX2UKGgGaAloD0MICjGXVG3HNcCUhpRSlGgVTSMBaBZHQKMbG6DoQnR1fZQoaAZoCWgPQwg8vOfAcpxgQJSGlFKUaBVN6ANoFkdAox/czl90BHV9lChoBmgJaA9DCCvZsREIG2FAlIaUUpRoFU3oA2gWR0CjIAsnAqNIdX2UKGgGaAloD0MIz0pa8Q1iY0CUhpRSlGgVTegDaBZHQKMmhaDf3vh1fZQoaAZoCWgPQwhNZyeDI4lgQJSGlFKUaBVN6ANoFkdAoyf0KkVN6HV9lChoBmgJaA9DCDYjg9xFsFpAlIaUUpRoFU3oA2gWR0CjKJ6CUX54dX2UKGgGaAloD0MI+Z0mM95AQsCUhpRSlGgVTTsBaBZHQKMq8/ag2611fZQoaAZoCWgPQwg90uC2tkRcQJSGlFKUaBVN6ANoFkdAoysFjNIK+nV9lChoBmgJaA9DCC7m54amMVhAlIaUUpRoFU3oA2gWR0CjNo+/QBxQdX2UKGgGaAloD0MI2CrB4nDtXECUhpRSlGgVTegDaBZHQKM4II/qxC91fZQoaAZoCWgPQwj3V4/71htgQJSGlFKUaBVN6ANoFkdAozjLowEhaHV9lChoBmgJaA9DCHXKoxthRFZAlIaUUpRoFU3oA2gWR0CjOOGNrCWNdX2UKGgGaAloD0MI5Nak2xIMYECUhpRSlGgVTegDaBZHQKM59aoMrmR1fZQoaAZoCWgPQwgcQwBw7BRtQJSGlFKUaBVNIwFoFkdAoz8uxKQJX3V9lChoBmgJaA9DCP6arFGPFGVAlIaUUpRoFU0aA2gWR0CjP3I6r/83dX2UKGgGaAloD0MIo1aYvtcQYECUhpRSlGgVTegDaBZHQKM/7zNliBp1fZQoaAZoCWgPQwiBCdy6m3hWQJSGlFKUaBVN6ANoFkdAo0DXmaH9FXV9lChoBmgJaA9DCCY3iqw1W1lAlIaUUpRoFU3oA2gWR0CjQnWsaKk3dX2UKGgGaAloD0MIOWOYE7SsXUCUhpRSlGgVTegDaBZHQKNElJ9RaX91fZQoaAZoCWgPQwjvcaYJ20xoQJSGlFKUaBVNoQFoFkdAo0S05U96knV9lChoBmgJaA9DCN2adFsiKUxAlIaUUpRoFU3oA2gWR0CjSrzN+so2dX2UKGgGaAloD0MIzJntCn0eQ8CUhpRSlGgVTT4BaBZHQKNQZ40Mw111fZQoaAZoCWgPQwjNBS6PNSdXQJSGlFKUaBVN6ANoFkdAo1I+WIGhVXV9lChoBmgJaA9DCFx1HaopYmJAlIaUUpRoFU3oA2gWR0CjU9lMyrPudX2UKGgGaAloD0MIUitM32s+YECUhpRSlGgVTegDaBZHQKNUl5Y5ksl1fZQoaAZoCWgPQwjUSba6nJ9WQJSGlFKUaBVN6ANoFkdAo1cJ+nZTQ3V9lChoBmgJaA9DCBVVv9J5bmFAlIaUUpRoFU3oA2gWR0CjVxvci4axdWUu"
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 152,
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87865
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73e8226ffee70a246762be9181368a8e00091940b2a49ca8dc3047c9b168022c
|
3 |
size 87865
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2d3cfa620734d97eb324cb996284586ade9f8b1b42ea5904d4e4d1f60b4aed3
|
3 |
size 43201
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 115.64590354467774, "std_reward": 116.41453716715449, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-15T07:55:29.877298"}
|