version 4 of the lander
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +30 -30
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 282.96 +/- 37.54
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5006e38680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5006e38710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5006e387a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5006e38830>", "_build": "<function ActorCriticPolicy._build at 0x7f5006e388c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5006e38950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5006e389e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5006e38a70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5006e38b00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5006e38b90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5006e38c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5006e0f240>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1001472, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651757257.6502278, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAJr3Qr4EvZE9n7mPPp0Kkb4Foie8rsGePQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInl2+9WHOUkCUhpRSlIwBbJRLl4wBdJRHQKw0nUtI0651fZQoaAZoCWgPQwhsByP2ifNxQJSGlFKUaBVL1mgWR0CsNYo3rD64dX2UKGgGaAloD0MIho2yfrMZcUCUhpRSlGgVS9toFkdArDZ5yfcvd3V9lChoBmgJaA9DCO2CwTV3NVFAlIaUUpRoFUuVaBZHQKw3JPJq7Ad1fZQoaAZoCWgPQwjuQQjIFwlyQJSGlFKUaBVLpWgWR0CsPNKbKA8TdX2UKGgGaAloD0MIBHRfzmzWcECUhpRSlGgVS5ZoFkdArD15f+jubHV9lChoBmgJaA9DCA9+4gD6nnFAlIaUUpRoFUulaBZHQKw+KHfuTid1fZQoaAZoCWgPQwgjoS3nkj9xQJSGlFKUaBVL12gWR0CsPxmc4HX3dX2UKGgGaAloD0MISMK+nUT7cUCUhpRSlGgVS55oFkdArD/EbWEsa3V9lChoBmgJaA9DCPBsj95wE0ZAlIaUUpRoFUtoaBZHQKxAM3Ytg8d1fZQoaAZoCWgPQwh+w0SDlCVuwJSGlFKUaBVL9mgWR0CsQUfk3juKdX2UKGgGaAloD0MI2PFfIAh2RkCUhpRSlGgVS3FoFkdArEHBng5zYHV9lChoBmgJaA9DCHzRHi9kc3FAlIaUUpRoFUu8aBZHQKxCkYixFAp1fZQoaAZoCWgPQwivlGWI4xFwQJSGlFKUaBVLr2gWR0CsQ1/zSThYdX2UKGgGaAloD0MI4QhSKbYxcECUhpRSlGgVS7loFkdArEQwS+QEIXV9lChoBmgJaA9DCOuM74uLOnJAlIaUUpRoFUvwaBZHQKxKJNATqSp1fZQoaAZoCWgPQwjG+ZtQiPxoQJSGlFKUaBVN9wJoFkdArE2W0LMLW3V9lChoBmgJaA9DCFW/0vnwx2TAlIaUUpRoFUtgaBZHQKxOAFCb+cZ1fZQoaAZoCWgPQwjIW65+rFFxQJSGlFKUaBVLxWgWR0CsTtQJw84hdX2UKGgGaAloD0MIh/nyAmytckCUhpRSlGgVS7JoFkdArE+ZInSfDnV9lChoBmgJaA9DCEAziA/sVD3AlIaUUpRoFUtfaBZHQKxP+c6Nly11fZQoaAZoCWgPQwgwRiQKLZxzQJSGlFKUaBVLvGgWR0CsUMolD4QCdX2UKGgGaAloD0MICWtj7IStcUCUhpRSlGgVS6FoFkdArFGEE5hjOXV9lChoBmgJaA9DCKw41VqYeXBAlIaUUpRoFUvCaBZHQKxSYrpaA4J1fZQoaAZoCWgPQwhQNA9gUXRxQJSGlFKUaBVL0GgWR0CsWHIlMRHxdX2UKGgGaAloD0MIONcwQ+ORckCUhpRSlGgVS99oFkdArFl1opQUH3V9lChoBmgJaA9DCBAk7xwKRHBAlIaUUpRoFUvcaBZHQKxaaeHSF491fZQoaAZoCWgPQwho6+Bgr3dyQJSGlFKUaBVNiAFoFkdArFwxUWEbpHV9lChoBmgJaA9DCFUyAFTx+3BAlIaUUpRoFU1rAWgWR0CsXdkzGgjAdX2UKGgGaAloD0MIBADHnj2ncUCUhpRSlGgVS9NoFkdArF7AJAt4A3V9lChoBmgJaA9DCPAXsyXrMHFAlIaUUpRoFUvIaBZHQKxfnBVMmF91fZQoaAZoCWgPQwj+DG/WoGtxQJSGlFKUaBVL7GgWR0CsYLQBHTZydX2UKGgGaAloD0MIIQGjyxtZbUCUhpRSlGgVS69oFkdArGaDpmmLtXV9lChoBmgJaA9DCKnYmNcRZw5AlIaUUpRoFUteaBZHQKxm7d7fHgh1fZQoaAZoCWgPQwjGw3sOLJtGQJSGlFKUaBVLmWgWR0CsZ5RujynUdX2UKGgGaAloD0MIJbGk3H1+O8CUhpRSlGgVS4RoFkdArGgl7dBSk3V9lChoBmgJaA9DCHyYvWy7gG5AlIaUUpRoFUv+aBZHQKxpRea8Yht1fZQoaAZoCWgPQwhYWHA/YIVwQJSGlFKUaBVLpGgWR0CsagWlEZzgdX2UKGgGaAloD0MIXI3sSgv4cUCUhpRSlGgVS9NoFkdArGr4OJ+DvnV9lChoBmgJaA9DCJNX5xiQUHBAlIaUUpRoFU0LAmgWR0CsbUSvTw2EdX2UKGgGaAloD0MI5KCEmbZfcECUhpRSlGgVS7NoFkdArG4Gzt1IRXV9lChoBmgJaA9DCOi9MQQA8W9AlIaUUpRoFUuvaBZHQKxuw+kgwGp1fZQoaAZoCWgPQwjc9dIUQVpzQJSGlFKUaBVLv2gWR0CsdJ3k5p8GdX2UKGgGaAloD0MIuXGL+blMc0CUhpRSlGgVS95oFkdArHWQ0oBq9HV9lChoBmgJaA9DCEdzZOVXkHJAlIaUUpRoFUvVaBZHQKx2fgEU0vZ1fZQoaAZoCWgPQwgBFvn1AwFzQJSGlFKUaBVLsGgWR0CsdznVXmvGdX2UKGgGaAloD0MIX+tSI3QLcECUhpRSlGgVS6VoFkdArHfrSy+pO3V9lChoBmgJaA9DCNXo1QClCHJAlIaUUpRoFUvsaBZHQKx48yAxzq91fZQoaAZoCWgPQwi2+BQA43xuQJSGlFKUaBVLrWgWR0Csea6PCEYgdX2UKGgGaAloD0MIf/lkxTAKckCUhpRSlGgVS9loFkdArHqiQ5myxHV9lChoBmgJaA9DCO9wOzQsxW9AlIaUUpRoFUuoaBZHQKx7W+8oQWh1fZQoaAZoCWgPQwhUO8PUlp1zQJSGlFKUaBVL8WgWR0CsfH6TOgQIdX2UKGgGaAloD0MIAI49ey5TDcCUhpRSlGgVS3RoFkdArHz9ZTyau3V9lChoBmgJaA9DCMk9Xd0xcnBAlIaUUpRoFU0kAWgWR0Csg2Rw6ySndX2UKGgGaAloD0MIQiECDmGvcECUhpRSlGgVS8FoFkdArIRAoZydWnV9lChoBmgJaA9DCKt5jsh3g2tAlIaUUpRoFU2dAWgWR0CshizS1E3LdX2UKGgGaAloD0MIpfj4hKwmcUCUhpRSlGgVS59oFkdArIbcCA+Y+nV9lChoBmgJaA9DCHfzVIfcnHFAlIaUUpRoFUvpaBZHQKyH2kRBeHB1fZQoaAZoCWgPQwj68CxBRntyQJSGlFKUaBVNOQFoFkdArIlHBvaURnV9lChoBmgJaA9DCDdUjPM3snNAlIaUUpRoFU0KAWgWR0CsimyDZlFudX2UKGgGaAloD0MIVcITej3mcECUhpRSlGgVS7JoFkdArIs3CoCMgnV9lChoBmgJaA9DCC/E6o8wgDdAlIaUUpRoFUtWaBZHQKyQgTkhib51fZQoaAZoCWgPQwjgumJG+FBxQJSGlFKUaBVL2GgWR0CskX+XJHRUdX2UKGgGaAloD0MIbvse9dfrCMCUhpRSlGgVS1JoFkdArJHYt4A0bnV9lChoBmgJaA9DCL7Ye/GFb3FAlIaUUpRoFUvRaBZHQKySzNet0V91fZQoaAZoCWgPQwjPZtXnqmZwQJSGlFKUaBVLt2gWR0Csk52mYSg5dX2UKGgGaAloD0MIZcdGIN6gcECUhpRSlGgVS7loFkdArJRp9iMHbHV9lChoBmgJaA9DCIlfsYaLZ15AlIaUUpRoFU3oA2gWR0CsmbTv7WNFdX2UKGgGaAloD0MIvCGNChzPb0CUhpRSlGgVS85oFkdArJ+bQJHAh3V9lChoBmgJaA9DCLyQDg9hrEVAlIaUUpRoFUuQaBZHQKygOujASFp1fZQoaAZoCWgPQwg6XRYTW+ZwQJSGlFKUaBVLnmgWR0CsoO2RzRx+dX2UKGgGaAloD0MIke18P/WfcUCUhpRSlGgVS+NoFkdArKHyuIRAbHV9lChoBmgJaA9DCOVDUDX6hm1AlIaUUpRoFUuwaBZHQKyit7N0NjN1fZQoaAZoCWgPQwjFPCtpRSxxQJSGlFKUaBVLtGgWR0Cso4QnhKlIdX2UKGgGaAloD0MILCtNSoEwckCUhpRSlGgVS79oFkdArKRdm+TNdXV9lChoBmgJaA9DCEVGByRhR0hAlIaUUpRoFUtwaBZHQKyk26asp5N1fZQoaAZoCWgPQwgkK78MxpQxQJSGlFKUaBVLZmgWR0CspU+e4Cp4dX2UKGgGaAloD0MI3SIw1rftc0CUhpRSlGgVTQEBaBZHQKymZXCCSRt1fZQoaAZoCWgPQwhiZp/HaINwQJSGlFKUaBVLp2gWR0Cspx/oA4n4dX2UKGgGaAloD0MIFa3cCwyqckCUhpRSlGgVS7loFkdArKfruKGcnXV9lChoBmgJaA9DCHvXoC/9enFAlIaUUpRoFUuraBZHQKytoyY5T611fZQoaAZoCWgPQwhgOUIGMoVyQJSGlFKUaBVL22gWR0CsrpFQ2uPndX2UKGgGaAloD0MIr30BvfCrckCUhpRSlGgVTQ8BaBZHQKyvv0NBnjB1fZQoaAZoCWgPQwj9vn/zYsxvQJSGlFKUaBVLuWgWR0CssImGmDUWdX2UKGgGaAloD0MIRpiiXJreYMCUhpRSlGgVS4doFkdArLEZO1v2oXV9lChoBmgJaA9DCIuqX+l8ZGlAlIaUUpRoFU03AWgWR0Csso13EAHWdX2UKGgGaAloD0MIu9Vz0vuQR0CUhpRSlGgVS4poFkdArLMo1xbSqnV9lChoBmgJaA9DCLwC0ZMyQnBAlIaUUpRoFUvdaBZHQKy0KgdwNsp1fZQoaAZoCWgPQwhftp22hi9xQJSGlFKUaBVL22gWR0CstSmlhw2mdX2UKGgGaAloD0MIADeLFwtIcECUhpRSlGgVS7VoFkdArLX00elsQHV9lChoBmgJaA9DCJ8gsd19LnFAlIaUUpRoFU05AWgWR0CsvBn4GlhxdX2UKGgGaAloD0MIKlPMQVCsckCUhpRSlGgVS9toFkdArL0OucMEzXV9lChoBmgJaA9DCFe1pKPcBHJAlIaUUpRoFUu7aBZHQKy93fkWAPN1fZQoaAZoCWgPQwgt0Vlm0RFwQJSGlFKUaBVLuWgWR0CsvrGs3hn8dX2UKGgGaAloD0MIescpOhKEcECUhpRSlGgVS89oFkdArL+aZWq95HV9lChoBmgJaA9DCNUjDW5rLzZAlIaUUpRoFUuSaBZHQKzAPM3ZPEd1fZQoaAZoCWgPQwgCDwwg/PpwQJSGlFKUaBVLvWgWR0CswRBsqJ/HdX2UKGgGaAloD0MIDtsWZTbQbUCUhpRSlGgVS69oFkdArMHeRDCxeXV9lChoBmgJaA9DCC18fa2LYHFAlIaUUpRoFUvFaBZHQKzCvBY3eep1fZQoaAZoCWgPQwjABG7dDfhzQJSGlFKUaBVL5WgWR0Csw7hz3h4udWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4890, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc69129f4d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc69129f560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc69129f5f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc69129f680>", "_build": "<function ActorCriticPolicy._build at 0x7fc69129f710>", "forward": "<function ActorCriticPolicy.forward at 0x7fc69129f7a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc69129f830>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc69129f8c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc69129f950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc69129f9e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc69129fa70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc6912ec810>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 10027008, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653839086.5167315, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAgOBHvdp0qz8aacO+up3Svsdnhrygyvm9AAAAAAAAAACzwU699vRKupYRMzz66rM7hrGoumWNnbwAAIA/AACAP+00hD7Kok8/jYPjPTW+M78ssRM/sE5svQAAAAAAAAAAxulMPoPKIj9ASg083P42vwMK1z662Fa+AAAAAAAAAADmJRw+KRSLPie8h75ZdBK/VxuePchTGr4AAAAAAAAAADN187zhWKS6w40ts5tIOC+vO0A4s5zSMwAAgD8AAIA/MKllviS9+T6qLXc+Mu4nv4rHdr4gm5Y+AAAAAAAAAAALkYa+rDfJPvZZDT5B7ES/fwXQvkyXgj4AAAAAAAAAACraVr4FNDM/70iou25JVL9b572+gjfKPQAAAAAAAAAAM77mvOGsibo625c2dzd4MQEMSToLrbW1AACAPwAAgD/CPIu+ufynP6DJCr/viC+/5ebavrRAyb4AAAAAAAAAADM8MD6/3GE/0s2MPm2uPb+TW9Q+pULpPQAAAAAAAAAA8/e+PauQ4D2IyVe+wWHTvgO1zjzavBu+AAAAAAAAAACAtgW9Lm20P+JxB79bEp29smwpPBFzB70AAAAAAAAAADMh8ryPVju61H9CPb1TmLc2K0W74E6XtgAAgD8AAIA/mpBfvYuHiT5PeLk9F3wuvyMJF71iDM09AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6Ih8l1IEckCUhpRSlIwBbJRLj4wBdJRHQMqe5rRSgoR1fZQoaAZoCWgPQwgn+nyUkaxwQJSGlFKUaBVLgmgWR0DKnuceZG8VdX2UKGgGaAloD0MI/Yf02xdzc0CUhpRSlGgVS55oFkdAyp7m1og3cnV9lChoBmgJaA9DCMdLN4lB8HBAlIaUUpRoFUubaBZHQMqe63OGCZp1fZQoaAZoCWgPQwhi1/Z2yxV0QJSGlFKUaBVLtWgWR0DKnvJ+YtxudX2UKGgGaAloD0MIg4jUtAsLcUCUhpRSlGgVS5JoFkdAyp773JxNqXV9lChoBmgJaA9DCFRvDWwV1XFAlIaUUpRoFUuEaBZHQMqe/j1XeWR1fZQoaAZoCWgPQwhVUbzKmudyQJSGlFKUaBVLjGgWR0DKnwj101ZUdX2UKGgGaAloD0MI2nVvRWL/b0CUhpRSlGgVS5doFkdAyp8KvpyIYXV9lChoBmgJaA9DCMYy/RJxXnFAlIaUUpRoFUuHaBZHQMqfGwOWjXZ1fZQoaAZoCWgPQwgJih9jboJyQJSGlFKUaBVLkGgWR0DKnxuu/1xsdX2UKGgGaAloD0MIiPVGrTB4cUCUhpRSlGgVS4doFkdAyp8dQ1rIo3V9lChoBmgJaA9DCGngRzXsL3BAlIaUUpRoFUuzaBZHQMqfIUCA+ZB1fZQoaAZoCWgPQwji5elc0b1xQJSGlFKUaBVLjmgWR0DKnx8cQyyldX2UKGgGaAloD0MI3SIw1rcxckCUhpRSlGgVS5BoFkdAyp8m4Vh1DHV9lChoBmgJaA9DCOasTzlm13NAlIaUUpRoFUubaBZHQMqfO23azu51fZQoaAZoCWgPQwi6v3rcd05zQJSGlFKUaBVLoGgWR0DKnz7QXyiFdX2UKGgGaAloD0MIL2mM1lHacUCUhpRSlGgVS5xoFkdAyp9BZuhsZnV9lChoBmgJaA9DCMcqpWe6pXNAlIaUUpRoFUuraBZHQMqfQASWZ7Z1fZQoaAZoCWgPQwgH6pRH90RyQJSGlFKUaBVLlmgWR0DKn0YzBRAKdX2UKGgGaAloD0MIhq3ZysszckCUhpRSlGgVS5poFkdAyp9Rg1m8NHV9lChoBmgJaA9DCFOvWwQGjnFAlIaUUpRoFUugaBZHQMqfWGSIP9V1fZQoaAZoCWgPQwi3DDhLiU5xQJSGlFKUaBVLfGgWR0DKn2QnrpqzdX2UKGgGaAloD0MI3+ALk+kddECUhpRSlGgVS6hoFkdAyp9o51eSjnV9lChoBmgJaA9DCMTt0LAYD3JAlIaUUpRoFUumaBZHQMqfaYfnwG51fZQoaAZoCWgPQwibBG9Io1BvQJSGlFKUaBVLh2gWR0DKn28DbJwLdX2UKGgGaAloD0MIKuPfZ1yOcUCUhpRSlGgVS+9oFkdAyp9tBHCoCXV9lChoBmgJaA9DCLitLTyvxnBAlIaUUpRoFUudaBZHQMqfdNVrAQB1fZQoaAZoCWgPQwjltKfkXAdxQJSGlFKUaBVLn2gWR0DKn3nicXnAdX2UKGgGaAloD0MIQwJGl3fKc0CUhpRSlGgVS7doFkdAyp+Dk/8l5XV9lChoBmgJaA9DCBtIF5sWgHJAlIaUUpRoFUufaBZHQMqfgfEfkmx1fZQoaAZoCWgPQwjnx19alI5xQJSGlFKUaBVLhWgWR0DKn5Fi8WbgdX2UKGgGaAloD0MIF5tWCkEMckCUhpRSlGgVS5JoFkdAyp+T8NQTEnV9lChoBmgJaA9DCIwrLo6KX3FAlIaUUpRoFUueaBZHQMqfmBUR3/x1fZQoaAZoCWgPQwiXqrTFtdFwQJSGlFKUaBVLhWgWR0DKn5ymQ8wIdX2UKGgGaAloD0MIpDSbx6E3ckCUhpRSlGgVS35oFkdAyp+eji4rjHV9lChoBmgJaA9DCIF6M2r+H3JAlIaUUpRoFUumaBZHQMqfnOyu6mR1fZQoaAZoCWgPQwgXD+85MOpzQJSGlFKUaBVLtGgWR0DKn6CYoiLVdX2UKGgGaAloD0MISfQyiqUHckCUhpRSlGgVS3toFkdAyp+nFMIu5HV9lChoBmgJaA9DCB2R71LqjXJAlIaUUpRoFUuLaBZHQMqftl7MPjJ1fZQoaAZoCWgPQwhDyk+qvS1xQJSGlFKUaBVLlmgWR0DKn7k2aUiZdX2UKGgGaAloD0MIuhXCaiyIcECUhpRSlGgVS6NoFkdAyp/AObRWtHV9lChoBmgJaA9DCDSeCOI8t3BAlIaUUpRoFUucaBZHQMqfwmVZ9ux1fZQoaAZoCWgPQwhGRZxO8rxwQJSGlFKUaBVLkGgWR0DKn8b0aqCIdX2UKGgGaAloD0MIVP61vHKgc0CUhpRSlGgVS7RoFkdAyp/VuKoAGXV9lChoBmgJaA9DCJYEqKll/nBAlIaUUpRoFUuZaBZHQMqf1CpNsWR1fZQoaAZoCWgPQwhnD7QCw+ZuQJSGlFKUaBVLhWgWR0DKn9mFev6kdX2UKGgGaAloD0MIFakwttDLckCUhpRSlGgVS5BoFkdAyp/iJb+tKnV9lChoBmgJaA9DCJRL4xfezXNAlIaUUpRoFUu4aBZHQMqf55cC5mR1fZQoaAZoCWgPQwiafLPNjTNyQJSGlFKUaBVLnmgWR0DKn+2wPiDNdX2UKGgGaAloD0MIJh5QNuVFckCUhpRSlGgVS5BoFkdAyp/u+ajN6nV9lChoBmgJaA9DCMuEX+pnt3BAlIaUUpRoFUuYaBZHQMqf71oxpL51fZQoaAZoCWgPQwiOB1vs9oZwQJSGlFKUaBVLmWgWR0DKn/G4iHIqdX2UKGgGaAloD0MI6uqOxbavcECUhpRSlGgVS5doFkdAyp/vE2pAEHV9lChoBmgJaA9DCJbMsbyr2XNAlIaUUpRoFUubaBZHQMqf+tBF/hF1fZQoaAZoCWgPQwjA0CNGT0FwQJSGlFKUaBVLqGgWR0DKoBP5FgDzdX2UKGgGaAloD0MIa9WuCakbdECUhpRSlGgVS7hoFkdAyqAhCBwuNHV9lChoBmgJaA9DCBo09E9wpXNAlIaUUpRoFUuuaBZHQMqgImp2ll91fZQoaAZoCWgPQwhbC7PQTjNyQJSGlFKUaBVLpWgWR0DKoCRAhStOdX2UKGgGaAloD0MIrKsCtdgLc0CUhpRSlGgVS5RoFkdAyqAp7VJ+UnV9lChoBmgJaA9DCCrhCb2+7XFAlIaUUpRoFUuBaBZHQMqgKx7Z39t1fZQoaAZoCWgPQwiGkPP+P2ByQJSGlFKUaBVLfGgWR0DKoDVxMnJDdX2UKGgGaAloD0MI/OHnv8duckCUhpRSlGgVS6ZoFkdAyqA2/OdGzHV9lChoBmgJaA9DCGQ9tfrqFnBAlIaUUpRoFUuNaBZHQMqgP6Z6Uqx1fZQoaAZoCWgPQwhz1xLyAWZwQJSGlFKUaBVLk2gWR0DKoEXp2U0OdX2UKGgGaAloD0MIhh4xei4Vc0CUhpRSlGgVS8NoFkdAyqBDOfNA1XV9lChoBmgJaA9DCPLpsS3Dg3FAlIaUUpRoFUuZaBZHQMqgRuk1uR91fZQoaAZoCWgPQwizzY3pSRJyQJSGlFKUaBVLiWgWR0DKoErWXkYGdX2UKGgGaAloD0MIf73Cgjs3c0CUhpRSlGgVS6NoFkdAyqBK4XGfgHV9lChoBmgJaA9DCEzeADOfLHRAlIaUUpRoFUvBaBZHQMqgVEe6qbV1fZQoaAZoCWgPQwjcLF4sjGJyQJSGlFKUaBVLgGgWR0DKoG4cLjPwdX2UKGgGaAloD0MIJQNAFXc+c0CUhpRSlGgVS6doFkdAyqB2cBEKE3V9lChoBmgJaA9DCPyLoDFTDHNAlIaUUpRoFUuLaBZHQMqgeuHvc8F1fZQoaAZoCWgPQwiJzjKLEH9wQJSGlFKUaBVLpWgWR0DKoIMCJXQudX2UKGgGaAloD0MIlrIMcax+c0CUhpRSlGgVS6loFkdAyqCEP7N0NnV9lChoBmgJaA9DCI85z9gXsnNAlIaUUpRoFU1XAWgWR0DKoIikdmxudX2UKGgGaAloD0MIp1oLsxBKckCUhpRSlGgVS6poFkdAyqCPFLnLaHV9lChoBmgJaA9DCDnSGRg5B3FAlIaUUpRoFUuXaBZHQMqgkGnn+yZ1fZQoaAZoCWgPQwjhJw6gn11xQJSGlFKUaBVLh2gWR0DKoJLIvJzUdX2UKGgGaAloD0MIlnZqLncYckCUhpRSlGgVS65oFkdAyqCbImPYF3V9lChoBmgJaA9DCB77WSzF7nBAlIaUUpRoFUuOaBZHQMqgnZ/9YOl1fZQoaAZoCWgPQwi8kuS5PupyQJSGlFKUaBVLnWgWR0DKoKDN2TxHdX2UKGgGaAloD0MI5NpQMY6Yc0CUhpRSlGgVS6NoFkdAyqCeK4QSSXV9lChoBmgJaA9DCIgwfho38XJAlIaUUpRoFUuZaBZHQMqgoxOclPd1fZQoaAZoCWgPQwhlxAWgUfNxQJSGlFKUaBVLqGgWR0DKoKahxo7FdX2UKGgGaAloD0MIKcsQxzosckCUhpRSlGgVS6FoFkdAyqCvcJMQE3V9lChoBmgJaA9DCDJXBtWGJ3FAlIaUUpRoFUuTaBZHQMqgv4JE6T51fZQoaAZoCWgPQwhoCMcsey1wQJSGlFKUaBVLj2gWR0DKoMkxbjcVdX2UKGgGaAloD0MIvyoXKv+6KkCUhpRSlGgVS1toFkdAyqDU3G4qgHV9lChoBmgJaA9DCB0B3Cye2HBAlIaUUpRoFUuWaBZHQMqg1WfkFOh1fZQoaAZoCWgPQwi3CffKPJtzQJSGlFKUaBVLqGgWR0DKoNPgLqlhdX2UKGgGaAloD0MIIQa69oWocUCUhpRSlGgVS5JoFkdAyqDXoFFDv3V9lChoBmgJaA9DCKfn3ViQy3FAlIaUUpRoFUuhaBZHQMqg3LZBcA11fZQoaAZoCWgPQwhTWKmgYlRwQJSGlFKUaBVLh2gWR0DKoNzDQ7cPdX2UKGgGaAloD0MI4Zo7+p+9cUCUhpRSlGgVS35oFkdAyqDi8PFvRHV9lChoBmgJaA9DCORJ0jXTGHFAlIaUUpRoFUuEaBZHQMqg45LRKHx1fZQoaAZoCWgPQwh/9bhvdbtyQJSGlFKUaBVLpWgWR0DKoOisr/bTdX2UKGgGaAloD0MI1IGsp9YSc0CUhpRSlGgVS6ZoFkdAyqDqUxmCiHV9lChoBmgJaA9DCHbFjPB2SHNAlIaUUpRoFUulaBZHQMqg+mUW2w51fZQoaAZoCWgPQwjTo6mezOZyQJSGlFKUaBVLq2gWR0DKoPsJ+lTFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 9180, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 30, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96ac947b78e8aee91cc21fae8bde9fe040a616fda9e19c76689f21bf603e41db
|
3 |
+
size 144094
|
ppo-LunarLander-v2/data
CHANGED
@@ -1,28 +1,28 @@
|
|
1 |
{
|
2 |
"policy_class": {
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
-
":serialized:": "
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
23 |
"observation_space": {
|
24 |
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
-
":serialized:": "
|
26 |
"dtype": "float32",
|
27 |
"_shape": [
|
28 |
8
|
@@ -35,58 +35,58 @@
|
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
-
":serialized:": "
|
39 |
"n": 4,
|
40 |
"_shape": [],
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
-
"n_envs":
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
-
":serialized:": "
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
-
":serialized:": "
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
-
":serialized:": "
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 2048,
|
80 |
"gamma": 0.99,
|
81 |
"gae_lambda": 0.95,
|
82 |
-
"ent_coef": 0.
