Update README.md
Browse files
README.md
CHANGED
@@ -6,9 +6,25 @@ language:
|
|
6 |
library_name: transformers
|
7 |
---
|
8 |
|
9 |
-
Roberta base model trained on Azerbaijani subset of OSCAR corpus.
|
|
|
10 |
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
## Usage
|
13 |
```python
|
14 |
from transformers import AutoTokenizer, AutoModelWithLMHead
|
@@ -23,59 +39,28 @@ model_mask = pipeline('fill-mask', model='iamdenay/roberta-azerbaijani')
|
|
23 |
model_mask("Le tweet <mask>.")
|
24 |
```
|
25 |
|
26 |
-
##
|
27 |
```python
|
28 |
-
|
29 |
-
fill_mask("azərtac xəbər <mask> ki")
|
30 |
-
```
|
31 |
-
```
|
32 |
[{'sequence': 'azərtac xəbər verir ki',
|
33 |
-
'score': 0.
|
34 |
'token': 1053,
|
35 |
-
'token_str': '
|
36 |
{'sequence': 'azərtac xəbər verib ki',
|
37 |
-
'score': 0.
|
38 |
'token': 2313,
|
39 |
-
'token_str': '
|
40 |
-
|
41 |
-
'score': 0.00216124439612031,
|
42 |
-
'token': 6580,
|
43 |
-
'token_str': ' yayıb'},
|
44 |
-
{'sequence': 'azərtac xəbər agentliyi ki',
|
45 |
-
'score': 0.0014381826622411609,
|
46 |
-
'token': 14711,
|
47 |
-
'token_str': ' agentliyi'},
|
48 |
-
{'sequence': 'azərtac xəbəraz ki',
|
49 |
-
'score': 0.0012858203845098615,
|
50 |
-
'token': 320,
|
51 |
-
'token_str': 'az'}]
|
52 |
```
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
'score': 0.1061108186841011,
|
64 |
-
'token': 374,
|
65 |
-
'token_str': ' bir'},
|
66 |
-
{'sequence': 'Mənə o yumşaq fransız bulkalarından biri çox ver',
|
67 |
-
'score': 0.05577299743890762,
|
68 |
-
'token': 1331,
|
69 |
-
'token_str': ' biri'},
|
70 |
-
{'sequence': 'Mənə o yumşaq fransız bulkalarından ən çox ver',
|
71 |
-
'score': 0.029407601803541183,
|
72 |
-
'token': 745,
|
73 |
-
'token_str': ' ən'},
|
74 |
-
{'sequence': 'Mənə o yumşaq fransız bulkalarından çox çox ver',
|
75 |
-
'score': 0.011952652595937252,
|
76 |
-
'token': 524,
|
77 |
-
'token_str': ' çox'}]
|
78 |
-
```
|
79 |
|
80 |
## Config
|
81 |
```json
|
|
|
6 |
library_name: transformers
|
7 |
---
|
8 |
|
9 |
+
Roberta base model trained on Azerbaijani subset of OSCAR corpus as a part of [research](https://peerj.com/articles/cs-1974/) on application of text augentation for low-resource languages.
|
10 |
+
It was developed to enhance text classification tasks in Azerbaijani, a low-resource language in the NLP domain. The model was trained using the Azerbaijani subset of the OSCAR corpus and further fine-tuned on a labeled news dataset.
|
11 |
|
12 |
|
13 |
+
## Training Data
|
14 |
+
The model was pre-trained on the Azerbaijani subset of the OSCAR corpus, and fine-tuned on approximately 3 million sentences from Azertag News Agency covering diverse topics such as politics, economy, culture, sports, technology, and health.
|
15 |
+
|
16 |
+
## Citation
|
17 |
+
```bibtex
|
18 |
+
@article{ziyaden2024augmentation,
|
19 |
+
title = {Text data augmentation and pre-trained Language Model for enhancing text classification of low-resource languages},
|
20 |
+
author = {Ziyaden, Atabay and Yelenov, Amir and Hajiyev, Fuad and Rustamov, Samir and Pak, Alexandr},
|
21 |
+
year = 2024,
|
22 |
+
journal = {PeerJ Computer Science},
|
23 |
+
doi = {10.7717/peerj-cs.1974},
|
24 |
+
url = {https://doi.org/10.7717/peerj-cs.1974}
|
25 |
+
}
|
26 |
+
```
|
27 |
+
|
28 |
## Usage
|
29 |
```python
|
30 |
from transformers import AutoTokenizer, AutoModelWithLMHead
|
|
|
39 |
model_mask("Le tweet <mask>.")
|
40 |
```
|
41 |
|
42 |
+
## Output
|
43 |
```python
|
|
|
|
|
|
|
|
|
44 |
[{'sequence': 'azərtac xəbər verir ki',
|
45 |
+
'score': 0.9791,
|
46 |
'token': 1053,
|
47 |
+
'token_str': 'verir'},
|
48 |
{'sequence': 'azərtac xəbər verib ki',
|
49 |
+
'score': 0.0044,
|
50 |
'token': 2313,
|
51 |
+
'token_str': 'verib'},
|
52 |
+
... ]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
```
|
54 |
|
55 |
+
## Limitations
|
56 |
+
|
57 |
+
- Language Specificity: The model is trained exclusively on Azerbaijani and may not generalize well to other languages.
|
58 |
+
- Data Bias: The fine-tuning data is sourced from news articles, which may contain biases or specific journalistic styles.
|
59 |
+
- Agglutinative Language Challenges: Azerbaijani's agglutinative nature can lead to sparsity in the word space due to numerous morphological variations.
|
60 |
+
|
61 |
+
## Ethical Considerations
|
62 |
+
- Content Sensitivity: The dataset may include sensitive topics. Users should ensure compliance with ethical standards when deploying the model.
|
63 |
+
- Bias and Fairness: Be aware of potential biases in the training data that could affect model predictions.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
## Config
|
66 |
```json
|