first version of the LunarLander-v2 agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 164.94 +/- 62.17
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5006e38680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5006e38710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5006e387a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5006e38830>", "_build": "<function ActorCriticPolicy._build at 0x7f5006e388c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5006e38950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5006e389e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5006e38a70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5006e38b00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5006e38b90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5006e38c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5006e0f240>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651748806.210665, "learning_rate": 0.01, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+EeuFHrhR7hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYgULwRExw/bWfVPdNbi74LpXG9a/DlPAAAAAAAAAAAZiaUuvZkZbrsBa+5gPAWNdg5SLuLcMo4AACAPwAAgD92r8W+Y7sxPx6lvL0EyWq+FrSUvhonoD0AAAAAAAAAAM1tXb0pkCm6GAvZOvDlwraiIrO6QJ2AuQAAgD8AAIA/pn3avUjzlroo8t26Wnc7tiuNmDr2H/05AACAPwAAgD9GmJA+/JaOP9/4lz4xEFG+OtBVPjLvrzwAAAAAAAAAAGa2QrvD6X66ubGIPA40AzW6xtm5q1fnMwAAgD8AAIA/s2p7PRRgkrqG0dI75ky/NQU27DmYTrU0AACAPwAAgD/zyig+lEqwPwnfAz+xEWa+gsIgPtLljj0AAAAAAAAAAGbWpLtsjp4/EUulPRYx776Wze68Fb7cvAAAAAAAAAAAGtBsPY8qYbpDZay6uqgttnYPmzun8MY5AACAPwAAgD/NcCQ+65ibP25ygD7AJGK+aBsEPnu8xj0AAAAAAAAAAM3Z6r0pHBy6VIUDPRrNsLpChps7gD6aOwAAgD8AAIA/xhAkvjH5Rz+1cHE7Cmbtvk0L+r258Ec9AAAAAAAAAACaVLE8FIyKulrnPrtvyC+2nD8JuvvHWjoAAIA/AACAP2aGvDwUrom60jjNu8OvnTgxXzK7heXbOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqaROQBNyWUCUhpRSlIwBbJRN6AOMAXSUR0CWRbU+s5n2dX2UKGgGaAloD0MIEOhM2lQUW8CUhpRSlGgVTb8BaBZHQJZG8ihWYF91fZQoaAZoCWgPQwhWgVoMnhNjQJSGlFKUaBVN6ANoFkdAlklBPfsNUnV9lChoBmgJaA9DCKacL/bewmBAlIaUUpRoFU3oA2gWR0CWTBYrJ8v3dX2UKGgGaAloD0MIT135LM+dX0CUhpRSlGgVTegDaBZHQJZVu8PFvQ51fZQoaAZoCWgPQwhH6dK/pORgQJSGlFKUaBVN6ANoFkdAllsiaZx7zHV9lChoBmgJaA9DCJZbWg0JWGJAlIaUUpRoFU3oA2gWR0CWbi8U21lYdX2UKGgGaAloD0MIyxMIO8ViM0CUhpRSlGgVTegDaBZHQJZ6Efq5byJ1fZQoaAZoCWgPQwhWZd8VwV5YQJSGlFKUaBVN6ANoFkdAln40x20Re3V9lChoBmgJaA9DCBNGs7J9fmVAlIaUUpRoFU3oA2gWR0CWf3Lns9jgdX2UKGgGaAloD0MIQ6m9iDb9YECUhpRSlGgVTegDaBZHQJaBtGRV6u51fZQoaAZoCWgPQwiVRPZBlr9eQJSGlFKUaBVN6ANoFkdAloWxHoX9BXV9lChoBmgJaA9DCEDCMGDJf15AlIaUUpRoFU3oA2gWR0CWlvEv0yxidX2UKGgGaAloD0MILXk8LT/uWUCUhpRSlGgVTegDaBZHQJaaFqpLmIV1fZQoaAZoCWgPQwjiyAORRV9fQJSGlFKUaBVN6ANoFkdAlpt+nMt9QXV9lChoBmgJaA9DCPOv5ZXrPmBAlIaUUpRoFU3oA2gWR0CWm7IldC3PdX2UKGgGaAloD0MIjgOvljv7WkCUhpRSlGgVTegDaBZHQJacaAlOXVt1fZQoaAZoCWgPQwhSmWIOgmxiQJSGlFKUaBVN6ANoFkdAlp3XTRYzSHV9lChoBmgJaA9DCL+ZmC7EFFpAlIaUUpRoFU3oA2gWR0CWoIQ1JlJ6dX2UKGgGaAloD0MIQ41CktmtY0CUhpRSlGgVTegDaBZHQJajgNWluWN1fZQoaAZoCWgPQwgAUps4uf1fQJSGlFKUaBVN6ANoFkdAlq1pdWyTp3V9lChoBmgJaA9DCOfkRSbgBV9AlIaUUpRoFU3oA2gWR0CWskAXVLBbdX2UKGgGaAloD0MI9vBlogjiXECUhpRSlGgVTegDaBZHQJbD4t9QXRB1fZQoaAZoCWgPQwibx2EwfwJVQJSGlFKUaBVN6ANoFkdAls8AZCOWB3V9lChoBmgJaA9DCIc1lUXhSGFAlIaUUpRoFU3oA2gWR0CW0s5ftx+8dX2UKGgGaAloD0MIhjsXRnrWXkCUhpRSlGgVTegDaBZHQJbUBCngpBp1fZQoaAZoCWgPQwjz4sRXOzpfQJSGlFKUaBVN6ANoFkdAltZM8HObAnV9lChoBmgJaA9DCIP6ljldDmFAlIaUUpRoFU3oA2gWR0CW2jXD3ueCdX2UKGgGaAloD0MIzTrj++LoY0CUhpRSlGgVTegDaBZHQJbrJyEL6UJ1fZQoaAZoCWgPQwiXVdgMcKxiQJSGlFKUaBVN6ANoFkdAlzpkZeiSJXV9lChoBmgJaA9DCDgVqTC292JAlIaUUpRoFU3oA2gWR0CXO71D0DlpdX2UKGgGaAloD0MICrsoemAnYECUhpRSlGgVTegDaBZHQJc78qtozvZ1fZQoaAZoCWgPQwgYlGk0OSdiQJSGlFKUaBVN6ANoFkdAlzyiy6cy33V9lChoBmgJaA9DCKKb/YFyUmJAlIaUUpRoFU3oA2gWR0CXPhnw5NoKdX2UKGgGaAloD0MIVdriGp/IYECUhpRSlGgVTegDaBZHQJdAz3WWhRJ1fZQoaAZoCWgPQwiqu7ILBvFZQJSGlFKUaBVN6ANoFkdAl0QjxgAp8XV9lChoBmgJaA9DCA+3Q8NilWjAlIaUUpRoFU3OAWgWR0CXRlgQpWmxdX2UKGgGaAloD0MI+FJ40OxWXkCUhpRSlGgVTegDaBZHQJdO+cOLBKt1fZQoaAZoCWgPQwjPnsvUJGFgQJSGlFKUaBVN6ANoFkdAl1SdNBWxQnV9lChoBmgJaA9DCBY0LbEyhFdAlIaUUpRoFU3oA2gWR0CXZpAnlXA/dX2UKGgGaAloD0MIQYAMHTtMXkCUhpRSlGgVTegDaBZHQJdxcyWRigF1fZQoaAZoCWgPQwgK3LqbJxJgQJSGlFKUaBVN6ANoFkdAl3ZykKu0TnV9lChoBmgJaA9DCHgMj/0s72FAlIaUUpRoFU3oA2gWR0CXeKcENe+mdX2UKGgGaAloD0MImus00tJYYkCUhpRSlGgVTegDaBZHQJd8QZYPoV51fZQoaAZoCWgPQwgWodgKGnNiQJSGlFKUaBVN6ANoFkdAl4uBqO938nV9lChoBmgJaA9DCBkfZi/b5WVAlIaUUpRoFU3oA2gWR0CXjnDPWxyGdX2UKGgGaAloD0MIx9rf2R5eYUCUhpRSlGgVTegDaBZHQJePpoN/e+F1fZQoaAZoCWgPQwhHdM+6Rn5cQJSGlFKUaBVN6ANoFkdAl4/VbaAWi3V9lChoBmgJaA9DCHdqLjeYCmNAlIaUUpRoFU3oA2gWR0CXkHtGus90dX2UKGgGaAloD0MIxEKtaV5lYkCUhpRSlGgVTegDaBZHQJeR0BOpKjB1fZQoaAZoCWgPQwgKvJNPj/RYQJSGlFKUaBVN6ANoFkdAl5RMCcPOIXV9lChoBmgJaA9DCJNxjGQPG2FAlIaUUpRoFU3oA2gWR0CXlypeNT99dX2UKGgGaAloD0MIQiPYuP68XECUhpRSlGgVTegDaBZHQJeZFdld1Md1fZQoaAZoCWgPQwgl6ZrJt4tjQJSGlFKUaBVN6ANoFkdAl5/WugYgq3V9lChoBmgJaA9DCP8lqUwxaFJAlIaUUpRoFU3oA2gWR0CXpE/zreImdX2UKGgGaAloD0MIt5bJcDzhSECUhpRSlGgVS9BoFkdAl6aqi48U23V9lChoBmgJaA9DCM6LE1/tcWRAlIaUUpRoFU3oA2gWR0CXtAIDYAbRdX2UKGgGaAloD0MIda29T9VlY0CUhpRSlGgVTegDaBZHQJe+A5q/M4d1fZQoaAZoCWgPQwiELXb7LBVnQJSGlFKUaBVN6ANoFkdAl8LCUcGTtHV9lChoBmgJaA9DCLKfxVIkNV1AlIaUUpRoFU3oA2gWR0CXxONHH3lCdX2UKGgGaAloD0MImGn7V1ZZYkCUhpRSlGgVTegDaBZHQJfIiHSF49p1fZQoaAZoCWgPQwgewY2UrdBgQJSGlFKUaBVN6ANoFkdAl9hOhK15SnV9lChoBmgJaA9DCJs8ZTVdlzRAlIaUUpRoFUvXaBZHQJfadrbg0j11fZQoaAZoCWgPQwjLLa2GRLZgQJSGlFKUaBVN6ANoFkdAl9tZn13+uXV9lChoBmgJaA9DCF/waU5eo2JAlIaUUpRoFU3oA2gWR0CX3IbzK9wndX2UKGgGaAloD0MIrW2Kx8XOYUCUhpRSlGgVTegDaBZHQJfctFNL1291fZQoaAZoCWgPQwhM4NbdPIBmQJSGlFKUaBVN6ANoFkdAl91GX9itrHV9lChoBmgJaA9DCLBYw0VuJGNAlIaUUpRoFU3oA2gWR0CYLw9srNGFdX2UKGgGaAloD0MIUrXdBN/IYECUhpRSlGgVTegDaBZHQJgxgVUMoc91fZQoaAZoCWgPQwhhiJy+HtNjQJSGlFKUaBVN6ANoFkdAmDQxRAKOUHV9lChoBmgJaA9DCAKBzqTNz2FAlIaUUpRoFU3oA2gWR0CYPUb8FY+0dX2UKGgGaAloD0MI761ITFAjXUCUhpRSlGgVTegDaBZHQJhCO4smOVB1fZQoaAZoCWgPQwjsTQzJydtaQJSGlFKUaBVN6ANoFkdAmETjSXt0FXV9lChoBmgJaA9DCIffTbfsQGRAlIaUUpRoFU3oA2gWR0CYUqPl+3H8dX2UKGgGaAloD0MIm3CvzNtFZECUhpRSlGgVTegDaBZHQJhcUGVzIWB1fZQoaAZoCWgPQwhY5q26Dt5bQJSGlFKUaBVN6ANoFkdAmGH/BzmwJXV9lChoBmgJaA9DCHO4VnvYs11AlIaUUpRoFU3oA2gWR0CYZJHWBjFydX2UKGgGaAloD0MIWpvG9lrgYkCUhpRSlGgVTegDaBZHQJh9OnBLwnZ1fZQoaAZoCWgPQwjyd++oMY5kQJSGlFKUaBVN6ANoFkdAmH9mxlg+hXV9lChoBmgJaA9DCC0mNh/X12NAlIaUUpRoFU3oA2gWR0CYgDohY/3WdX2UKGgGaAloD0MIiJ6USQ0iY0CUhpRSlGgVTegDaBZHQJiBUhKUVzp1fZQoaAZoCWgPQwhIcCNli/JiQJSGlFKUaBVN6ANoFkdAmIF8vysjmnV9lChoBmgJaA9DCHR+iuNAqGFAlIaUUpRoFU3oA2gWR0CYggMRHww1dX2UKGgGaAloD0MIB9Dv+7e2YkCUhpRSlGgVTegDaBZHQJiDPdN34bl1fZQoaAZoCWgPQwh3LLZJxbdjQJSGlFKUaBVN6ANoFkdAmIXF0tAcDXV9lChoBmgJaA9DCM7hWu1hbF5AlIaUUpRoFU3oA2gWR0CYiAlb/wRXdX2UKGgGaAloD0MItteC3ht/YkCUhpRSlGgVTegDaBZHQJiQHl3hXKd1fZQoaAZoCWgPQwihhJm2fwpjQJSGlFKUaBVN6ANoFkdAmJfCJfpljHV9lChoBmgJaA9DCED35cx2aGVAlIaUUpRoFU3oA2gWR0CYmvi+cpb2dX2UKGgGaAloD0MIFxIwurw3Z0CUhpRSlGgVTegDaBZHQJiq1VwPy091fZQoaAZoCWgPQwjPS8XGvFRdQJSGlFKUaBVN6ANoFkdAmLQzjebd8HV9lChoBmgJaA9DCIY5QZuciGNAlIaUUpRoFU3oA2gWR0CYuFb/Ot4idX2UKGgGaAloD0MIis3HtaHZW0CUhpRSlGgVTegDaBZHQJi6QnYxtYV1fZQoaAZoCWgPQwg/U69bBB1mQJSGlFKUaBVN6ANoFkdAmM06yjYZmHV9lChoBmgJaA9DCKlsWFNZK2JAlIaUUpRoFU3oA2gWR0CYz06C17Y1dX2UKGgGaAloD0MIFjQtsTKvXECUhpRSlGgVTegDaBZHQJjQJL/S6Ud1fZQoaAZoCWgPQwhqFf2hmR5aQJSGlFKUaBVN6ANoFkdAmNFVf/m1Y3V9lChoBmgJaA9DCKRS7GgcOF9AlIaUUpRoFU3oA2gWR0CY0YFc6eXidX2UKGgGaAloD0MIoOBiRQ0KY0CUhpRSlGgVTegDaBZHQJjSG96C17Z1fZQoaAZoCWgPQwhwmj474GVkQJSGlFKUaBVN6ANoFkdAmNNWTkhib3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42bed5900ecc70a010f730ab5d65c3c030a0dc250dc6fe58d1416936c73a1945
|
3 |
+
size 144045