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
-
"batch_size":
|
86 |
-
"n_epochs":
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
-
":serialized:": "
|
90 |
},
|
91 |
"clip_range_vf": null,
|
92 |
"normalize_advantage": true,
|
|
|
1 |
{
|
2 |
"policy_class": {
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc69129f4d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc69129f560>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc69129f5f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc69129f680>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc69129f710>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc69129f7a0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc69129f830>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc69129f8c0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc69129f950>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc69129f9e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc69129fa70>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fc6912ec810>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
23 |
"observation_space": {
|
24 |
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
"dtype": "float32",
|
27 |
"_shape": [
|
28 |
8
|
|
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
"n": 4,
|
40 |
"_shape": [],
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 10027008,
|
46 |
+
"_total_timesteps": 10000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1653839086.5167315,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAgOBHvdp0qz8aacO+up3Svsdnhrygyvm9AAAAAAAAAACzwU699vRKupYRMzz66rM7hrGoumWNnbwAAIA/AACAP+00hD7Kok8/jYPjPTW+M78ssRM/sE5svQAAAAAAAAAAxulMPoPKIj9ASg083P42vwMK1z662Fa+AAAAAAAAAADmJRw+KRSLPie8h75ZdBK/VxuePchTGr4AAAAAAAAAADN187zhWKS6w40ts5tIOC+vO0A4s5zSMwAAgD8AAIA/MKllviS9+T6qLXc+Mu4nv4rHdr4gm5Y+AAAAAAAAAAALkYa+rDfJPvZZDT5B7ES/fwXQvkyXgj4AAAAAAAAAACraVr4FNDM/70iou25JVL9b572+gjfKPQAAAAAAAAAAM77mvOGsibo625c2dzd4MQEMSToLrbW1AACAPwAAgD/CPIu+ufynP6DJCr/viC+/5ebavrRAyb4AAAAAAAAAADM8MD6/3GE/0s2MPm2uPb+TW9Q+pULpPQAAAAAAAAAA8/e+PauQ4D2IyVe+wWHTvgO1zjzavBu+AAAAAAAAAACAtgW9Lm20P+JxB79bEp29smwpPBFzB70AAAAAAAAAADMh8ryPVju61H9CPb1TmLc2K0W74E6XtgAAgD8AAIA/mpBfvYuHiT5PeLk9F3wuvyMJF71iDM09AAAAAAAAAACUdJRiLg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0027007999999999477,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6Ih8l1IEckCUhpRSlIwBbJRLj4wBdJRHQMqe5rRSgoR1fZQoaAZoCWgPQwgn+nyUkaxwQJSGlFKUaBVLgmgWR0DKnuceZG8VdX2UKGgGaAloD0MI/Yf02xdzc0CUhpRSlGgVS55oFkdAyp7m1og3cnV9lChoBmgJaA9DCMdLN4lB8HBAlIaUUpRoFUubaBZHQMqe63OGCZp1fZQoaAZoCWgPQwhi1/Z2yxV0QJSGlFKUaBVLtWgWR0DKnvJ+YtxudX2UKGgGaAloD0MIg4jUtAsLcUCUhpRSlGgVS5JoFkdAyp773JxNqXV9lChoBmgJaA9DCFRvDWwV1XFAlIaUUpRoFUuEaBZHQMqe/j1XeWR1fZQoaAZoCWgPQwhVUbzKmudyQJSGlFKUaBVLjGgWR0DKnwj101ZUdX2UKGgGaAloD0MI2nVvRWL/b0CUhpRSlGgVS5doFkdAyp8KvpyIYXV9lChoBmgJaA9DCMYy/RJxXnFAlIaUUpRoFUuHaBZHQMqfGwOWjXZ1fZQoaAZoCWgPQwgJih9jboJyQJSGlFKUaBVLkGgWR0DKnxuu/1xsdX2UKGgGaAloD0MIiPVGrTB4cUCUhpRSlGgVS4doFkdAyp8dQ1rIo3V9lChoBmgJaA9DCGngRzXsL3BAlIaUUpRoFUuzaBZHQMqfIUCA+ZB1fZQoaAZoCWgPQwji5elc0b1xQJSGlFKUaBVLjmgWR0DKnx8cQyyldX2UKGgGaAloD0MI3SIw1rcxckCUhpRSlGgVS5BoFkdAyp8m4Vh1DHV9lChoBmgJaA9DCOasTzlm13NAlIaUUpRoFUubaBZHQMqfO23azu51fZQoaAZoCWgPQwi6v3rcd05zQJSGlFKUaBVLoGgWR0DKnz7QXyiFdX2UKGgGaAloD0MIL2mM1lHacUCUhpRSlGgVS5xoFkdAyp9BZuhsZnV9lChoBmgJaA9DCMcqpWe6pXNAlIaUUpRoFUuraBZHQMqfQASWZ7Z1fZQoaAZoCWgPQwgH6pRH90RyQJSGlFKUaBVLlmgWR0DKn0YzBRAKdX2UKGgGaAloD0MIhq3ZysszckCUhpRSlGgVS5poFkdAyp9Rg1m8NHV9lChoBmgJaA9DCFOvWwQGjnFAlIaUUpRoFUugaBZHQMqfWGSIP9V1fZQoaAZoCWgPQwi3DDhLiU5xQJSGlFKUaBVLfGgWR0DKn2QnrpqzdX2UKGgGaAloD0MI3+ALk+kddECUhpRSlGgVS6hoFkdAyp9o51eSjnV9lChoBmgJaA9DCMTt0LAYD3JAlIaUUpRoFUumaBZHQMqfaYfnwG51fZQoaAZoCWgPQwibBG9Io1BvQJSGlFKUaBVLh2gWR0DKn28DbJwLdX2UKGgGaAloD0MIKuPfZ1yOcUCUhpRSlGgVS+9oFkdAyp9tBHCoCXV9lChoBmgJaA9DCLitLTyvxnBAlIaUUpRoFUudaBZHQMqfdNVrAQB1fZQoaAZoCWgPQwjltKfkXAdxQJSGlFKUaBVLn2gWR0DKn3nicXnAdX2UKGgGaAloD0MIQwJGl3fKc0CUhpRSlGgVS7doFkdAyp+Dk/8l5XV9lChoBmgJaA9DCBtIF5sWgHJAlIaUUpRoFUufaBZHQMqfgfEfkmx1fZQoaAZoCWgPQwjnx19alI5xQJSGlFKUaBVLhWgWR0DKn5Fi8WbgdX2UKGgGaAloD0MIF5tWCkEMckCUhpRSlGgVS5JoFkdAyp+T8NQTEnV9lChoBmgJaA9DCIwrLo6KX3FAlIaUUpRoFUueaBZHQMqfmBUR3/x1fZQoaAZoCWgPQwiXqrTFtdFwQJSGlFKUaBVLhWgWR0DKn5ymQ8wIdX2UKGgGaAloD0MIpDSbx6E3ckCUhpRSlGgVS35oFkdAyp+eji4rjHV9lChoBmgJaA9DCIF6M2r+H3JAlIaUUpRoFUumaBZHQMqfnOyu6mR1fZQoaAZoCWgPQwgXD+85MOpzQJSGlFKUaBVLtGgWR0DKn6CYoiLVdX2UKGgGaAloD0MISfQyiqUHckCUhpRSlGgVS3toFkdAyp+nFMIu5HV9lChoBmgJaA9DCB2R71LqjXJAlIaUUpRoFUuLaBZHQMqftl7MPjJ1fZQoaAZoCWgPQwhDyk+qvS1xQJSGlFKUaBVLlmgWR0DKn7k2aUiZdX2UKGgGaAloD0MIuhXCaiyIcECUhpRSlGgVS6NoFkdAyp/AObRWtHV9lChoBmgJaA9DCDSeCOI8t3BAlIaUUpRoFUucaBZHQMqfwmVZ9ux1fZQoaAZoCWgPQwhGRZxO8rxwQJSGlFKUaBVLkGgWR0DKn8b0aqCIdX2UKGgGaAloD0MIVP61vHKgc0CUhpRSlGgVS7RoFkdAyp/VuKoAGXV9lChoBmgJaA9DCJYEqKll/nBAlIaUUpRoFUuZaBZHQMqf1CpNsWR1fZQoaAZoCWgPQwhnD7QCw+ZuQJSGlFKUaBVLhWgWR0DKn9mFev6kdX2UKGgGaAloD0MIFakwttDLckCUhpRSlGgVS5BoFkdAyp/iJb+tKnV9lChoBmgJaA9DCJRL4xfezXNAlIaUUpRoFUu4aBZHQMqf55cC5mR1fZQoaAZoCWgPQwiafLPNjTNyQJSGlFKUaBVLnmgWR0DKn+2wPiDNdX2UKGgGaAloD0MIJh5QNuVFckCUhpRSlGgVS5BoFkdAyp/u+ajN6nV9lChoBmgJaA9DCMuEX+pnt3BAlIaUUpRoFUuYaBZHQMqf71oxpL51fZQoaAZoCWgPQwiOB1vs9oZwQJSGlFKUaBVLmWgWR0DKn/G4iHIqdX2UKGgGaAloD0MI6uqOxbavcECUhpRSlGgVS5doFkdAyp/vE2pAEHV9lChoBmgJaA9DCJbMsbyr2XNAlIaUUpRoFUubaBZHQMqf+tBF/hF1fZQoaAZoCWgPQwjA0CNGT0FwQJSGlFKUaBVLqGgWR0DKoBP5FgDzdX2UKGgGaAloD0MIa9WuCakbdECUhpRSlGgVS7hoFkdAyqAhCBwuNHV9lChoBmgJaA9DCBo09E9wpXNAlIaUUpRoFUuuaBZHQMqgImp2ll91fZQoaAZoCWgPQwhbC7PQTjNyQJSGlFKUaBVLpWgWR0DKoCRAhStOdX2UKGgGaAloD0MIrKsCtdgLc0CUhpRSlGgVS5RoFkdAyqAp7VJ+UnV9lChoBmgJaA9DCCrhCb2+7XFAlIaUUpRoFUuBaBZHQMqgKx7Z39t1fZQoaAZoCWgPQwiGkPP+P2ByQJSGlFKUaBVLfGgWR0DKoDVxMnJDdX2UKGgGaAloD0MI/OHnv8duckCUhpRSlGgVS6ZoFkdAyqA2/OdGzHV9lChoBmgJaA9DCGQ9tfrqFnBAlIaUUpRoFUuNaBZHQMqgP6Z6Uqx1fZQoaAZoCWgPQwhz1xLyAWZwQJSGlFKUaBVLk2gWR0DKoEXp2U0OdX2UKGgGaAloD0MIhh4xei4Vc0CUhpRSlGgVS8NoFkdAyqBDOfNA1XV9lChoBmgJaA9DCPLpsS3Dg3FAlIaUUpRoFUuZaBZHQMqgRuk1uR91fZQoaAZoCWgPQwizzY3pSRJyQJSGlFKUaBVLiWgWR0DKoErWXkYGdX2UKGgGaAloD0MIf73Cgjs3c0CUhpRSlGgVS6NoFkdAyqBK4XGfgHV9lChoBmgJaA9DCEzeADOfLHRAlIaUUpRoFUvBaBZHQMqgVEe6qbV1fZQoaAZoCWgPQwjcLF4sjGJyQJSGlFKUaBVLgGgWR0DKoG4cLjPwdX2UKGgGaAloD0MIJQNAFXc+c0CUhpRSlGgVS6doFkdAyqB2cBEKE3V9lChoBmgJaA9DCPyLoDFTDHNAlIaUUpRoFUuLaBZHQMqgeuHvc8F1fZQoaAZoCWgPQwiJzjKLEH9wQJSGlFKUaBVLpWgWR0DKoIMCJXQudX2UKGgGaAloD0MIlrIMcax+c0CUhpRSlGgVS6loFkdAyqCEP7N0NnV9lChoBmgJaA9DCI85z9gXsnNAlIaUUpRoFU1XAWgWR0DKoIikdmxudX2UKGgGaAloD0MIp1oLsxBKckCUhpRSlGgVS6poFkdAyqCPFLnLaHV9lChoBmgJaA9DCDnSGRg5B3FAlIaUUpRoFUuXaBZHQMqgkGnn+yZ1fZQoaAZoCWgPQwjhJw6gn11xQJSGlFKUaBVLh2gWR0DKoJLIvJzUdX2UKGgGaAloD0MIlnZqLncYckCUhpRSlGgVS65oFkdAyqCbImPYF3V9lChoBmgJaA9DCB77WSzF7nBAlIaUUpRoFUuOaBZHQMqgnZ/9YOl1fZQoaAZoCWgPQwi8kuS5PupyQJSGlFKUaBVLnWgWR0DKoKDN2TxHdX2UKGgGaAloD0MI5NpQMY6Yc0CUhpRSlGgVS6NoFkdAyqCeK4QSSXV9lChoBmgJaA9DCIgwfho38XJAlIaUUpRoFUuZaBZHQMqgoxOclPd1fZQoaAZoCWgPQwhlxAWgUfNxQJSGlFKUaBVLqGgWR0DKoKahxo7FdX2UKGgGaAloD0MIKcsQxzosckCUhpRSlGgVS6FoFkdAyqCvcJMQE3V9lChoBmgJaA9DCDJXBtWGJ3FAlIaUUpRoFUuTaBZHQMqgv4JE6T51fZQoaAZoCWgPQwhoCMcsey1wQJSGlFKUaBVLj2gWR0DKoMkxbjcVdX2UKGgGaAloD0MIvyoXKv+6KkCUhpRSlGgVS1toFkdAyqDU3G4qgHV9lChoBmgJaA9DCB0B3Cye2HBAlIaUUpRoFUuWaBZHQMqg1WfkFOh1fZQoaAZoCWgPQwi3CffKPJtzQJSGlFKUaBVLqGgWR0DKoNPgLqlhdX2UKGgGaAloD0MIIQa69oWocUCUhpRSlGgVS5JoFkdAyqDXoFFDv3V9lChoBmgJaA9DCKfn3ViQy3FAlIaUUpRoFUuhaBZHQMqg3LZBcA11fZQoaAZoCWgPQwhTWKmgYlRwQJSGlFKUaBVLh2gWR0DKoNzDQ7cPdX2UKGgGaAloD0MI4Zo7+p+9cUCUhpRSlGgVS35oFkdAyqDi8PFvRHV9lChoBmgJaA9DCORJ0jXTGHFAlIaUUpRoFUuEaBZHQMqg45LRKHx1fZQoaAZoCWgPQwh/9bhvdbtyQJSGlFKUaBVLpWgWR0DKoOisr/bTdX2UKGgGaAloD0MI1IGsp9YSc0CUhpRSlGgVS6ZoFkdAyqDqUxmCiHV9lChoBmgJaA9DCHbFjPB2SHNAlIaUUpRoFUulaBZHQMqg+mUW2w51fZQoaAZoCWgPQwjTo6mezOZyQJSGlFKUaBVLq2gWR0DKoPsJ+lTFdWUu"
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 9180,
|
79 |
"n_steps": 2048,
|
80 |
"gamma": 0.99,
|
81 |
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 128,
|
86 |
+
"n_epochs": 30,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
},
|
91 |
"clip_range_vf": null,
|
92 |
"normalize_advantage": true,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84893
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab37c0e9a9e0491f3e9daa1d7745c1b89e70941cb0809fbf74a9f7e0ef7af7f3
|
3 |
size 84893
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ceeffb7ce4f7588f7ca6df8fada98e71ae368e7226b9f0e587ee2c23ad11add0
|
3 |
size 43201
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1fb5f3e26c7ff0ab548e390f81e781563f3c25595ef22d64aad0dbd98584d42
|
3 |
+
size 217012
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 282.96310415409624, "std_reward": 37.54088252600642, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-29T19:36:17.870388"}
|