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5006e38680>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5006e38710>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5006e387a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5006e38830>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5006e388c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5006e38950>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5006e389e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5006e38a70>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5006e38b00>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5006e38b90>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5006e38c20>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f5006e0f240>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651748806.210665,
|
51 |
+
"learning_rate": 0.01,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+EeuFHrhR7hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYgULwRExw/bWfVPdNbi74LpXG9a/DlPAAAAAAAAAAAZiaUuvZkZbrsBa+5gPAWNdg5SLuLcMo4AACAPwAAgD92r8W+Y7sxPx6lvL0EyWq+FrSUvhonoD0AAAAAAAAAAM1tXb0pkCm6GAvZOvDlwraiIrO6QJ2AuQAAgD8AAIA/pn3avUjzlroo8t26Wnc7tiuNmDr2H/05AACAPwAAgD9GmJA+/JaOP9/4lz4xEFG+OtBVPjLvrzwAAAAAAAAAAGa2QrvD6X66ubGIPA40AzW6xtm5q1fnMwAAgD8AAIA/s2p7PRRgkrqG0dI75ky/NQU27DmYTrU0AACAPwAAgD/zyig+lEqwPwnfAz+xEWa+gsIgPtLljj0AAAAAAAAAAGbWpLtsjp4/EUulPRYx776Wze68Fb7cvAAAAAAAAAAAGtBsPY8qYbpDZay6uqgttnYPmzun8MY5AACAPwAAgD/NcCQ+65ibP25ygD7AJGK+aBsEPnu8xj0AAAAAAAAAAM3Z6r0pHBy6VIUDPRrNsLpChps7gD6aOwAAgD8AAIA/xhAkvjH5Rz+1cHE7Cmbtvk0L+r258Ec9AAAAAAAAAACaVLE8FIyKulrnPrtvyC+2nD8JuvvHWjoAAIA/AACAP2aGvDwUrom60jjNu8OvnTgxXzK7heXbOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqaROQBNyWUCUhpRSlIwBbJRN6AOMAXSUR0CWRbU+s5n2dX2UKGgGaAloD0MIEOhM2lQUW8CUhpRSlGgVTb8BaBZHQJZG8ihWYF91fZQoaAZoCWgPQwhWgVoMnhNjQJSGlFKUaBVN6ANoFkdAlklBPfsNUnV9lChoBmgJaA9DCKacL/bewmBAlIaUUpRoFU3oA2gWR0CWTBYrJ8v3dX2UKGgGaAloD0MIT135LM+dX0CUhpRSlGgVTegDaBZHQJZVu8PFvQ51fZQoaAZoCWgPQwhH6dK/pORgQJSGlFKUaBVN6ANoFkdAllsiaZx7zHV9lChoBmgJaA9DCJZbWg0JWGJAlIaUUpRoFU3oA2gWR0CWbi8U21lYdX2UKGgGaAloD0MIyxMIO8ViM0CUhpRSlGgVTegDaBZHQJZ6Efq5byJ1fZQoaAZoCWgPQwhWZd8VwV5YQJSGlFKUaBVN6ANoFkdAln40x20Re3V9lChoBmgJaA9DCBNGs7J9fmVAlIaUUpRoFU3oA2gWR0CWf3Lns9jgdX2UKGgGaAloD0MIQ6m9iDb9YECUhpRSlGgVTegDaBZHQJaBtGRV6u51fZQoaAZoCWgPQwiVRPZBlr9eQJSGlFKUaBVN6ANoFkdAloWxHoX9BXV9lChoBmgJaA9DCEDCMGDJf15AlIaUUpRoFU3oA2gWR0CWlvEv0yxidX2UKGgGaAloD0MILXk8LT/uWUCUhpRSlGgVTegDaBZHQJaaFqpLmIV1fZQoaAZoCWgPQwjiyAORRV9fQJSGlFKUaBVN6ANoFkdAlpt+nMt9QXV9lChoBmgJaA9DCPOv5ZXrPmBAlIaUUpRoFU3oA2gWR0CWm7IldC3PdX2UKGgGaAloD0MIjgOvljv7WkCUhpRSlGgVTegDaBZHQJacaAlOXVt1fZQoaAZoCWgPQwhSmWIOgmxiQJSGlFKUaBVN6ANoFkdAlp3XTRYzSHV9lChoBmgJaA9DCL+ZmC7EFFpAlIaUUpRoFU3oA2gWR0CWoIQ1JlJ6dX2UKGgGaAloD0MIQ41CktmtY0CUhpRSlGgVTegDaBZHQJajgNWluWN1fZQoaAZoCWgPQwgAUps4uf1fQJSGlFKUaBVN6ANoFkdAlq1pdWyTp3V9lChoBmgJaA9DCOfkRSbgBV9AlIaUUpRoFU3oA2gWR0CWskAXVLBbdX2UKGgGaAloD0MI9vBlogjiXECUhpRSlGgVTegDaBZHQJbD4t9QXRB1fZQoaAZoCWgPQwibx2EwfwJVQJSGlFKUaBVN6ANoFkdAls8AZCOWB3V9lChoBmgJaA9DCIc1lUXhSGFAlIaUUpRoFU3oA2gWR0CW0s5ftx+8dX2UKGgGaAloD0MIhjsXRnrWXkCUhpRSlGgVTegDaBZHQJbUBCngpBp1fZQoaAZoCWgPQwjz4sRXOzpfQJSGlFKUaBVN6ANoFkdAltZM8HObAnV9lChoBmgJaA9DCIP6ljldDmFAlIaUUpRoFU3oA2gWR0CW2jXD3ueCdX2UKGgGaAloD0MIzTrj++LoY0CUhpRSlGgVTegDaBZHQJbrJyEL6UJ1fZQoaAZoCWgPQwiXVdgMcKxiQJSGlFKUaBVN6ANoFkdAlzpkZeiSJXV9lChoBmgJaA9DCDgVqTC292JAlIaUUpRoFU3oA2gWR0CXO71D0DlpdX2UKGgGaAloD0MICrsoemAnYECUhpRSlGgVTegDaBZHQJc78qtozvZ1fZQoaAZoCWgPQwgYlGk0OSdiQJSGlFKUaBVN6ANoFkdAlzyiy6cy33V9lChoBmgJaA9DCKKb/YFyUmJAlIaUUpRoFU3oA2gWR0CXPhnw5NoKdX2UKGgGaAloD0MIVdriGp/IYECUhpRSlGgVTegDaBZHQJdAz3WWhRJ1fZQoaAZoCWgPQwiqu7ILBvFZQJSGlFKUaBVN6ANoFkdAl0QjxgAp8XV9lChoBmgJaA9DCA+3Q8NilWjAlIaUUpRoFU3OAWgWR0CXRlgQpWmxdX2UKGgGaAloD0MI+FJ40OxWXkCUhpRSlGgVTegDaBZHQJdO+cOLBKt1fZQoaAZoCWgPQwjPnsvUJGFgQJSGlFKUaBVN6ANoFkdAl1SdNBWxQnV9lChoBmgJaA9DCBY0LbEyhFdAlIaUUpRoFU3oA2gWR0CXZpAnlXA/dX2UKGgGaAloD0MIQYAMHTtMXkCUhpRSlGgVTegDaBZHQJdxcyWRigF1fZQoaAZoCWgPQwgK3LqbJxJgQJSGlFKUaBVN6ANoFkdAl3ZykKu0TnV9lChoBmgJaA9DCHgMj/0s72FAlIaUUpRoFU3oA2gWR0CXeKcENe+mdX2UKGgGaAloD0MImus00tJYYkCUhpRSlGgVTegDaBZHQJd8QZYPoV51fZQoaAZoCWgPQwgWodgKGnNiQJSGlFKUaBVN6ANoFkdAl4uBqO938nV9lChoBmgJaA9DCBkfZi/b5WVAlIaUUpRoFU3oA2gWR0CXjnDPWxyGdX2UKGgGaAloD0MIx9rf2R5eYUCUhpRSlGgVTegDaBZHQJePpoN/e+F1fZQoaAZoCWgPQwhHdM+6Rn5cQJSGlFKUaBVN6ANoFkdAl4/VbaAWi3V9lChoBmgJaA9DCHdqLjeYCmNAlIaUUpRoFU3oA2gWR0CXkHtGus90dX2UKGgGaAloD0MIxEKtaV5lYkCUhpRSlGgVTegDaBZHQJeR0BOpKjB1fZQoaAZoCWgPQwgKvJNPj/RYQJSGlFKUaBVN6ANoFkdAl5RMCcPOIXV9lChoBmgJaA9DCJNxjGQPG2FAlIaUUpRoFU3oA2gWR0CXlypeNT99dX2UKGgGaAloD0MIQiPYuP68XECUhpRSlGgVTegDaBZHQJeZFdld1Md1fZQoaAZoCWgPQwgl6ZrJt4tjQJSGlFKUaBVN6ANoFkdAl5/WugYgq3V9lChoBmgJaA9DCP8lqUwxaFJAlIaUUpRoFU3oA2gWR0CXpE/zreImdX2UKGgGaAloD0MIt5bJcDzhSECUhpRSlGgVS9BoFkdAl6aqi48U23V9lChoBmgJaA9DCM6LE1/tcWRAlIaUUpRoFU3oA2gWR0CXtAIDYAbRdX2UKGgGaAloD0MIda29T9VlY0CUhpRSlGgVTegDaBZHQJe+A5q/M4d1fZQoaAZoCWgPQwiELXb7LBVnQJSGlFKUaBVN6ANoFkdAl8LCUcGTtHV9lChoBmgJaA9DCLKfxVIkNV1AlIaUUpRoFU3oA2gWR0CXxONHH3lCdX2UKGgGaAloD0MImGn7V1ZZYkCUhpRSlGgVTegDaBZHQJfIiHSF49p1fZQoaAZoCWgPQwgewY2UrdBgQJSGlFKUaBVN6ANoFkdAl9hOhK15SnV9lChoBmgJaA9DCJs8ZTVdlzRAlIaUUpRoFUvXaBZHQJfadrbg0j11fZQoaAZoCWgPQwjLLa2GRLZgQJSGlFKUaBVN6ANoFkdAl9tZn13+uXV9lChoBmgJaA9DCF/waU5eo2JAlIaUUpRoFU3oA2gWR0CX3IbzK9wndX2UKGgGaAloD0MIrW2Kx8XOYUCUhpRSlGgVTegDaBZHQJfctFNL1291fZQoaAZoCWgPQwhM4NbdPIBmQJSGlFKUaBVN6ANoFkdAl91GX9itrHV9lChoBmgJaA9DCLBYw0VuJGNAlIaUUpRoFU3oA2gWR0CYLw9srNGFdX2UKGgGaAloD0MIUrXdBN/IYECUhpRSlGgVTegDaBZHQJgxgVUMoc91fZQoaAZoCWgPQwhhiJy+HtNjQJSGlFKUaBVN6ANoFkdAmDQxRAKOUHV9lChoBmgJaA9DCAKBzqTNz2FAlIaUUpRoFU3oA2gWR0CYPUb8FY+0dX2UKGgGaAloD0MI761ITFAjXUCUhpRSlGgVTegDaBZHQJhCO4smOVB1fZQoaAZoCWgPQwjsTQzJydtaQJSGlFKUaBVN6ANoFkdAmETjSXt0FXV9lChoBmgJaA9DCIffTbfsQGRAlIaUUpRoFU3oA2gWR0CYUqPl+3H8dX2UKGgGaAloD0MIm3CvzNtFZECUhpRSlGgVTegDaBZHQJhcUGVzIWB1fZQoaAZoCWgPQwhY5q26Dt5bQJSGlFKUaBVN6ANoFkdAmGH/BzmwJXV9lChoBmgJaA9DCHO4VnvYs11AlIaUUpRoFU3oA2gWR0CYZJHWBjFydX2UKGgGaAloD0MIWpvG9lrgYkCUhpRSlGgVTegDaBZHQJh9OnBLwnZ1fZQoaAZoCWgPQwjyd++oMY5kQJSGlFKUaBVN6ANoFkdAmH9mxlg+hXV9lChoBmgJaA9DCC0mNh/X12NAlIaUUpRoFU3oA2gWR0CYgDohY/3WdX2UKGgGaAloD0MIiJ6USQ0iY0CUhpRSlGgVTegDaBZHQJiBUhKUVzp1fZQoaAZoCWgPQwhIcCNli/JiQJSGlFKUaBVN6ANoFkdAmIF8vysjmnV9lChoBmgJaA9DCHR+iuNAqGFAlIaUUpRoFU3oA2gWR0CYggMRHww1dX2UKGgGaAloD0MIB9Dv+7e2YkCUhpRSlGgVTegDaBZHQJiDPdN34bl1fZQoaAZoCWgPQwh3LLZJxbdjQJSGlFKUaBVN6ANoFkdAmIXF0tAcDXV9lChoBmgJaA9DCM7hWu1hbF5AlIaUUpRoFU3oA2gWR0CYiAlb/wRXdX2UKGgGaAloD0MItteC3ht/YkCUhpRSlGgVTegDaBZHQJiQHl3hXKd1fZQoaAZoCWgPQwihhJm2fwpjQJSGlFKUaBVN6ANoFkdAmJfCJfpljHV9lChoBmgJaA9DCED35cx2aGVAlIaUUpRoFU3oA2gWR0CYmvi+cpb2dX2UKGgGaAloD0MIFxIwurw3Z0CUhpRSlGgVTegDaBZHQJiq1VwPy091fZQoaAZoCWgPQwjPS8XGvFRdQJSGlFKUaBVN6ANoFkdAmLQzjebd8HV9lChoBmgJaA9DCIY5QZuciGNAlIaUUpRoFU3oA2gWR0CYuFb/Ot4idX2UKGgGaAloD0MIis3HtaHZW0CUhpRSlGgVTegDaBZHQJi6QnYxtYV1fZQoaAZoCWgPQwg/U69bBB1mQJSGlFKUaBVN6ANoFkdAmM06yjYZmHV9lChoBmgJaA9DCKlsWFNZK2JAlIaUUpRoFU3oA2gWR0CYz06C17Y1dX2UKGgGaAloD0MIFjQtsTKvXECUhpRSlGgVTegDaBZHQJjQJL/S6Ud1fZQoaAZoCWgPQwhqFf2hmR5aQJSGlFKUaBVN6ANoFkdAmNFVf/m1Y3V9lChoBmgJaA9DCKRS7GgcOF9AlIaUUpRoFU3oA2gWR0CY0YFc6eXidX2UKGgGaAloD0MIoOBiRQ0KY0CUhpRSlGgVTegDaBZHQJjSG96C17Z1fZQoaAZoCWgPQwhwmj474GVkQJSGlFKUaBVN6ANoFkdAmNNWTkhib3VlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 160,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 128,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f04f1b8006f7bd0d94ad8e57a8d9e276a8fe6a3f7663b4721386f1b258608088
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bcce3fe26bf3c8675acd681d7db2b1a0519e7bef89032178c924f47d93e487e0
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c276f831cb0de420f45e5c9752db5bc70e96ea50b58eb41c42a709762031d68
|
3 |
+
size 202227
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 164.93691598380562, "std_reward": 62.16760834050202, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T11:35:33.097981"}
|